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Abstract: Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of
civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis
of multiple image features, this work presents a novel approach for crack identification of concrete
structures. Firstly, the non-local means method is adopted to process the original image, which can
effectively diminish the noise influence. Then, to extract the effective features sensitive to the crack,
different filters are employed for crack edge detection, which are subsequently tackled by integral
projection and principal component analysis (PCA) for optimal feature selection. Moreover, support
vector machine (SVM) is used to design the classifiers for initial diagnosis of concrete surface based
on extracted features. To raise the classification accuracy, enhanced salp swarm algorithm (ESSA) is
applied to the SVM for meta-parameter optimization. The Dempster–Shafer (D–S) fusion algorithm
is utilized to fuse the diagnostic results corresponding to different filters for decision making. Finally,
to demonstrate the effectiveness of the proposed framework, a total of 1200 images are collected
from a real concrete bridge including intact (without crack), longitudinal crack, transverse crack and
oblique crack cases. The results validate the performance of proposed method with promising results
of diagnosis accuracy as high as 96.25%.

Keywords: concrete crack diagnosis; image processing; machine learning; data fusion

1. Introduction

As the most commonly used construction material, concrete has been widely used in
civil infrastructure, such as buildings, tunnels, dams, bridges, and wharfs. However, most
of these structures are susceptible to damage due to the environmental factors including
wind, seawater, fog, ice, etc. [1–4]. Among various concrete damage types, crack is a typical
concrete damage which can remarkably influence the stress distribution of structural
components and undermine the structural integrity. For the reinforced concrete structure,
the crack can also result in the corrosion of steel reinforcement and cause concrete cancer,
which further accelerates the crack development and growth. Accordingly, timely and
accurate identification of significant cracks on the structure surface is of great importance
for protecting civil infrastructure and avoiding unnecessary economic loss. The traditional
crack inspection methods are not only labour intensive and time consuming, but also lack
the assurance of accuracy and being real-time [5,6]. With rapid development of computer
vision technology, using a mobile camera system or remotely piloted aircraft (RPA) to
monitor civil infrastructure, combined with advanced image processing to extract useful
geometrical features of crack from captured videos or images, is a more reliable and robust

Remote Sens. 2021, 13, 240. https://doi.org/10.3390/rs13020240 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13020240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13020240
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/2/240?type=check_update&version=2


Remote Sens. 2021, 13, 240 2 of 28

solution compared to other contact-based approaches such as ultrasonic [7–9]. Although
the ultrasonic-based techniques may effectively detect the internal defect or crack of the
structure, the installation of such a device on the structure in use is not as convenient as
that of imaging methods based on controllable mobile camera system.

To effectively identify the concrete crack, a large number of studies have been con-
ducted in terms of crack edge detection, crack segmentation and crack-sensitive feature
extraction. Kim et al. put forward a crack diagnostic method based on the fuzzy set theory
for reinforced concrete structures [10]. In the proposed method, the crack symptom and
concrete condition were considered as the input variables and the built-in fuzzy rules
were employed to evaluate the crack cause in the structure. Nnolim proposed an auto-
mated crack identification approach based on using partial differential equation [11]. This
approach included both edge protection smoothing and edge enhancement process to
pre-process the crack image. Additionally, the local global maximal gradient matching
algorithm was used to deal with the crack image for capturing the crack characteristics.
Abdel-Qader et al. compared four image processing approaches: Canny filter, Sobel filter,
fast Fourier transform (FFT) and Haar transform (HT) in relation to crack detection [12].
The comparison results demonstrated that the HT method had the best performance with
detection accuracy of 86% among the four methods. Fujita and Hamamoto developed
a robust concrete crack identification algorithm, in which the median filter was used to
eliminate the slight change due to background from the raw image and probability relax-
ation and adaptive thresholding methods were subsequently conducted to detect the crack
with high performance including sensitivity of 0.801, specificity of 0.992 and accuracy of
0.606 [13]. A crack detection and classification method based on Beamlet transform was
introduced by Ying and Salari, in which the problem of uneven background brightness
was fixed by an enhanced algorithm via evaluating the multiplicative factor [14]. Tsai et al.
demonstrated the application of geodesic minimal path algorithm in the generation of the
crack pattern, which can be used for the process of route planning [15]. Valença et al. intro-
duced a novel approach called Image Processing of Cracking in Concrete Surfaces (MCRACK),
which is based on combined global-local method, to process the digital images for au-
tomatic characterisation of concrete cracks [16]. Kim et al. presented a novel concrete
crack assessment approach based on the integration of RAP technique and hybrid image
processing, in which the binarization method was used to evaluate the crack width [17].
The Gabor filter was utilised by Medina et al. to design a diagnostic system for identifying
the crack in concrete tunnel surface [18]. In this study, the parameters of Gabor filter were
optimized by an enhanced genetic algorithm to obtain the best identification performance.

Even though the aforementioned methods have been effective in concrete crack detec-
tion, the identification accuracy is still affected by the non-uniform background brightness
and noise contamination. Existing methods are unable to guarantee accurate detection
of crack edges while eliminating the noise. To resolve this issue, machine learning (ML)
techniques have been introduced for image processing, and several studies have been
reported in application of ML in crack classification and segmentation accordingly. Lee
et al. presented an approach based on back-propagation (BP) neural networks to identify
and analyse the crack on the concrete surface [19]. The proposed method can effectively
quantify the crack geometries including length, width and orientation and extract the crack
patterns including vertical, horizontal and random cracks, and the classification accuracy is
capable to reach as high as 100% for different patterns of crack including horizontal, vertical
diagonal (−45◦ and +45◦) and random. Chun et al. employed gradient boost decision tree
to design the crack detection algorithm, the inputs of which are colour, gradient and texture
characteristics of crack [20]. The random forest learning algorithm was also applied in the
design of crack diagnostic system, where the local crack patch can be predicted based on
channel and pairwise different features [21,22]. In above studies [21,22], two magnitude
channels, three colour channels and eight orientation channels were employed to make up
a total of thirteen channels for feature extraction. Liang et al. classified the crack images
of concrete using a support vector machine (SVM) classifier, in which the mean square
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deviation and peak ratios of grey histogram and distribution of projective integral are
utilized as the inputs and crack type is the output of the classifier [23,24]. Similar crack
detection algorithms based on SVM were also reported in [25,26]. In [27], Mokhtari et al.
conducted a comparative study on performance evaluation of different ML algorithms,
including ANN, DT, k-NN and ANFIS, in terms of computer vision-based crack detection.
The results showed that ANFIS and ANN have superior characteristics with regard to
calculation time, prediction accuracy and result stability and interpretability. Recently, deep
learning (DL) techniques have been quickly developed and widely utilized in processing
remote sensing data via dimensionality reduction and feature learning, especially in the
application of concrete crack detection. Compared to the traditional ML methods with shal-
low configuration, the DL approaches are capable to produce the predictions with higher
accuracy due to the deeper architecture [28]. Li et al. employed fully convolutional neural
networks (CNN) with Bayes fusion algorithm for automated crack identification of concrete
bridge [29]. Jo and Jadidi adopted deep belief networks to process both infrared and RGB
images for crack classification [30]. Zhang et al. combined long short-term memory and
1-D CNN to analyse the image in frequency domain for detecting the crack on the bridge
deck [31]. Furthermore, self-generative adversarial networks [32], semi-supervised deep
cross-modal network [33], deep encoder–decoder networks [34], and graph convolutional
neural networks [35] were also developed for dealing with remote sensing images for
same task of interest. A comprehensive literature review on application of ML and DL
in feature extraction and pattern recognition of imagery data was presented in detail by
Rasti et al. [36]. In spite of the progressive advances of ML or DL algorithms, further
investigation needs to be carried out in this area. The main reason is that the performance
of learning model is overly dependent on the complexity of model configuration, setting of
model meta-parameters and quality of data set for training.

To address the challenges in existing concrete crack identification methods, a hier-
archical framework is proposed in this study via combining various image processing,
ML and information fusion techniques. To start with, the raw images are denoised using
non-local means method. Then, the processed images are sent to different filters for crack
edge detection, and the crack sensitive features are extracted by the integral projection.
Principal component analysis on the extracted features is also undertaken to select optimal
components. The SVM multi-classifiers, with benefits of high-dimensional and nonlinear
pattern recognition with small size of samples, are subsequently built up to achieve the
initial identification of crack pattern. To improve the generalization capacities of the classi-
fiers, the enhanced salp swarm algorithm is employed to optimize the meta-parameters of
SVM. Eventually, the Dempster–Shafter fusion algorithm is introduced to fuse the initial
results of different classifiers corresponding to different image filtering methods to improve
the identification accuracy. Finally, the concrete images taken by a RPA are used to verify
the effectiveness of the proposed framework with satisfactory results.

2. Materials and Methods
2.1. Establishment of Dataset

To establish a dataset for developing concrete crack identification approach, a total
of 1287 RGB images, with the resolution of 4608 × 3072 pixels, were captured by a RPA.
These images were taken from the surfaces of girder and pier of a concrete bridge under
different light conditions containing both shadowed and sun facing surfaces. The image
files were saved as JPGs, with the mean size of 6 MB. Since the original images include
multiple cracks with various types, each image was cropped into several images with the
resolution size of 256 × 256 pixels. All the cropped images can be categorised at four levels,
background (without crack), longitudinal crack, transverse crack and oblique crack images.
For each category, 300 images are selected and, therefore, a total of 1200 images will be
employed in this research. The examples of images with different categories are shown
in Figure 1.
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Figure 1. Examples of different types of images in the dataset: (a) Without crack; (b) longitudinal crack; (c) transverse crack;
(d) oblique crack.

2.2. Proposed Hierarchical Framework

The schematic of the proposed hierarchical framework is displayed in Figure 2. As
shown in the figure, the framework is divided into four analysis phases, i.e., image pre-
processing, crack edge detection, feature extraction and selection, and crack pattern identi-
fication. In the phase of pre-processing, the non-local means algorithm is employed to deal
with the raw images to eliminate the noise interference. In the second phase, the denoised
images are processed by five adaptive filters, including Sobel, Laplacian of Gaussian (LoG),
Gabor, steerable and homogeneity filters, for crack edge detection. In the third phase,
crack-sensitive features are extracted and normalized using the integral projection method.
To prevent feature information redundancy and decrease the feature dimension, principal
component analysis is introduced to select optimal components to stand for whole feature
information. Based on selected principal components, the SVM classifiers with posterior
probability outputs are built up in the fourth phase, which provide the initial identification
results. To ameliorate the generalization capacities of SVM classifiers, the enhanced salp
swarm optimization (ESSO) algorithm and cross-validation (CV) operation are employed
to optimize the SVM meta-parameters during the model training. In the fifth phase, the
posterior probability outputs of SVM, regarded as the evidences, are transformed into the
basic probability assignments (PAs), and the D–S evidence fusion algorithm is used to
fuse the initial results obtained from different filters to give a final result. Since the initial
identification results from different filters may be either inaccurate or conflicting, the fusion
of these results is capable to effectively avoid the wrong identification. It is noticeable
that the proposed framework adopts a hierarchical architecture, where the outputs in the
former phase are the inputs in the next phase. Hence, via multi-phase image processing,
the identification accuracy and robustness of concrete crack can be guaranteed.
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3. Image Denoising and Crack Edge Detection
3.1. Original Image Pre-Processing Using Non-Local Means Method

Identifying the crack pattern on the surface of concrete structure is challenging due to
complicated textures of concrete background and inhomogeneous intensity of crack. The
general textures of concrete structure consist of aggregate and cement with various shapes
and colours, which may be inaccurately recognized as the crack. On the other hand, some
cracks could not be identified because of the fact that they have similar intensities as the
background object due to several factors such as lighting condition, narrow width of crack
(e.g., micro-crack) and noise influence. To improve the crack identification accuracy, it is
of great necessity to eliminate the effect of background textures of concrete surface using
image denoising method.

The non-local means (NLM) is a denoising technique that aims to deal with Gaussian
white noise in natural images [37]. The fundamental of NLM is to construct the weighting
of mean value by means of evaluating the similarity of patch pixels of image, which is
different from traditional methods using single pixel similarity. Therefore, image denoising
using patch information is capable of better keeping the edges, textures and other features
of image as seen in Figure 3. Suppose there is a noisy image denoted by v = {v(a)|a ∈ A},
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where A denotes the coordinate domain of image. For any pixel a in the image, the
estimated value of this pixel using NLM can be calculated by:

NLM[v](i) = ∑
b∈A

w f (a, b)v(b) (1)

where the weighting function w f (a, b) relies on the similarity degree between pixels a and
b, and meets the conditions 0 ≤ w f (a, b) ≤ 1 and ∑

b
w f (a, b) = 1.
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crack; (d) oblique crack.

The similarity degree between pixels a and b is determined by the grey matrices Na and
Nb, which denote the image regions centre on pixels a and b, respectively. The similarity
between two regions Na and Nb can be measured by the Gaussian weighted Euclidean
distance dg(a, b), shown as:

dg(a, b) = ||v(Na)− v(Nb) ||22,ϑ (2)

where ϑ denotes the standard deviation of Gaussian kernel. The more similar the grey
matrices between neighbouring regions, the greater the weighting of corresponding pixels
in the weighted average. The weighting function wf(a,b) is defined as follows:

w f (a, b) =
1

Z(a)
e−

dg(a,b)
r2 (3)

Z(a) = ∑
b

e−
dg(a,b)

r2 (4)

where Z(a) is a normalized parameter; r denotes the smoothing parameters, which is related
to the standard deviation of image noise.

3.2. Crack Edge Detection Using Filtering Methods

After the denoising, the pre-processed images are further dealt with for crack edge
detection. It is generally acknowledged that the light intensities between non-cracked
and cracked images are remarkably different, so the nonlinear filters can be utilized to
distinguish the difference in light intensity for crack edge detection. In this study, five
different types of filters are used to achieve this objective.



Remote Sens. 2021, 13, 240 7 of 28

3.2.1. Sobel Filter

The fundamental of the Sobel filter is to conduct the weighted smoothing on the image,
and then carry out the differential operation [38]. The related mathematical expressions are
given as follows:

Gx = [ f (i + 1, j + 1) + 2 f (i, j + 1) + f (i− 1, j + 1)]− [ f (i− 1, j− 1) + 2 f (i, j− 1) + f (i + 1, j− 1)] (5)

Gy = [ f (i− 1, j− 1) + 2 f (i− 1, j) + f (i− 1, j + 1)]− [ f (i + 1, j + 1) + 2 f (i + 1, j) + f (i + 1, j− 1)] (6)

The gradient value of pixel point (i,j) can be calculated by:

M(i, j) = |Gx|+
∣∣Gy
∣∣ (7)

The crack edges in the image can be determined according to this gradient value.
Given the threshold Ts, if M(i, j) ≥ Ts, the pixel is regarded as the edge point; otherwise, it
is a non-edge point. In this study, the value of is set at 3.73, as suggested in [18].

3.2.2. Laplacian of Gaussian (LoG) Filter

A LoG filter was developed based on Laplacian operator, which is the derivative filter
utilized for localizing the areas of abrupt changes in the image [39,40]. In this filter, before
the Laplacian operation is applied, the Gaussian filter is employed to smoothen the image.
Consequently, it is called LoG filter. Laplacian operator can be defined as follows:

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 (8)

In this study, the four neighbours-differential kernel is employed to approximate
Laplacian differential operation, which is shown as follows:

M(i, j) = |4 f (i, j)− f (i, j− 1)− f (i− 1, j)− f (i + 1, j)− f (i, j + 1)| (9)

where (i,j) denotes the pixel point in the image. To add the Gaussian filter for image smooth-
ing, the function that combines both Gaussian and Laplacian filters can be represented by:

∇2Gl(x, y, ρ) =
1

2πρ2

(
x2 + y2

ρ2 − 2
)

e
− x2+y2

2ρ2 (10)

where ρ denotes the width of Gaussian kernel.

3.2.3. Gabor Filter

A two-dimensional (2D) Gabor filter was first proposed by Daugman, which can be
regarded as a complex sine function modulated by Gaussian function [41]. Similar to the
2D receptive field profile of simple cells in mammalian visual cortex, the 2D Gabor filter has
excellent spatial locality and directional selectivity, and is able to capture special frequency
and local structural features of multiple directions in the local region of the image. The
definition of the 2D Gabor filter is shown in Equation (11):

Ga(x0, y0, θ, ω0) =
1

2πσ2 e−
x2

0+y2
0

2σ2 ·
[

ejω0x0 − e−
ω2

0σ2

2

]
x0 = x· cos(θ) + y· sin(θ)

y0 = −x· sin(θ) + y· cos(θ)

(11)

where (x,y) denotes the pixel point in the image; ω0 denotes the centre frequency of the
filter; θ indicates the direction of the Gabor wavelet; and σ denotes the standard deviation
of the Gaussian function.

In the image processing, the concrete crack image can be convoluted with the Gabor
filter, and the corresponding result of convolution is the extracted Gabor features. As-



Remote Sens. 2021, 13, 240 8 of 28

sume f (x,y) is the image of concrete crack, the convolutional operation between f (x,y) and
Ga(x0, y0, θ, ω0) can be expressed by the following equation:

F(x0, y0, θ, ω0) = f (x, y)⊗ Ga(x0, y0, θ, ω0) (12)

where “⊗” denotes the convolutional operation.

3.2.4. Steerable Filter

Since the images can be represented by directional features, the detectors of directional
features are basic tools in image feature extraction. The steerable filter, developed by
Adelson and Freeman, is one type of directional feature detector [42]. Its principle is to
realize the response of a filter in any direction by linear combination of a group of basic
filters in different directions. The response can be considered as a function of direction
angle, which can be controlled to determine the output of the filter. In the steerable filter,
second-order partial derivative of the two-dimensional Gaussian function is employed
as the tuneable filter due to its good characteristics of directionality, separability and self-
similarity. The expression of the two-dimensional Gaussian function at the pixel point
(z1, z2) of image can be expressed by Equation (13):

G(z1, z2; ρ) =
e
− z2

1+z2
2

2ρ2

2πρ2 (13)

where ρ denotes the inner scale, which determines the width of kernel. 1/
√

2πρ denotes
the normalization factor. The second-order partial derivatives of G(z1, z2; ρ) can be ex-
pressed by:

Gz1z1(z1, z2; ρ) = − z1
2 − ρ2

2πρ6 e
− z2

1+z2
2

2ρ2 (14)

Gz2z2(z1, z2; ρ) = − z2
2 − ρ2

2πρ6 e
− z2

1+z2
2

2ρ2 (15)

Gz1z2(z1, z2; ρ) = Gz2z1(z1, z2; ρ) =
z1z2

2πρ6 e
− z2

1+z2
2

2ρ2 (16)

Consequently, the steerable filter can be formulated by Equation (17):

SF(z1, z2; ρ, α) = sin2(α)Gz2z2(z1, z2; ρ) + 2 sin(α) cos(α)Gz1z2(z1, z2; ρ) + cos2(α)Gz1z1(z1, z2; ρ) (17)

where α denotes the directional angle of filter. Based on Equation (17), the responses of
pixel point (z1, z2) in image Q can be calculated by the following equation:

Rp(z1, z2) = SF(z1, z2; ρ, α)⊗Q(z1, z2) (18)

where “⊗” denotes the convolutional operation as before.

3.2.5. Homogeneity Filter

The homogeneity filter was developed based on the homogeneity operator, in which
the pixel is subtracted by its eight neighbouring pixels [43]. The mathematical expression
of the homogeneity operator is shown in Equation (19):

HP =

{
max

({∣∣IP − INi

∣∣}), i f IP > It
0, otherwise

(19)

where P denotes the central pixel; Ni denotes the ith neighbour of the central pixel,
i = 1,2, . . . ,8; IP denotes the intensity of the central pixel; It denotes the pre-set thresh-
old, ranging between 0 and 255. In this work, the value of It is calculated by Ostu method.
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Figures 4–6 demonstrate the examples of comparison of different filters in processing
the crack images, respectively. It is clearly observed from these figures that most filters are
effective in detecting the edges of different types of crack, even though some small regions
in the images are inaccurately identified as the cracks. Overall, the processed grey images
by the filters can be used to extract the features as the inputs of the machine learning
classifiers.
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4. Crack-Sensitive Feature Extraction and Selection

Based on the filtered images, the crack-sensitive features are extracted and selected
based on integral projection and principal component analysis. The detailed process and
results will be presented in the following sub-sections.

4.1. Feature Extraction Using Integral Projection

The integral projection (IP) was developed on basis of the projection distribution
characteristics of the image in some directions [44]. As a statistical approach, the IP
essentially consists of horizontal projection and vertical projection, the expressions of
which are given as follows:

H(y) =
n−1

∑
x=0

I(x, y) (20)
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V(x) =
m−1

∑
y=0

I(x, y) (21)

where (x,y) denotes the pixel location and I(x,y) denotes corresponding pixel intensity. n
denotes the number of all pixels in row and m denotes the number of all pixels in column.

In this study, the IP is employed to characterize different patterns of concrete crack.
After the concrete surface images are processed by the nonlinear filters, the values of IP
can be calculated and each type of crack will possess unique IP property. Generally, the
longitudinal crack always leads to the stable IP in the X-axis (horizontal axis) but a peak
intensity of IP in the Y-axis (vertical). On the contrary, the transverse crack causes a peak
intensity of IP in the X-axis but stable IP in the Y-axis. Unlike longitudinal and transverse
cracks, both without crack and oblique crack have constant IPs in both horizontal and
vertical axes. Moreover, the filtering result of image with oblique crack can reflect the
intensity value of crack texture, and the mean value of IP of oblique crack is higher than
that of without crack. Figure 7 demonstrates the results of IP for the cases with different
types of cracks processed by the LoG filter. As discussed above, the image of longitudinal
crack has the peak pixel intensity of 31.43 in the vertical axis while image of transverse
crack possesses the maximum pixel value of 62.51 in the horizontal axis. The mean value
of pixel intensities of IP of image with oblique crack is around 9.30, which is obviously
higher than that of the without-crack case (7.20). Accordingly, the IPs can be used as good
indicators to distinguish different scenarios of concrete surface.
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4.2. Optimal Feature Selection Using Principal Component Analysis

If all the IPs are used as the inputs to develop the diagnostic models, the model config-
uration will be much more complicated due to high dimension of the features. In addition,
the IPs may contain the redundant information that can affect the generalization capacity
of trained model. As a result, it is better to employ fewer significant components to stand
for all the IPs as the optimal features. In this research, the problem is addressed by using
principal component analysis (PCA), which aims to reduce the dimension of observed vari-
ables and obtain the most important information via transforming multiple variables into a
few components [45]. The principle of PCA is summarized as follows. Suppose the matrix

of n observations of original variable X is X =
(
X1, X2, · · · , Xp

)
=

 x11 · · · x1p
...

. . .
...

xn1 · · · xnp

,

and the algorithm process of PCA can be summarized in the following steps:
(1) Normalize the original data using Equations (22)–(24):

X j =
1

nd

nd

∑
i=1

xij (22)

σj =

√
∑nd

i=1
(
xij − X j

)2

n− 1
(23)

x∗ij =
xij − X j

σj
(24)

where i = 1, 2, . . . , n; X j and σj denote the mean value and standard deviation of samples,
respectively, and j = 1, 2, . . . , p.

(2) Calculate the correlation coefficient matrix M using Equation (25):

M =
1

nd
(X∗)TX∗ =

 m11 · · · m1p
...

. . .
...

mp1 · · · mpp

 (25)

where mij = mji and mii = 1.
(3) Calculate the eigenvalue and eigenvector of M. According to the eigen equation

|M− λE| = 0, the eigenvalue λj and eigenvector Uj =
(
U1j, U2j, . . . , Upj

)
, (j = 1, 2, . . . , p)

can be obtained, where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. The extracted principal components (PCs)
can be represented by Yj = X∗j Uj, that is:

yj = x∗k1U1j + x∗k2U2j + · · ·+ x∗kpUpj (k = 1, 2, . . . , n; p = 1, 2, . . . , n) (26)
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(4) Determine the number of PCs. The individual and accumulated contributions of
PCs can be expressed by:

ηi =
λi

∑
p
i=1 λi

(27)

ηΣ(m) =
m

∑
i=1

ηi (28)

By PCA, the IPs can be replaced with 512 PCs in the decreasing order of individual
contributions. Figure 8 demonstrates an example of PCA results of images processed by the
Sobel filter, in which both individual and accumulative contributions of PCs are displayed.
It is observed that the first two PCs have the highest contribution rates of 26.87% and
26.41%, respectively. From the third PC, the contribution percentages of PCs reduce to
below 10%, while the accumulative contribution percentage can continuously ascend. The
first 15 PCs can achieve more than 95% contributions of all the IPs. Even though around 5%
feature information of IPs is lost, the feature dimension is significantly reduced, which is
beneficial to the model training of the classifier. Based on the same selection criteria (>95%
contributions), the numbers of selected PCs for the LoG filter, Gabor filter, steerable filter
and homogeneity filter are 22, 17, 15, 25 and 32, respectively.
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5. Feature Level-Based Crack Diagnosis Using Enhanced Salp Swarm
Algorithm-Optimized SVM Classifiers

In this section, corresponding to each filtering method, the classifier based on SVM will
be developed to automate the concrete crack identification. To improve the generalization
capacity of SVM, an enhanced salp swarm algorithm is proposed to optimize the meta-
parameters during the model training.

5.1. SVM Sub-Classifiers for Identifying Concrete Crack

The typical application of SVM is for solving binary classification problem, i.e., judging
whether the test sample belongs to positive or negative class [46]. However, this study aims
to identify different crack types of concrete, which is a multi-objective classification problem
in nature. One of the most direct ways is to construct multiple hyperplanes, which can be
used to divide the entire sample space into multiple regions. Each region corresponds to
one class. Although this method is able to fundamentally solve this problem, its application
prospect is not encouraging due to a large amount of calculation. In the practical application,
there are two common strategies to solve such a multi-classification problem: one against
rest (OAR) and one against one (OAO). The fundamental of these two strategies is to
transform a multi-classification problem into multiple binary-classification problems. The
corresponding classifier is also called “sub-classifier”. For an n-class classification problem,
the OAR strategy only requires to establish C1

n = n sub-classifiers. In i-th sub-classifier,
the samples with i-th class are regarded as the positive class samples, while the rest of
the samples are regarded as the negative class samples. The final classification result of
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OAR strategy is the output category of positive class. The main benefit of OAR strategy
is that the number of sub-classifiers needed to be established is relatively small, but there
exists the potentials of “classification overlap” and “unclassifiable”. The OAO strategy,
however, establishes the sub-classifiers for any arbitrary two classes of samples in the n-
class classification problem, and a total of C2

n = n(n− 1)/2 sub-classifiers are required. The
final classification result of OAO strategy is decided by the voting of all the sub-classifiers.
The main feature of OAO strategy is that the number of sub-classifiers is rapidly increased
with the adding class number and the training efficiency is lower than that of OAR strategy.

In this work, both OAR and OAO strategies are investigated to develop SVM sub-
classifiers for concrete surface crack identification. Hence, four (C1

4 = 4) sub-classifiers
should be developed for the OAR strategy, i.e., without crack–rest (MWAR), longitudinal crack–
rest (MLAR), transverse crack–rest (MTAR) and oblique crack–rest (MOAR) sub-classifiers, while
six (C2

4 = 6) sub-classifiers need to be trained for the OAO strategy, i.e., without crack–
longitudinal crack (MWAL), without crack–transverse crack (MWAT), without crack–oblique
crack (MWAO), longitudinal crack–transverse crack (MLAT), longitudinal crack–oblique
crack (MLAO) and transverse crack–oblique crack (MTAO) sub-classifiers. For the training
and validation of the classifiers, 80% of images of each concrete condition scenario (960)
are randomly selected as training data to develop the sub-classifiers, while the rest of the
images (240) are employed as validation samples to evaluate the performance of trained
sub-classifiers.

5.2. Optimizing Meta-Parameters of SVM Using ESSA

The fundamental of SVM is to find an optimal classification line which can not only
separate the data samples correctly but also maximize the margin. For the data with non-
linear separability, the samples in the input space can be mapped to the high-dimensional
feature space through the nonlinear transformation, which transforms the nonlinear clas-
sification into linear transformation and forms a nonlinear SVM. However, SVM is not
capable of directly solving the dot product of the feature space, so the kernel function of
original space is employed instead. There are a number of functions that can be used as
the kernel of SVM, including polynomial function, radial basis function (RBF), sigmoid
function, etc. In this study, the RBF is selected due to wider domain of convergence. The
mathematical expression of RBF is:

K(xi·x) = exp

(
−||xi − x||2

2σ2

)
(29)

where σ is a free parameter to indicate the variance of kernel. The optimal classification
function can be written as:

f (x) = sgn

(
m

∑
i=1

yiα
∗
i K(xi·x) + b∗

)
(30)

where α∗i (i = 1, 2, . . . , m) are optimal Lagrange multipliers in the range of (0, C) and b∗

denotes the bias.
When the SVM-based sub-classifiers are established for concrete crack identification,

the meta-parameters of SVM should be appropriately selected. Here, the SVM meta-
parameters include balance coefficient C and kernel parameter σ. The influences of both
parameters on the SVM performance are totally different. For parameter C, if it is assigned
with a low value, the classification function will be flat; if it is assigned with a high
value, more samples will be employed as the support vectors to accurately predict all the
data. Different settings of parameter combination may result in distinctly different model
performances [47]. Accordingly, how to select the optimal values of meta-parameters is
of great importance to the development of SVM for the best generalization ability. In
this study, an enhanced salp swarm algorithm (ESSA) is put forward to optimize the C
and σ during the training of SVM sub-classifiers. The fitness function of meta-parameter
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optimization is defined as the mean prediction accuracy of training samples using five-fold
cross validation (CV), and the optimization problem can be expressed by:

maxRA5−CV
(
C, σ2) = No. o f correct predictions

No. o f all the predictions × 100%
s.t. σ2

min ≤ σ2 ≤ σ2
max, Cmin ≤ C ≤ Cmax

(31)

The procedure of using ESSA to optimize the meta-parameters of SVM sub-classifiers
can be summarized as follows, which is also shown in Figure 9.
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Figure 9. Flowchart of ESSA to optimize parameters C and σ2 of SVM.

Step 1. Confirm the optimization target and the parameters to be optimized, and
set the algorithm parameters of ESSA, including swarm size of salp, maximum iteration
number and parameters affecting S-curve-based decreasing weight.

Step 2. Initialize the locations of the salps in the vector of parameters to be optimized.
Here, the parameters are C and σ2, and the upper and lower boundaries of parameters are
0.001 and 100, respectively.

Step 3. Calculate the fitness value of each salp in the swarm, and record the individual
optimum and global optimum of the swarm.

Step 4. Set current iteration number CIN as 1.
Step 5. For each salp, if it is the leader (first salp, m = 1), use Equation (32) to update

its location; otherwise, use Equation (33) to update the location:

X1
d =

{
wFd + c1[(ubd − lbd)c2 + lbd], c3 ≥ 0.5
wFd − c1[(ubd − lbd)c2 + lbd], c3 < 0.5

c1 = 2e−
4l

lmax

(32)
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Xm
d =

1
2
(Xm

d + Xm−1
d ), m ≥ 2 (33)

where X1
d denotes the location of the leader; Fd denotes the food location; w denotes the

weighting factor; ubd and lbd are upper and lower search boundaries; c2 and c3 are two
random numbers between 0 and 1; c1 denotes convergence factor, which is used to balance
the exploitation and exploration abilities of algorithm; l denotes the current iteration
number; lmax denotes the maximum iteration number; Xm

d denotes the location of m-th
follower.

Step 6. Evaluate the fitness value of each salp, and compare the current individual and
global optimum with previous ones. If the current results are better, replace the previous
record with current results; or else, keep the record unchanged.

Step 7. Judge whether the current iteration number reaches its maximum value. If so,
terminate the optimization. Otherwise, CIN = CIN + 1 and go back to Step 5.

5.3. SVM Training Results

In this study, 80% of images of each class are randomly selected as the training samples
to develop the SVM sub-classifier while the rest of images are used as the validation samples
to evaluate the effectiveness of the proposed model. The setting of basic parameters of
ESSA is given as follows: swarm size is 50 and the maximum iteration number is 200.
Additionally, how to define the decreasing weight w is also important, since it directly
affects the accuracy and convergence of algorithm [48]. Generally, in the initial stage of
algorithm evolution, we need a large weighting to enhance the global search ability of ESSA,
while in the later stage, a small weighting is required to improve the local search ability.
In [49], a linearly decreasing weighting factor was proposed to update the location of leader
salp. However, when it is far from the food source, the SSA with linear decreasing weight
may fall into the local optimum. Accordingly, this study corrects this problem and proposes
an S-curve-based decreasing weighting factor, with the expression in Equation (34):

w = (wmax − wmin)·e−α1(
l

lmax
)

α2
(34)

where α1 and α2 are two parameters to tune the shape of the S-curve. A comparison
between S-curve-based decreasing weight with different combinations of α1 and α2 and
linear decreasing weight is shown in Figure 10. It is clearly seen that compared to the linear
one, the nonlinear weighting based on S-curve keeps the larger value for a longer time in
the early stage, which can make the leader salp quickly find the rough location of food, and
then rapidly declines to the minimum value in the later stage, which is beneficial to the fine
tuning of food location. Among three parameter combinations, the combination (α1 = 10,
α2 = 4) shows the symmetric property in the range of [0, 1], which is adopted in this study.
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Then, the training samples are sent to the SVM for obtaining optimal model parameters
based on ESSA. Figure 11 demonstrates an example of SVM meta-parameter optimization
of without crack-rest sub-classifier based on the images processed by the Sobel filter, in
which Figure 11a depicts optimal and mean fitness with the iteration and Figure 11b shows
the optimization process of parameters C and σ2. It can be observed that the maximum
identification accuracy is kept at a relatively stable value of about 93.8%, while the mean
identification accuracy fluctuates between 92% and 94%. For two SVM parameters, their
values have obvious variations at around 155th iteration, and then arrive at the optimal
values of 25.3911 and 79.8106, respectively. Table 1 summarizes the details of all trained
SVM sub-classifiers including optimal meta-parameters and number of support vectors.
Based on the best meta-parameters, the trained sub-classifiers can obtain the optimal
generalization capacity for concrete crack identification.
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Table 1. Training results of SVM sub-classifiers (SVs: support vectors).

Name
Sobel Filter LoG Filter Gabor Filter

C σ2 SVs No. C σ2 SVs No. C σ2 SVs No.

MWAR 25.3911 79.8106 505 30.2135 0.2559 498 1.9902 85.7784 521
MLAR 5.4842 57.3824 306 1.9840 97.8153 271 2.3052 69.1795 476
MTAR 25.0793 51.1725 301 10.5019 0.0912 427 3.5103 92.5891 485
MOAR 18.5487 0.0799 507 12.7073 0.1084 539 24.0412 83.3633 532
MWAL 0.0018 16.4698 220 3.7792 28.3671 190 3.5207 87.1086 374
MWAT 0.0128 11.7490 219 0.0037 17.7484 301 0.0266 18.0180 377
MWAO 11.1964 0.1023 338 10.5028 41.7353 365 3.8674 51.9793 310
MLAT 11.4818 0.1968 116 0.0333 26.2126 128 0.0096 4.5761 281
MLAO 4.3603 0.1035 244 8.0094 0.1311 221 1.3153 68.0660 356
MTAO 3.5237 28.9697 234 3.4303 0.1235 315 7.1692 0.0069 359

Name
Steerable Filter Homogeneity Filter

C σ2 SVs No. C σ2 SVs No.

MWAR 1.9902 85.7784 498 63.5571 0.0419 467
MLAR 5.9189 0.0766 282 58.8796 0.0175 348
MTAR 1.7310 90.3048 284 48.1518 0.0313 338
MOAR 0.1686 48.7646 532 2.9007 40.8119 514
MWAL 0.0469 23.1160 212 44.9682 0.2361 245
MWAT 1.2778 22.2166 201 0.0436 17.1164 227
MWAO 8.8152 41.9496 370 11.8126 1.7492 278
MLAT 12.4427 0.0042 84 0.3491 28.6068 126
MLAO 0.4228 32.4184 225 0.8602 34.0804 273
MTAO 6.5416 0.1116 239 6.5382 0.0640 272
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6. Decision Level-Based Crack Diagnostic Enhancement Using Dempster–Shafer
(D–S) Fusion
6.1. Dempster–Shafer Fusion Algorithm

In this research, the D–S fusion algorithm is employed to combine the initial diagnostic
results of concrete surface corresponding to different filters. In the D–S fusion, the frame of
recognition χ should be established first to include all the potential categories of concrete
surface condition. Here, χ is defined as χ = [η1, η2, η3, η4], where η1, η2, η3 and η4
correspond to intact, longitudinal crack, transverse crack and oblique crack, respectively.
In addition, the basic probabilities are assigned to all the possible hypothesis in the frame
of recognition, satisfying the condition in Equation (35):

∑
V⊆2χ

m(V) = 1

m(Ø) = 0
(35)

where m(·) is called probability assignment (PA) function, which can assign the subset in
2χ with a value between 0 and 1. Hence, m(V) corresponds to each evidence.

In this work, the D–S algorithm is adopted to fuse the initial diagnostic results of
an image from different SVM sub-classifiers and image filtering methods. Suppose the
numbers of sub-classifiers and image filtering methods are m and n, respectively, there
are a total of m·n identification results for one test image, corresponding to m·n pieces
of evidence, denoted by m1, m2, . . . , mm·n. The fusion of these pieces of evidence can be
considered as the operation of conjunctive summation, expressed by [50,51]:

m(V) = 0, V = Ø
m(V) = m1 ⊕m2 ⊕ · · · ⊕mm·n = 1

1−CP ∑
V1
⋂···⋂Vm·n=V

m1(V1) · · ·mm·n(Vm·n), V 6= Ø

CP = ∑
V1
⋂···⋂Vm·n=Ø

m1(V1) · · ·mm·n(Vm·n)
(36)

where CP denotes the conflict degree among different pieces of evidence. Final diagnostic
result of concrete surface can be made according to maximum degree of subset in 2χ. For
any element Vi, if the following condition is met,

m(Vk) = max
(
m
(
Vj
))

, Vj ⊂ 2χ, Vk 6= Vi
m(Vi)−m(Vk) > τ1

m(Vi) > m(Θ)
m(Θ) < τ2

(37)

Vi is the fusion result. In Equation (37), τ1 and τ2 are the pre-set thresholds that can
guarantee the identification accuracy. Θ represents all the possible condition combinations,
and its probability assignment corresponds to the uncertainty of the final result. To reduce
the influence of uncertainty on the result accuracy, τ1 and τ2 are set to 0.3 and 0.1 in this
study, according to the suggestion in [52].

6.2. Soft Outputs of SVM Sub-Classifier

The class information of sample outputted from standard SVM can always be given
clearly, that is, 0 (negative) and 1 (positive), which belongs to “hard” decision. However,
in the real situation, for some uncertain classification problems, it is difficult to categorize
the samples into a certain class, but instead can give the probability value or membership
degree to any class. If the SVM is used to deal with the non-deterministic classification,
the “soft” decision is needed. Generally, the identification result of standard SVM can
be mapped into the interval of [0, 1] to realize the probability output, which is used to
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signify the uncertainty of the result. In this research, the sigmoid function is selected as the
posterior probability model, the expression of which is shown in Equation (38):

po(x) =
1

1 + e[M f (x)+N]
(38)

This function can be with different forms via tuning the parameters of M and N. To
satisfy the condition that the output of po(x) monotonically increases with the probability
value of positive class, the value of M should be negative. Adjusting parameter N can
make the SVM with the ability to deal with the bias training data. Selecting optimal values
of M and N can be regarded as solving the following optimization problem:

minimize−
m
∑

k=1
[tok ln(pok) + (1− tok) ln(1− pok)]

pok =
1

1+e[M f (xk)+N] and tok =
1+yk

2

(39)

The SVM with soft decision can adopt the D–S fusion algorithm to make joint decision.
To begin with, the posterior probability output of SVM should be transformed to the
probability assignment of D–S fusion. The probability assignments of positive and negative
classes are easily determined, i.e., po(x) and 1-po(x), respectively. However, according to
the fundamental of D–S fusion algorithm, the probability assignment of uncertainty in the
frame of recognition Θ should be included as well. Here, the uncertainty is defined as
the upper boundary of expectation of misclassification rate of test samples, which can be
calculated by the following equation:

UE(Er) ≤
E
(

Nsup
)

Ntr − 1
(40)

where the numerator is the average number of support vectors, and Ntr denotes the total
number of training data. To meet the requirement that the summation of probability assign-
ments is equal to 1, the outputs of positive and negative classes should be multiplied by
the coefficient 1−max[UE(Er)]. Accordingly, the mathematical expressions of probability
assignments of SVM sub-classifier are given as follows:

m(PC) = po(x)
(

1− Nsup
Ntr−1

)
m(NC) = [1− po(x)]

(
1− Nsup

Ntr−1

)
m(Θ) =

Nsup
Ntr−1

(41)

where PC and NC denote positive and negative classes, respectively.

6.3. Fusion Results and Discussion

To evaluate the performance of proposed method, the test images with different
concrete surface conditions are processed and then inputted into the trained SVM sub-
classifiers for initial diagnosis. As an example, Tables 2–5 list the probability assignments
of four SVM sub-classifiers in the OAR strategy for an image without a crack. Table 2 dis-
plays the assignment values of without crack-rest sub-classifier, in which m1,i (i = 1, 2, . . . , 5)
correspond to the initial diagnostic results with different image filtering methods. As can
be seen from the table, more confidences are assigned to without crack proposition (V1)
than to rest proposition (V2∪V3∪V4) conforming to the real condition, except the case of
Gabor filter (m1,3) where the assignments of without crack and rest are 0.1766 and 0.2802,
respectively. Nevertheless, it is hard for the system to make a diagnostic decision, since
the uncertainty (Θ) has the largest probability assignment in each evidence, obviously
exceeding the pre-set threshold value of 0.1. The major reason causing this problem is that
the number of support vectors is relatively higher compared to the total number of training
samples. The probability assignments of the other three sub-classifiers (longitudinal crack-
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rest, transverse crack-rest and oblique crack-rest) for this image without a crack are provided in
Tables 3–5. Like the without crack-rest sub-classifier, these three sub-classifiers allocate more
probability assignments to rest proposition (V1∪V3∪V4, V1∪V2∪V4 or V1∪V2∪V3) than
longitudinal crack-rest (V2), transverse crack-rest (V3) or oblique crack-rest (V4) proposition.
Similarly, the uncertainty with the largest assignment results in the difficulty of decision
making of concrete surface condition diagnosis corresponding to each filtering method.

Therefore, the D–S algorithm is applied to the probability assignments of initial
diagnostic results via a two-level fusion. In the first-level fusion, at each sub-classifier the
assignment results of different image filtering methods are combined, the result of which
is shown in Table 6. It is noted that the probability assignment of without crack (V1) is
increased to 0.8343 while the uncertainty is decreased to 0.0641 for the without crack-rest
sub-classifier. Likewise, for the sub-classifiers of longitudinal crack-rest, transverse crack-rest
and oblique crack-rest, the assignment values of rest proposition V1∪V3∪V4, V1∪V2∪V4
and V1∪V2∪V3 are ascended to 0.9931, 0.9682 and 0.8939, respectively. The assignments of
uncertainties of these three sub-classifiers are all below 0.07. In accordance with the first-
level fusion result, we can find that the proposition of without crack is apt to be the diagnosis
result of concrete surface. Then, in the second-level fusion, the evidence assignments
from different sub-classifiers are fused for final decision making. Table 7 provides the
result of second-level fusion, in which the probability assignment of correct proposition
without crack (V1) has been increased to 0.9732, which approaches 1. More importantly,
the value of uncertainty declines to zero. According to decision rule in Equation (37), the
fusion diagnostic result is V1, which is consistent with the real situation of concrete surface
(without crack). This example effectively demonstrates that the probability assignments of
correct propositions can be significantly increased after two-level data fusion, compared to
the diagnostic results without data fusion.

In the same manner, the two-level fusion results of examples of images with longi-
tudinal crack, transverse crack and oblique crack are shown in Tables 8–10. Based on the
decision rule, the fusion outcomes of three image examples are V2 (longitudinal crack), V3
(transverse crack) and V4 (oblique crack), respectively, bringing into correspondence with
the real situations of the images.

Then, the same four image examples are sent to the OAO-based SVM sub-classifiers
for the performance evaluation. Tables 11–16 give the probability assignments of six OAO-
based sub-classifiers for the image of transverse damage. Apparently, for the sub-classifiers
of without crack–transverse crack, longitudinal crack–transverse crack, and transverse crack–
oblique crack, more probability values are allocated to the right proposition V3 (transverse
crack) than V1 (without crack), V2 (longitudinal crack) and V4 (oblique crack), satisfying
the real condition of image. However, similar to OAR-based sub-classifiers, the OAO-
based SVM sub-classifiers have the same problem of hard decision making, because of
high uncertainties in the probability assignment results. Hence, two-level evidence fusion
is employed to combine the diagnostic results from different sub-classifiers as well as
different image filtering methods. The fusion results are shown in Tables 17 and 18, where
Table 17 corresponds to the result of first-level fusion and Table 18 corresponds to the result
of second-level fusion. It is clearly seen that the probability value of proposition V3 is
increased to 0.9981 while the uncertainty is eliminated after the evidence fusion operation.
In accordance with Equation (37), the diagnostic condition from the proposed framework
should be transverse crack, matching the practical condition of this image.

The fusion results of same images of without crack, longitudinal crack and oblique
crack by OAO models are provided in Tables 19–21, where the probability assignments of
correct primitives are 0.7706, 1 and 0.7154, respectively. The corresponding uncertainties
are reduced to 0.0004, 0 and 0.0006, respectively. Based on the fusion results of all the image
examples, it can be concluded that the data fusion is capable of enhancing the confidence
level of correct primitives and weakening the effect of uncertainty on the diagnostic results.
Via the result comparison between OAR and OAO sub-classifiers, we can see that OAR
strategy can provide more confidence (probability value) to the correct propositions than
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OAO strategy after two-level data fusion. In contrast, for the D–S fusion algorithm, the
OAO SVM sub-classifier needs less computation cost than the OAR sub-classifier. However,
with the increase of number of classification class, the number of OAO-based SVM sub-
classifiers (C2

n, n is the category number) is remarkably increased in comparison with that
of OAR-based models (C1

n, n is the category number). Accordingly, how to design SVM
multi-classifiers should be decided by the real engineering application.

Table 22 summarizes the accuracy performance of different diagnostic models based
on all the test images. These evaluated models include the proposed SVM models with
data fusion as well as the SVM models with single type of features, such as SVM with Sobel
filter-based features (Sobel-SVM), SVM with LoG filter-based features (LoG-SVM), SVM
with Gabor filter-based features (Gabor-SVM), SVM with steerable filter-based features
(Steerable-SVM) and SVM with homogeneity filter-based features (Homogeneity-SVM).
For the SVM with single-type of features, the model accuracies under both OAR and OAO
strategies are calculated, and only the better ones are included in Table 22. It can be seen
that the proposed SVM models with data fusion have higher accuracy than the independent
SVM models with single-type of features in the concrete crack diagnosis. As a result, it
can reach a conclusion that with the data fusion, supplementary accurate identification is
capable of being realized with various approaches for feature extraction.

Finally, to investigate the contributions of different nonlinear filtering methods to the
diagnosis of concrete crack pattern, an ablation study is conducted in terms of diagnostic
accuracy of both training and testing imagery data. In this investigation, each filtering
method is removed from the proposed framework in turn, and the diagnostic model with
the rest filtering methods is then trained for performance evaluation. The results of ablation
study are displayed in Table 23. It is obvious to see that Sobel, LoG and steerable filters
have predominant effects on the diagnostic accuracy of the proposed framework for both
training and testing images, compared to Gabor and homogeneity filters. Overall, OAR
strategy-based models have higher accuracy than OAO-based models. Accordingly, in
the practical application, under the circumstance of certain accuracy, some filters with
fewer contributions may be neglected, which is capable to effectively decrease the online
diagnosis time.
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Table 2. Probability assignments of without crack-rest sub-classifier for an image without a crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m1,1 0.4410 0 0 0 0 0 0 0 0 0 0 0 0 0.0324 0.5266
m1,2 0.3752 0 0 0 0 0 0 0 0 0 0 0 0 0.1055 0.5193
m1,3 0.1766 0 0 0 0 0 0 0 0 0 0 0 0 0.2802 0.5433
m1,4 0.3662 0 0 0 0 0 0 0 0 0 0 0 0 0.1145 0.5193
m1,5 0.4673 0 0 0 0 0 0 0 0 0 0 0 0 0.0457 0.4870

Table 3. Probability assignments of longitudinal crack-rest sub-classifier for an image without a crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m2,1 0 0.0001 0 0 0 0 0 0 0 0 0 0 0.6809 0 0.3191
m2,2 0 0.0446 0 0 0 0 0 0 0 0 0 0 0.6729 0 0.2826
m2,3 0 0.0027 0 0 0 0 0 0 0 0 0 0 0.5009 0 0.4964
m2,4 0 0.0120 0 0 0 0 0 0 0 0 0 0 0.6940 0 0.2941
m2,5 0 0.0320 0 0 0 0 0 0 0 0 0 0 0.6051 0 0.3629

Table 4. Probability assignments of transverse crack-rest sub-classifier for an image without a crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m3,1 0 0 0.0130 0 0 0 0 0 0 0 0 0.6731 0 0 0.3139
m3,2 0 0 0.0066 0 0 0 0 0 0 0 0 0.5481 0 0 0.4453
m3,3 0 0 0.4224 0 0 0 0 0 0 0 0 0.0719 0 0 0.5057
m3,4 0 0 0.0389 0 0 0 0 0 0 0 0 0.6649 0 0 0.2961
m3,5 0 0 0.0222 0 0 0 0 0 0 0 0 0.6254 0 0 0.3525

Table 5. Probability assignments of oblique crack-rest sub-classifier for an image without a crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m4,1 0 0 0 0.0912 0 0 0 0 0 0 0.3801 0 0 0 0.5287
m4,2 0 0 0 0.0760 0 0 0 0 0 0 0.3619 0 0 0 0.5620
m4,3 0 0 0 0.0416 0 0 0 0 0 0 0.4037 0 0 0 0.5547
m4,4 0 0 0 0.0781 0 0 0 0 0 0 0.3671 0 0 0 0.5547
m4,5 0 0 0 0.0094 0 0 0 0 0 0 0.4546 0 0 0 0.5360
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Table 6. The result of first-level fusion for an image without a crack based on OAR classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m1 0.8343 0 0 0 0 0 0 0 0 0 0 0 0 0.1016 0.0641
m2 0 0.0017 0 0 0 0 0 0 0 0 0 0 0.9931 0 0.0052
m3 0 0 0.0181 0 0 0 0 0 0 0 0 0.9682 0 0 0.0136
m4 0 0 0 0.0422 0 0 0 0 0 0 0.8939 0 0 0 0.0639

Table 7. The result of second-level fusion for an image of without a crack based on OAR classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m 0.9732 0.0008 0.0047 0.0152 0.0003 0.0009 0.0046 0 0 0.0001 0 0 0.0001 0 0

Table 8. The result of second-level fusion for an image of a longitudinal crack based on OAR classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m 0.0084 0.9721 0.0009 0.0162 0.0007 0 0.0004 0.0001 0.0010 0.0001 0 0.0001 0 0 0

Table 9. The result of second-level fusion for an image of a transverse crack based on OAR classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m 0.0070 0.0001 0.9752 0.0150 0 0.0009 0.0003 0.0001 0 0.0014 0 0 0.0001 0 0

Table 10. The result of second-level fusion for an image of an oblique crack based on OAR classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m 0.0797 0.0022 0.0063 0.9014 0.0001 0.0002 0.0084 0 0.0005 0.0010 0 0 0.0001 0 0
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Table 11. Probability assignments of without crack-longitudinal crack sub-classifier for an image of transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’1,1 0.5370 0.0037 0 0 0 0 0 0 0 0 0 0 0 0 0.4593
m’1,2 0.5959 0.0075 0 0 0 0 0 0 0 0 0 0 0 0 0.3967
m’1,3 0.2140 0.0053 0 0 0 0 0 0 0 0 0 0 0 0 0.7808
m’1,4 0.5573 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0.4426
m’1,5 0.4882 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0.5115

Table 12. Probability assignments of without crack-transverse crack sub-classifier for an image of a transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’2,1 0.0185 0 0.5243 0 0 0 0 0 0 0 0 0 0 0 0.4572
m’2,2 0.0792 0 0.2925 0 0 0 0 0 0 0 0 0 0 0 0.6284
m’2,3 0.0091 0 0.2038 0 0 0 0 0 0 0 0 0 0 0 0.7871
m’2,4 0.0241 0 0.5563 0 0 0 0 0 0 0 0 0 0 0 0.4196
m’2,5 0.0062 0 0.5199 0 0 0 0 0 0 0 0 0 0 0 0.4739

Table 13. Probability assignments of without crack-oblique crack sub-classifier for an image of a transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’3,1 0.0630 0 0 0.2314 0 0 0 0 0 0 0 0 0 0 0.7056
m’3,2 0.0930 0 0 0.1450 0 0 0 0 0 0 0 0 0 0 0.7620
m’3,3 0.1045 0 0 0.2483 0 0 0 0 0 0 0 0 0 0 0.6472
m’3,4 0.0630 0 0 0.1646 0 0 0 0 0 0 0 0 0 0 0.7724
m’3,5 0.2170 0 0 0.2026 0 0 0 0 0 0 0 0 0 0 0.5804

Table 14. Probability assignments of longitudinal crack-transverse crack sub-classifier for an image of a transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’4,1 0 0.0050 0.7529 0 0 0 0 0 0 0 0 0 0 0 0.2422
m’4,2 0 0.0075 0.7253 0 0 0 0 0 0 0 0 0 0 0 0.2672
m’4,3 0 0.0000 0.4134 0 0 0 0 0 0 0 0 0 0 0 0.5866
m’4,4 0 0.0033 0.8213 0 0 0 0 0 0 0 0 0 0 0 0.1754
m’4,5 0 0.0000 0.7370 0 0 0 0 0 0 0 0 0 0 0 0.2630
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Table 15. Probability assignments of longitudinal crack-oblique crack sub-classifier for an image of a transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’5,1 0 0.0024 0 0.4882 0 0 0 0 0 0 0 0 0 0 0.5094
m’5,2 0 0.0041 0 0.5345 0 0 0 0 0 0 0 0 0 0 0.4614
m’5,3 0 0.0012 0 0.2556 0 0 0 0 0 0 0 0 0 0 0.7432
m’5,4 0 0.0000 0 0.5303 0 0 0 0 0 0 0 0 0 0 0.4697
m’5,5 0 0.0000 0 0.4301 0 0 0 0 0 0 0 0 0 0 0.5699

Table 16. Probability assignments of transverse crack-oblique crack sub-classifier for an image of a transverse crack.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’6,1 0 0 0.4418 0.0697 0 0 0 0 0 0 0 0 0 0 0.4885
m’6,2 0 0 0.2431 0.0993 0 0 0 0 0 0 0 0 0 0 0.6576
m’6,3 0 0 0.1944 0.0562 0 0 0 0 0 0 0 0 0 0 0.7495
m’6,4 0 0 0.4165 0.0845 0 0 0 0 0 0 0 0 0 0 0.4990
m’6,5 0 0 0.4144 0.0178 0 0 0 0 0 0 0 0 0 0 0.5678

Table 17. The result of first-level combination for an image of a transverse crack based on OAO classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’1 0.9661 0.0011 0 0 0 0 0 0 0 0 0 0 0 0 0.0327
m’2 0.0138 0 0.9352 0 0 0 0 0 0 0 0 0 0 0 0.0511
m’3 0.2366 0 0 0.5502 0 0 0 0 0 0 0 0 0 0 0.2133
m’4 0 0.0001 0.9981 0 0 0 0 0 0 0 0 0 0 0 0.0018
m’5 0 0.0007 0 0.9522 0 0 0 0 0 0 0 0 0 0 0.0471
m’6 0 0 0.8468 0.0634 0 0 0 0 0 0 0 0 0 0 0.0899

Table 18. The result of second-level fusion for an image of a transverse crack based on OAO classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’ 0.0007 0.0000 0.9981 0.0012 0 0 0 0 0 0 0 0 0 0 0
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Table 19. The result of second-level fusion for an image of without a crack based on OAO classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’ 0.7706 0.0172 0.1507 0.0612 0 0 0 0 0 0 0 0 0 0 0.0004

Table 20. The result of second-level fusion for an image of a longitudinal crack based on OAO classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21. The result of second-level fusion for an image of an oblique crack based on OAO classifiers.

PA V1 V2 V3 V4 V1∪V2 V1∪V3 V1∪V4 V2∪V3 V2∪V4 V3∪V4 V1∪V2∪V3 V1∪V2∪V4 V1∪V3∪V4 V2∪V3∪V4 Θ

m’ 0.1606 0.0869 0.0364 0.7154 0 0 0 0 0 0 0 0 0 0 0.0006

Table 22. Diagnosis accuracy comparison between proposed methods and independent SVMs with single-type of features.

Model Proposed (OAR) Proposed (OAO) Sobel-SVM LoG-SVM Gabor-SVM Steerable-SVM Homogeneity-SVM

Accuracy 96.25% 94.58% 88.33% 90.83% 87.08% 92.08% 85.83%

Table 23. Result of ablation study of the proposed method with different combinations of filtering techniques.

Model Sobel LoG Gabor Steerable Homogeneity Accuracy

Training Data Testing Data

OAR-SVM-DS
√ √ √ √

× 98.65% 95.42%
OAR-SVM-DS

√ √ √
×

√
94.17% 91.25%

OAR-SVM-DS
√ √

×
√ √

97.08% 94.17%
OAR-SVM-DS

√
×

√ √ √
95.42% 93.33%

OAR-SVM-DS ×
√ √ √ √

95.73% 92.50%
OAO-SVM-DS

√ √ √ √
× 96.25% 93.75%

OAO-SVM-DS
√ √ √

×
√

93.54% 89.58%
OAO-SVM-DS

√ √
×

√ √
95.63% 92.92%

OAO-SVM-DS
√

×
√ √ √

93.23% 90.83%
OAO-SVM-DS ×

√ √ √ √
94.69% 91.67%
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7. Conclusions

This research develops an intelligent framework for crack diagnosis and classification,
which is a combination of signal processing, machine learning, and data fusion techniques.
Non-local mean and various filters are employed for noise negation and crack-sensitive
pattern recognition, which contribute to a marked diagram of concrete crack. Integral
projection, together with PCA, is utilized to diagnose different types of condition surface
condition, including without crack, transverse crack, longitudinal crack and oblique crack.
The analysis result reveals that the first 15 PCs possess more than 95% feature of all the
IPs calculated from the results of the Sobel filter. The reduction of number of features
to be learned can enhance the performance of machine learning model. Then, the SVM
classifiers with soft outputs under both OAR and OAO strategies are established to conduct
initial diagnosis of concrete surface condition. To enhance the generalization ability of
the trained classifiers, the ESSA is selected to optimize the meta-parameters of SVM. The
optimization results show that the classification accuracy of trained model that can arrive
at is as high as 93.8% for the training samples. To fix the problem of wrong or conflicting
diagnosis due to different filters, the D–S fusion algorithm is adopted to combine the initial
diagnostic results of different sub-classifiers as well as different filters, which are regarded
as independent evidences. The fusion results show that the confidence probability of correct
proposition can reach 0.99 while the uncertainty of the prediction is reduced to below 0.001
after two-level fusion. In addition, a comparative study demonstrates that the proposed
framework outperforms the independent SVM models with single-type of features in terms
of the concrete crack diagnosis. Consequently, on the basis of promising results in this
research, the proposed framework can be considered as a potential tool for the automatic
and real-time structural inspection by the structural engineers and infrastructure agencies.

In this research, the main target is to develop the diagnostic model based on machine
learning and data fusion for classifying different patterns of concrete crack. However,
in the real situation, the concrete crack pattern may be more complex than three pat-
terns in this study. Accordingly, crack segmentation is necessary for extracting important
features of complex cracks including crack width, length and orientation. In the future
work, more concrete images with various complex patterns of crack, including V-shape
and cross-shape crack, will be collected in the field, and deep learning methods will be
employed as the potential tools to fix this problem via building the diagnostic model
based on the pre-processed images and corresponding ground truths. In addition, the
normalisation operation will be conducted on the raw images to evaluate its effectiveness
on the improvement of diagnosis accuracy.
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