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ABSTRACT

In this work, we investigate the nonperturbative decay dynamics of a quantum emitter coupled to a composite right-/left-handed
transmission line. Our theory captures the contributions from the different spectral features of the waveguide, providing an accurate
prediction beyond the weak coupling regime and illustrating the multiple possibilities offered by the nontrivial dispersion of metamaterial
waveguides. We show that the waveguide is characterized by a bandgap with two asymmetric edges: (i) a mu-near-zero band edge, where
spontaneous emission is inhibited and an unstable pole is smoothly transformed into a bound state, and (ii) an epsilon-near-zero band edge,
where the decay rate diverges and unstable and real (bound state) poles coexist. In both cases, branch cut singularities contribute with
fractional decay dynamics whose nature depends on the properties of the band edges.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044103

Metamaterial waveguides have been shown to be flexible design
platforms for dispersion engineering.1,2 Salient spectral features in
metamaterial waveguides include propagating bands with a negative
refractive index, the possibility of opening bandgaps with a prescribed
bandwidth, slow-light frequency points with a vanishing group veloc-
ity, and anomalous dispersion in highly absorptive bands. Of particu-
lar interest are also those frequency points where the propagation
constant of the waveguide crosses zero, in direct connection with the
field of near-zero-index (NZI) media.3–5 Points with a near-zero
refractive index empower unique wave effects. Examples include per-
fect transmission through deformed waveguides;6 intrinsic inhibition
of optical turbulence;7 photonic doping,8 enhanced nonlinear,9 modu-
lation,10 and switching11 capabilities; and highly directive emis-
sion,12,13 to name a few.

Metamaterial waveguides also have a wide variety of dispersion
profiles. Consequently, they pose an interesting playground for explor-
ing nontrivial quantum light emission. For instance, NZI waveguides
can either enhance or suppress spontaneous emission.14–16 Moreover,
the fact that the wavelength is effectively stretched in them enables the
observation of superradiance in electrically large samples,17–19 as well
as having long-range coherent interactions for entanglement genera-
tion and many body physics.20–24 Recent experiments have shown the

enhancement,25 tunability,26 and position independence27 properties
on quantum light emission in NZI metallic waveguides. Furthermore,
the experimental demonstration of NZI waveguides in photonic inte-
grated circuits opens the scope and applicability of these concepts even
more.28,29

Most works addressing quantum light emission in NZI wave-
guides operate within the weak coupling regime or Markovian approx-
imation. Thus, they neglect the dispersion of the waveguide near the
frequency of emission. However, a complex dispersion profile is pre-
cisely what makes metamaterial waveguides unique. Therefore, the
Markovian approximation is found to be too simple and may, in fact,
hide some of the most interesting aspects provided by this class of
waveguides. Furthermore, recent theoretical works have highlighted
the importance and opportunities offered by taking into account the
nonperturbative decay dynamics of quantum emitters coupled to
structured reservoirs,30,31 Dirac cone baths,32 and photonic Weyl
environments.33

In this Letter, we study the nonperturbative decay dynamics for a
quantum emitter coupled to a metamaterial waveguide. To this end,
we consider the archetypical case of a composite right/left-handed
(CRLH) transmission line (TL). This case study is of particular interest
as it contains a number of typical spectral features including a
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propagating band with a negative index, a bandgap with asymmetric
edges, and two frequency points with a near-zero refractive index. The
general theory that we are presenting finds applicability in NZI wave-
guides demonstrated at optical frequencies.25–29 In addition, we expect
that our results could be extrapolated to superconducting circuits,34–37

one of the leading platforms for quantum technologies. In fact, CRLH-
TLs were first developed at microwave frequencies,1,2 where the physi-
cal implementation of the waveguiding systems was inspired by their
equivalent circuits. Thus, they are quite appealing for an implementa-
tion in superconducting circuit technologies. However, we note that
our quantization scheme is based on optical electromagnetic
fields,14,38,39 which is fundamentally different from the standard
description of superconducting circuits in terms of flux and charge
operators.34,37 Nevertheless, our formulation converges to the general
model of a two-level system coupled to a bath of photonic modes, and
hence, it is representative of many different physical systems. In fact,
popular studies of structured superconducting circuit waveguides
exhibiting a bandgap use formulations that converge to a Hamiltonian
of the same form as we employ herein.36

As schematically depicted in Fig. 1(a), we study the coupling of a
quantum emitter to a photonic waveguide. This configuration can be
modeled with the usual Hamiltonian for a two-level system, ej i; gj i

� �
,

with p being the dipole moment andx0 being the transition frequency,
coupled to a bath of discrete photonic modes propagating in the wave-
guide with frequenciesxk (�h¼ 1),

H ¼ x0r
†rþ

X
k

xka
†
kak þ

X
k

gkr
†ak þ h:c:

� �
; (1)

where r ¼ gj ihej is the emitter’s annihilation operator, ak is the ann-
hiliation operator of the k� th photonic mode, and the sum

P
k runs

over all photonic modes satisfying the waveguide dispersion. We focus
on the composite right-/left-handed (CRLH) transmission line (TL)1

that can be modeled with the equivalent circuit unit-cell depicted in
Fig. 1(a). The dispersion of the system can be equivalently described as
a one-dimensional (1D) medium characterized by Drude models with
the effective relative parameters er xð Þ ¼ 1� x2

ENZ=x
2 and lr xð Þ

¼ 1� x2
MNZ=x

2 that have epsilon-near-zero (ENZ) and mu-near-
zero (MNZ) frequencies corresponding to the electric and magnetic
plasma frequencies: xENZ and xMNZ , respectively.

1 The same material
model has been demonstrated to be useful in the description of the
coupling of quantum emitters to ENZ andMNZ waveguides.14

The dispersion relation is given by k xð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

MNZ=x
2

� �
1� x2

ENZ=x
2

� �q
=c, and its values are presented in

Fig. 1(b). These show that the waveguide is characterized by a low-
frequency propagating band with a negative refractive index, a high-
frequency propagating band with a positive refractive index, and a
bandgap (evanescent wave region) between the MNZ and ENZ fre-
quencies. The refractive index of the waveguide approaches zero at
both these band edges. The coupling strength is given by14

gk ¼ �i p � ekð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk
2e0L

Z xkð Þ vg xkð Þ
c

q
, where ek is the unit polarization

vector of the modes, Z xkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

MNZ=x
2

� �
= 1� x2

ENZ=x
2

� �q
is

the normalized impedance of the waveguide, vg xkð Þ ¼ dx=dk is the
group velocity, and L is the quantization length. Note that L does not
correspond to a finite length of the waveguide. It is considered to be

infinite in our model in the sense that L!1 is implicit in the contin-
uum limit. In this manner, the waveguide features two points where
the refractive index approaches zero, i.e., the MNZ and ENZ frequen-
cies, at which extremely different impedance and coupling strength
behaviors are exhibited, i.e., zero and infinity.

We assume that the system is initially excited, w t ¼ 0ð Þ
�� �

¼ r† 0f gj i, and that it decays into a general single-excitation state
w tð Þ
�� �

¼ Ce tð Þr† þ Ck tð Þa†k
	 


0f gj i. Within this framework, the
exact time evolution of the probability amplitudes can be determined
by using the resolvent operator method.40 Equivalently, one can solve

FIG. 1. (a) Sketch of a quantum emitter modeled as a two-level system,
ej i; gj i

� �
, with transition frequency x0 that is coupled to a metamaterial wave-

guide with the equivalent circuit model shown in the inset. (b) Dispersion diagram
of the metamaterial waveguide characterized by a bandgap between the mu-near-
zero xMNZ and epsilon-near-zero xENZ frequencies. (c) Projection of the self-
energy on the real axis: Re xþ i0þð Þ ¼ Dx xð Þ � iC xð Þ=2. Its real and imagi-
nary parts describe the frequency shift Dx xð Þ and decay rate C xð Þ, respectively.
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the Schr€odinger equation by using the Laplace transform method. By
changing variables s ¼ �iz, the inverse Laplace transform for the
probability amplitude of the emitter being excited can be written as an
integral over a contour on top of the real axis (see Fig. 2),

Ce tð Þ ¼ � 1
2pi

ði0þþ1
i0þ�1

dz Ge zð Þe�izt ; (2)

with the resolvent

Ge zð Þ ¼ 1
z � x0 � Re zð Þ (3)

and the self-energy

Re zð Þ ¼
X
k

gkj j2

z � xk
: (4)

The expression for the probability amplitude Ce tð Þ given by Eq. (2) is
exact within the framework established by the Hamiltonian in Eq. (1).
In this manner, the solution can accurately describe both the weak and
strong coupling regimes, as well as the intermediate cases. However,
the formulation will not be accurate in the ultra-strong coupling
regime, where the rotating wave approximation implicit in Eq. (1)
does not hold.

Evaluating the self-energy in the continuum limit,
P

k ! L
2p

Ð
dk,

integrating over the frequencies with the replacement
Ð
dk ¼

Ð
dx 1=

vg xð Þ, applying the Kramers–Kronig relations, and removing the
high-frequency divergence lead to the following compact expression:

Re zð Þ ¼ �iA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � x2

MNZ

z2 � x2
ENZ

s
; (5)

where A ¼ pj j2x0=ð4ce0Þ. We used the value A ¼ 0:01xp for the
numerical examples so that the nonperturbative effects are evident
even though the effects are qualitatively the same for other values of A
as long as the rotating wave approximation we used in our
Hamiltonian (1) remains valid. The real and imaginary parts of the
projection of the self-energy on the real frequency axis,
Re xþ i0þð Þ ¼ Dx xð Þ � iC xð Þ=2; correspond to the frequency shift

and decay rate, respectively. They are depicted in Fig. 1(c). The main
characteristic that differentiates the CRLH transmission line from
other dispersive and slow-light waveguides is the presence of its asym-
metric band edges. Although the group velocity becomes zero at both
band edges, the decay rate diverges at the ENZ frequency and vanishes
at the MNZ frequency in accordance with a previous study in the
weak coupling regime.14

The dispersion properties of the self-energy exemplify the great
degree of design flexibility offered by metamaterial waveguides, partic-
ularly near the band edges. On the one hand, the divergence of the
decay rate near the ENZ frequency enables the enhancement of the
emitters decay rate (brightness) and a more efficient (deterministic)
coupling to the waveguide mode. The soft transition at the MNZ
frequency enables tuning between the dissipative and collective inter-
actions. Moreover, the fact that these responses take place at points
where the propagation constant vanishes (k ¼ 0) suggests that our
configuration is an interesting platform for investigating long-range
collective interactions, which are of interest for entanglement genera-
tion and many-body physics.

By using complex analysis techniques, the integration can be
closed in the lower half-plane and the time evolution of the probability
amplitude can be rewritten with the residue theorem as the sum of the
contributions from the different singularities in the complex plane. As
schematically depicted in Fig. 2, they consist of three poles and two
branch cuts. Thus, the probability amplitude is given by their contri-
butions as

Ce tð Þ¼R1e
�iz1tþR2e

�iz2tþRBSe
�ixBStþCBCENZ tð ÞþCBCMNZ tð Þ: (6)

Next, we analyze in detail the individual contribution from each of
these singularities.

First, we focus on the contribution from the poles. The poles of
the resolvent are found at positions in the complex plane zb ¼ xb

þiyb corresponding to the solutions to the implicit equation zb ¼ x0

þRe zbð Þ. Each contributes to the probability amplitude as an expo-

nential decay term, Rbe�izbt , where the initial-time t ¼ 0ð Þ contribu-
tion can be computed via the residue theorem, which, for a pole of
order one, can be compactly written as Rb ¼ ð1� @zRe zð Þ½ �z¼zbÞ

�1.

Figure 2 schematically depicts the position of the three different
poles that are associated with this waveguide. Figs. 3(a) and 3(b) show
the projections of the poles on the real xb and imaginary yb axis,
respectively, as functions of the transition frequency of the emitter x0.
The existence of poles critically depends on the position of x0 with
respect to the dispersion properties of the waveguide. Specifically, the
three different poles are (i) an unstable pole z1, i.e., a pole with yb < 0,
which exists when the transition frequency of the emitter lies within
the low-frequency (negative index) propagating band, x0 � xMNZ ;
(ii) an unstable pole z2 that exists when the transition frequency of the
emitter lies within the high-frequency (positive index) propagating
band, x0 � xENZ ; and (iii) a bound state zBS ¼ xBS, i.e., a pole exactly
located on the real axis, yBS ¼ 0, which exists for xBS � xMNZ .

As a consequence of the asymmetric edges of the bandgap, the
existence of the bound state is not guaranteed for all values of x0.
Specifically, the diverging and negative values of Dx xð Þ near xENZ

ensure that a real solution to xBS ¼ x0 þ Dx xBSð Þ exists even for very
large values of x0, with xBS � xENZ [see Fig. 3(a)]. This behavior has
been observed at the band edges of other photonic nanostructures.41–44

FIG. 2. Sketch of the complex plane including the integration contour for the resol-
vent Ge zð Þ and its singularities. The unstable poles, bound states (poles in the real
axis), and branch cuts are indicated.
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However, because Dx xð Þ approaches zero at xMNZ , there are no real
solutions to xBS ¼ x0 þ Dx xBSð Þ for x0 < xMNZ . For the same rea-
son, there is a soft transition where an unstable pole is smoothly trans-
formed into a bound state as the emitter’s frequency decreases below
xMNZ . This property might be of interest for shifting between dissipa-
tive and coherent interactions by tuning the frequency of the emitter.

The projections of the poles onto the imaginary axis indicate how
fast the contributions from the poles decay. In general, the decay rate,
i.e., the imaginary part of the projection of the self-energy on the real
axis, C xbð Þ, provides a good approximation of the behavior of the
poles [see Fig. 3(c)]. However, the decay rate C xbð Þ is predicted to
diverge at the ENZ frequency. This is an expected, unrealistic behavior.
As shown in Fig. 3(c), the nonperturbative theory predicts that the
imaginary part of the pole saturates to a finite value in the x0 ! xENZ

limit, which, in turn, imposes a limit on the speed of the decay process.
In practice, a divergent decay rate will never be observed due to dissi-
pation losses and fabrication tolerances. However, this result highlights
that nonperturbative effects act as an additional limiting factor on the
enhancement of the decay rate in dispersive waveguides.

Figure 4(a) depicts the magnitude of initial time t ¼ 0ð Þ contri-
butions of the poles as a function of the transition frequency of the
emitter x0. As expected, once the emitter is located well within the
propagating band, the response of the system is dominated by the con-
tribution of a single unstable pole. However, a more complex scenario
takes place near the band edges. When the emitter’s frequency equals
the ENZ frequency, x0 ¼ xENZ , the contribution of the bound state

and the higher-band unstable pole is of equal significance. This situa-
tion leads to interference effects in the decay dynamics. On the other
hand, when the emitter’s frequency equals the MNZ frequency,
x0 ¼ xMNZ , the contributions from the poles suddenly drop to zero
and the dynamics become entirely dominated by the contribution
from the branch cuts. This behavior is justified by the fact that the
derivative of the self-energy diverges at z ¼ xMNZ. It is clear that it is
crucial to account for nonperturbative phenomena in both cases to
properly access the exact decay dynamics near the band edges.

The contributions from the branch cuts, CBCENZ tð Þ and CBCMNZ tð Þ,
are harder to analyze as they require numerical integration along verti-
cal paths in the complex plane (see Fig. 2). Intuitively, one can under-
stand these contributions as arising from a collection of singularity
contributions leading to a fractional decay. This intuition is ratified by
observing the long-time limits of the integral, which yield fractional
decay rates: limt!1 CBCENZ tð Þ / t�

3
2 and limt!1 CBCMNZ tð Þ / t�

1
2.

Again, we find that the asymmetric band edges present very different
properties. Specifically, the ENZ branch cut contributes with a t�

3
2

power law similar to that predicted for other slow-light waveguides.30

On the other hand, the MNZ branch cut exhibits a slower power law
decay, t�

1
2. The initial time contributions, CBCENZ t ¼ 0ð Þ and

CBCMNZ t ¼ 0ð Þ, depicted in Fig. 4(a), illustrate that the branch cuts
only produce a significant contribution when the transition frequen-
cies of the emitter are near the branch points given by the ENZ and
MNZ frequencies.

To finalize, Fig. 5 displays some representative examples of the
time evolution of the survival probability of the excited state, Ce tð Þ

�� ��2,
as the emitter’s frequency is scanned through the dispersion profile of
the waveguide. These examples serve to highlight the variety of tempo-
ral profiles that can take place when different singularities in the com-
plex plane become dominant.

First, when the emitter is tuned to the low-frequency propagating
band, e.g., x0 ¼ 0:6xENZ, the decay dynamics exhibit a near expo-
nential decay. This property is justified by the fact that the response is
dominated by a single unstable pole. Second, when the emitter is tuned
to the MNZ frequency: x0 ¼ 0:8xENZ ¼ xMNZ, the time evolution
displays the slow fractional decay that arises from the branch cut con-
tribution. Therefore, although the MNZ band edge enables a smooth
transition from an unstable pole to a bound state, the decay dynamics

FIG. 3. Locations of the poles, zb ¼ xb þ iyb, in the complex plane including two
unstable poles b ¼ 1; 2 and a bound state b ¼ BS, as described by their projec-
tions onto the (a) real xb and (b) imaginary yb axis. The evaluation of the decay
rate C xbð Þ is included for the sake of comparison.

FIG. 4. Magnitude of the initial time t ¼ 0ð Þ contributions for the probability ampli-
tude, including the unstable poles associated with the low-frequency R1 and high-
frequency R2 propagating bands, the bound state RBS, and the mu-near-zero
RBCMNZ and epsilon-near-zero RBCENZ branch cuts.
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will exhibit a residual and slow fractional decay when the emitter is
tuned very close to that band edge. When the emitter is tuned to the
middle of the bandgap, e.g., x0 ¼ 0:85xENZ, the temporal profile is
characterized by a fast decay into a long-lived bound state.
Interestingly, when the emitter is tuned to the ENZ frequency:
x0 ¼ xENZ, the decay dynamics exhibit a complex and slow oscilla-
tory decay. Although a fast decay would be expected from the weak
coupling regime because of the Purcell enhancement at the band
edge, the interference between the unstable pole, bound state, and
branch cut contributions results in a significantly different profile.
Finally, when the emitter is tuned well into the high-frequency
propagating band, e.g., x0 ¼ 1:2xENZ, the decay is again domi-
nated by a near-exponential profile associated with a single unstable
pole.

In conclusion, our results illustrate the wealth of decay dynamics
phenomena that can be observed in metamaterial waveguides that
have a complex dispersion profile. We have shown that not all slow-
light band edges are equal. Some present a divergent behavior of the
decay rate that is of particular interest for bright and deterministic
photon sources, while others enable the smooth transition from an
unstable pole to a bound state that is of particular interest for entangle-
ment generation and many-body physics. Finally, it is crucial to prop-
erly account for the branch cut contributions since they lead to
fractional decay rates whose properties also depend on the characteris-
tics of the band edge. A previous work has identified that the decay
rate of emitters coupled to NZI media critically depends on the
dimensionality of the system,14 and similar considerations are likely
to take place in the nonperturbative regime. We decided to restrict
our analysis to the 1D case because most experiments on quantum
emitters coupled to NZI systems consist of waveguides and higher
dimensional realizations of NZI systems required dealing with
much more complex dispersion characteristics. In general, we
expect that our nonperturbative decay dynamics theory will be very
relevant for a number of metamaterial waveguides in the optical
regime and for microwave superconducting circuits with similar
dispersion profiles.

I.L. acknowledges support from H2020-ERC-2020-StG-94850,
Ram�on y Cajal fellowship RYC2018-024123-I, and Project No.
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