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Abstract: Abnormal miRNA functions are widely involved in many diseases recorded in the database
of experimentally supported human miRNA-disease associations (HMDD). Some of the associations
are complicated: There can be up to five heterogeneous association types of miRNA with the same
disease, including genetics type, epigenetics type, circulating miRNAs type, miRNA tissue expression
type and miRNA-target interaction type. When one type of association is known for an miRNA-
disease pair, it is important to predict any other types of the association for a better understanding of
the disease mechanism. It is even more important to reveal associations for currently unassociated
miRNAs and diseases. Methods have been recently proposed to make predictions on the association
types of miRNA-disease pairs through restricted Boltzman machines, label propagation theories
and tensor completion algorithms. None of them has exploited the non-linear characteristics in the
miRNA-disease association network to improve the performance. We propose to use attributed
multi-layer heterogeneous network embedding to learn the latent representations of miRNAs and
diseases from each association type and then to predict the existence of the association type for all the
miRNA-disease pairs. The performance of our method is compared with two newest methods via
10-fold cross-validation on the database HMDD v3.2 to demonstrate the superior prediction achieved
by our method under different settings. Moreover, our real predictions made beyond the HMDD
database can be all validated by NCBI literatures, confirming that our method is capable of accurately
predicting new associations of miRNAs with diseases and their association types as well.

Keywords: miRNA-disease; heterogeneous association types; attributed multi-layer heterogeneous
network embedding; Node2vec

1. Introduction

MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with
a length of about 22 nucleotides encoded from endogenous genes. It has been found
that the abnormally high or low expressions of miRNAs are closely related to disease
progression and development, such as tumor progression [1,2]. Therefore, miRNAs can
be used as biomarkers for disease diagnosis or drug targets in treatment design [3,4].
These associations between miRNAs and diseases are sometimes very complicated with up
to five heterogeneous types induced by genetics, epigenetics, circulating miRNAs, miRNA
tissue expression and miRNA-target interactions.

An early version of the database HMDD (v2.0) [5] stratifies miRNA-disease associa-
tions into four types (denoted as Type-1, Type-2, Type-3 and Type-4 here). Type-1 is defined
as a special association induced by genetics. It is mainly confirmed by GWAS analysis, gene

Biomedicines 2021, 9, 1152. https://doi.org/10.3390/biomedicines9091152 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-5913-9646
https://doi.org/10.3390/biomedicines9091152
https://doi.org/10.3390/biomedicines9091152
https://doi.org/10.3390/biomedicines9091152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9091152
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9091152?type=check_update&version=2


Biomedicines 2021, 9, 1152 2 of 14

knockout and gene overexpression. For example, two SNPs of rs41275794 and rs12976445 in
pri-miR-125a change the expression of mature miR-125a and are associated with recurrent
abortion [6]; the deletion of miR-15a increases the risk of Lymphoma [7]; the proliferation,
invasion and metastasis of HCT116 cells can be inhibited by overexpression of miR-34a in
colon cancer [8]. Type-2 is a special association induced by epigenetics change. Mutations
of epigenetic components are common in diseases [9]. It has been proved that miRNAs
can serve on modulators of epigenetic through targeting key enzymes that are responsible
for epigenetic responses, and the expression of miRNAs can be regulated by epigenetic
mechanism [10]. The reciprocal interaction between epigenetic and miRNA regulation
forms an epigenetic-miRNA feedback loop. Type-3 association is specified from circulation
assays. Since circulating miRNAs are always remarkably stable in plasma and serum under
harsh conditions, they can be used as novel biomarkers for diagnosis and prognosis [11,12].
Circulating miRNAs can also be selectively targeted for secretion in one cell and absorbed
by a distant target cell to regulate gene expression [13]. Type-4 can be identified through
miRNA-target interactions, including miRNA-mRNA interactions and miRNA-lncRNA
interactions, as well as feedback loops between miRNAs and transcription factors. For
instance, miR-106a targeting MCL1 to inhibit cisplatin resistance of A2780 in ovarian cancer
cells [14] implies a Type-4 association between miR-106a and ovarian cancer; the feed-
back loops between miR-124 and TGF-β pathways play an important role in metastasis
of non-small cell lung cancer [15]. Recently, the HMDD database was updated to version
v3.2 [16] and added a newly specified classification of Type-5 on the evidence and data
from miRNA tissue expression assays. MiRNAs are present in a variety of human tissues,
and the differential expression of miRNA and the deregulation expression of miRNA in
tissues have been found to be related to the disease. For example, it has been found that
six miRNAs, miR-31, miR-34a, miR-181a, miR-181b, miR-193a-3p and miR-193b are all
upregulated, but other the four miRNAs miR-221, miR-222, miR-484 and miR-502-3p are
all downregulated in pancreatic cancer cells [17]. Moreover, Cui et al. [18] explored a sig-
nificant positive correlation among body fluid miRNAs and tissue miRNAs. The miRNAs
in tissues are highly correlated with miRNAs in male serum and female plasma.

Therefore, the association of miRNA-disease can not only be divided into multiple
types according to the association evidences but there are also correlations among the
various types. Furthermore, when an miRNA is associated with a disease, the association
can be multiple types. For example, the reduced expression level of miR-9 can not only be
the prognosis biomarker for Waldenstrom macroglobulinemia but it also causes Walden-
strom macroglobulinemia in humans. The association between miR-223 and inflammation
can be proved by genetics, epigenetics or miRNA-target interactions. When one type of
association is known for an miRNA-disease pair, it is important to predict any other types
of the association for a better understanding of the disease mechanism and for developing
accurate treatment for the diseases. It is even more important to reveal associations and
association type for currently unassociated miRNAs and diseases. Since confirming asso-
ciations and association types of miRNA-disease through biological experiments is very
time-consuming and costly, it is very necessary to reveal miRNA-disease association and
association type through computational methods.

Most of previous algorithms aimed for a binary prediction to observe whether an
miRNA-disease pair has an association or not, but these binary prediction algorithms
are unable to stratify the multiple heterogeneous types of the association between an
miRNA and a disease. To refine the prediction extendable to handle the multiple types
of an association, Chen et al. [19] proposed a model (RBMMMDA) based on restricted
Boltzman machines (RBMs) where a RBM is constructed for every specific miRNA. All of
the diseases are then served as nodes in the visible layer, and the associated state with a
specific miRNA acts as the label of the disease node. The association probabilities between
a disease and an miRNA are updated by a two-layer undirected graph. RBMMMDA
can predict the links of miRNAs associated with diseases as well as multiple association
types. However, the visible layers and the hidden layers are not cross connected in
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RBM, missing the similarity information of the disease network and the miRNA network.
Zhang et al. [20] proposed to calculate the Gaussian similarity and semantic similarity
for diseases, the function similarity and the Gaussian similarity for miRNAs on each
miRNA-disease association type. Then, a model (NLPMMDA) was constructed to uncover
unobserved multiple types of miRNA-disease associations. For each association type,
they adopted a label propagation algorithm on the integrated disease-disease similarity
network and corresponding miRNA-miRNA similarity network. Good performance was
achieved by NLPMMDA, whereas the correlation between multi-types of miRNA-disease
associations was not taken into consideration. Recently, Huang et al. [21] considered
multiple association types between miRNAs and diseases as a tensor and developed a
novel tensor completion algorithm (named TDRC) to predict miRNA-disease association
types. TDRC treats auxiliary information of miRNA similarities and disease similarities
as relational constraints and incorporates it into the optimal objective function. As TDRC
takes into account multiple biological information and the correlation between different
association types, it performs better than previous models and other traditional tensor
completion algorithms in exploiting potential miRNA-disease association types. However,
the tensor completion algorithm can only capture linear relationships of disease-miRNA
association network. We believe that it would be very effective to predict the miRNA-
disease multi-type associations by using the non-linear properties among the disease-
miRNA associations, the miRNA similarity network and the disease similarity network.

Recent development in graph embedding or network representation learning have
opened the door for exploring non-linear properties in heterogeneous networks. The tech-
nique of attributed multi-layer heterogeneous network embedding (GATNE) [22] is a
recently emerging graph embedding approach which is able to capture rich attributed
information and exploit multiplex topological structures from different node types. In
particular, it can project the structural information of the nodes and non-linear relationship
of the network into low-dimensional continuous space while preserving inherent prop-
erties. Considering that the network of miRNA-disease is complicated, comprising not
only multi-typed nodes and associations but also rich similarity information between the
nodes of the same type, we are motivated to explore attributed multi-layer heterogeneous
network embedding for predictions of multi-typed associations between miRNAs and
diseases. We name our method mDLinker.

By our method, the node features of miRNAs and diseases are created through the
Node2vec algorithm from their similarity networks. The topology information, the non-
linear relationships of miRNA-disease associations and different association types are
captured through GATNE from the attributed multi-layer miRNA-disease heterogeneous
network. Finally, random forest is trained on the information-rich edges of the network
and then applied to predict miRNA-disease association types within the HMDD database
or beyond the database. Experimental results show that our method achieved excellent
performance in both algorithm comparison and real case studies. Therefore, our algorithm
has powerful ability to predict miRNA-disease association and association types. It also
has great significance for understanding disease pathology at the molecular level.

2. Materials and Methods
2.1. Datasets

Data records from HMDD, MeSH and miRBase were downloaded for this study. HMDD
(http://www.cuilab.cn/hmdd/, accessed on 11 October 2020) is a well-maintained database
of miRNA-disease associations. HMDD v2.0 recorded 10,381 miRNA-disease associations
between 383 diseases and 577 miRNAs, while the latest version of HMDD v3.2 covers
894 diseases, 1206 miRNAs and 35,548 miRNA-disease associations. The miRBase database
(http://www.mirbase.org/, accessed on 15 October 2020) is one of the most important public
databases of miRNAs, which provides published miRNA precursor sequences, their annota-
tions, predicted gene targets and so on. The directed acyclic graph description of diseases
is obtained from the Medical Subject Heading (MeSH) database in the National Library of

http://www.cuilab.cn/hmdd/
http://www.mirbase.org/
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Medicine (http://www.nlm.nih.gov/, accessed on 14 October 2020). For our study, miR-
NAs and diseases with irregular or incorrect names were deleted. Due to the sparsity of
miRNA-disease association types in the miRNA-disease matrix, similarly as [20], we mapped
different miRNA precursors into the same mature miRNAs in HMDD v2.0. A summary of
the data records in HMDD v2.0 and HMDD v3.2 is presented in Table A1. Figure 1 shows the
proportions of associations containing 1, 2, 3, 4 or 5 types.

HMDD v2.0 HMDD v3.2

Number of type

1 2 3 4 5

Percentage

0%

20%

40%

60%

80%

100%
89.18

78.17

9.63
15.28

1.19
4.69

0

1.65

0

0.21

Figure 1. The percentages of miRNA-disease associations containing different numbers of types.

2.2. Similarity Calculation for Diseases and miRNAs

The calculation method for the semantic similarity of diseases was proposed by Wang
et al. [23]. In the descriptor C of the MeSH database, the relationships among the diseases
are represented as directed acyclic graphs (DAGs), which are usually directed from a
general disease to a more specific disease. An example of the DAG structure of infectious
mononucleosis is shown in Figure 2, where the directionality of the edges is used to find
ancestor nodes of infectious mononucleosis, and more distant ancestors contributed less
semantically to infectious mononucleosis. For disease P, the semantic values DV(P) can
be calculated as follows:

DV(P) = ∑
t∈NP

DP(t) (1)

{
DP(t) = max α ∗ DP(t′)|t′ ∈ children(t), i f t 6= P
DP(P) = 1

(2)

where NP is the node set including ancestor nodes of P and disease P. α is the ancestor
contribution factor α = 0.5 suggested by [23]. since the two diseases with more ancestor
nodes are more similar, the semantic similarity between disease P and disease Q can be
calculated as follows.

sim(P, Q) =
∑t∈NP∩NQ

(DP(t) + DQ(t))

DV(P) + DV(Q)
(3)

Based on the assumption that similar miRNA precursor sequences will have similar
functions, miRNA precursor sequences are effectively used to extract miRNA features
or to calculate miRNA similarity in the prediction of miRNA-disease binary association.
For example, Li et al. [24] and Ji et al. [25] adopted the 3-mer method to construct miRNAs
feature; Che et al. [26] measured the miRNA-miRNA similarity by the Levenshtein distance
of miRNA precursor sequences; Zheng et al. [27] calculated an miRNA–miRNA sequence
similarity matrix by using a chaos game representation (CGR). In order to make effective use
of biological structural information of miRNAs and avoid the recalculation of traditional
miRNA function similarity in cross-validation, the miRNAs similarity calculation method

http://www.nlm.nih.gov/
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proposed by Zheng et al. [27] is adopted in our study where miRNA precursor sequences
are mapped to a Euclidean space by an iterative mapping function, and then the region
distance of CGRs is calculated to measure the similarity between miRNA and miRNA.

Infections 
[C01]

Virus Diseases 
[C01.925]

DNA Virus Infections 
[C01.925.256]

Herpesviridae Infections 
[C01.925.256.466]

Epstein-Barr Virus Infections 
[C01.925.256.466.313]

Infectious Mononucleosis 
[C01.925.256.466.313.400; C15.378.553.381; C15.604.515.516; C20.683.515.515]

Hemic and Lymphatic 
Diseases [C15]

Lymphatic 
Diseases 
[C15.604]

Lymphoproliferative Disorders 
[C15.604.515; C20.683.515]

Immune System 
Diseases [C20]

Immunoproliferative 
Disorders [C20.683]

Hematologic 
Diseases 
[C15.378]

Leukocyte 
Disorders 

[C15.378.553]

Figure 2. The directed acyclic graph(DAG) of infectious mononucleosis.

2.3. Graph Embedding

A network is a structure composed of nodes and edges, where nodes are connected
by edges. Graph embedding is a distributed representation of network structure, which
includes node embedding, edge embedding and subgraph embedding. Node embedding
can map the discrete nodes in the network to a continuous vector space, and each node
has an unique vector representation. Node embedding data after encoding the topological
information of the network are very useful inputs relative to machine learning algorithms
for downstream tasks, such as node classification and link prediction. In this section, we
describe the ideas of Node2vec [28] and GATNE [22], which are used in our prediction
as modules.

2.3.1. Node2vec

Node2vec is a graph embedding method, which obtains the nearest neighbor sequence
of nodes by a biased random walk. Two hyperparameters p and q are introduced to
balance the depth first search (DFS) and breadth first search (BFS). For the miRNA–miRNA
similarity network, given a current miRNA node v, let t denote its previous miRNA node.
The probability of accessing to the next miRNA x is calculated as follows:

P(ci+1 = x|ci = v) =

{
αpq(t,x)∗wvx

Z , if (v, x) ∈ E
0, otherwise

(4)

αpq(t, x) =


1
p , if dtx = 0
1, if dtx = 1
1
q , if dtx = 2

(5)

where αpq(t, x) and wvx are the transition probability and similarity between miRNA v and
miRNA x, respectively; Z is the normalized constant. Based on the hypothesis that similar
miRNAs are more likely to be associated with the same disease and vice versa, we set
p = 1, q = 2 in this study. Assume that f is the mapping function of the miRNA node u to
the embedding vector. Ns(u) is defined as the set of adjacent nodes of u, which is sampled
through the sampling strategy S. The optimization goal of node2vec is to maximize the
co-occurrence probability of the nearby miRNAs for a given current miRNA node [28].

max f ∑
u∈V

log Pr(Ns(u)| f (u)). (6)
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After embedding, the higher the similarity between two miRNA nodes, the closer
the Euclidean distance of their features. The same operation is adopted in disease-disease
similarity network.

2.3.2. GATNE

For an attributed network G(V, E, A), V = {v1, v2, ..., vn}, E = {eij|vi, vj ∈ V} and
A = {xi|vi ∈ V} are the sets of nodes, edges and node features, respectively. If the number
of types of the nodes and edges in G is larger than 1, G is called an attributed multi-layer
heterogeneous network (AMHN). Gr = {V, Er, A} is denoted as a subnetwork of edge
type r. GATNE [22] is an inductive embedding algorithm on AMHN, composed of three
parts: base embedding, edge embedding and node attributes. The core idea of GATNE
is to aggregate neighbors from different layers to the current node and then to generate
different vector representations for the nodes on each edge type.

Base embedding of a node is shared in different layers. For miRNA nodes in at-
tributed multi-layer miRNA-disease heterogeneous network, the base embedding is ob-
tained through the attributes of miRNAs, and it can be calculated as follows:

bi = hz(xi), (7)

where xi is the feature vector of miRNA vi and hz is the transformation function for miRNAs
for which its type is defined as z.

The edge embedding of attributed multi-layer miRNA-disease heterogeneous network
on each relation type is initialized by the transformation function that takes node attributes
as input, then the idea of neighbor aggregation in GraphSAGE [29] is adopted to aggregate
edge embedding on different levels in single layer. For miRNA node on relation type r, we
have the following:

d(0)i,r = gz,r(xi), (8)

d(k)i,r = aggregator({d(k−1)
i,r , ∀vj ∈ Ni,r}), (9)

where gz,r is the transformation function, k is defined as the kth level neighbor of miRNA
vi and Ni,r is the set of neighbor nodes of vi. To take into account the interplays between
different relation types, the self-attention mechanism [30] is performed on the concatenate
representation constructed by the edge embeddings of nodes from different layers:

Di = (di,1, di,2, ..., di,m), (10)

ai,r = so f tmax(wT
r tanh(WrDi))

T , (11)

ui,r = αr MrDrai,r, (12)

where m is the number of relation types and wr, Wr and Mr are parameters of relation type
r, which can be trained by parameter optimization.

The embedding representation of miRNA node vi on relation type r is calculated as
follows.

vi,r = βrDT
z xi + bi + ui,r. (13)

The same embedding operations are adopted on disease nodes.
In parameter optimization, the meta-path-based random walk [31] and skip gram [32]

on the heterogeneous network and negative sampling are adopted to optimize the parame-
ters of GATNE. The objective function is as follows:

E = −logPθ({vj|vj ∈ C}|vi)

= −logσ(cT
j · vi,j)−

L

∑
l=1

Evk∼Pt(v)[logσ(−cT
k · vi,r)],

(14)
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where the context C of path P = (vp1,...,pt) is generated by meta-path-based random walk
and ck is the context embedding of node vk, which is a negative sample randomly selected
from distribution Pt(v), σ(x) = 1/(1 + exp(−x)). θ represents all parameters in GATNE.

2.4. mDLinker

In this paper, we propose a novel algorithm (named mDLinker) to predict multiple
association types between miRNAs and diseases through a multi-layer heterogeneous
network embedding technique. The first step of mDLinker is to calculate miRNA–miRNA
similarities based on the miRNAs’ sequences and calculate disease–disease similarities
based on the DAG structure of the diseases. Denote the miRNA–miRNA similarity network
as GM = (VM, EM) with the weighted adjacency matrix AM ∈ Rm×m, where AM(i, j) is
the similarity between miRNAs i and j, VM = {1, 2, ..., m} is the set of miRNA nodes and
EM is the set of edges. The second step of mDLinker is to obtain the feature matrix of
miRNA nodes XM ∈ Rm×NE by Node2vec, where NE represents the feature dimension
of miRNA nodes after embedding. Similarly, we obtained the disease–disease similarity
network GD = (VD, ED) with the weighted adjacency matrix AD ∈ Rn×n, Vd = {1, 2, ..., n}
and determine the feature matrix XD ∈ Rn×NE through Node2vec. Then, we constructed
an attributed multi-layer miRNA-disease heterogeneous network (AMH-MD), where the
only difference between each layer of AMH-MD is the type of association. One of these
layers is shown in Figure 3. In AMH-MD, the topologies of all single miRNA-disease
association and the relationships between different types of association, as well as the
feature of nodes, are well described.

Let MD-P denote an miRNA-disease pair that is known with an association, but the
association is not specified with any type; and let MD-T denote an miRNA-disease-type
triple, meaning the type of the association between the miRNA and disease is specified.
Given the complicated correlations between the MD-Ts, for each association type, the graph
embedding technique GATNE is applied by our method mDLinker to aggregate topology
information from different layers to the current layer such that the embedding represen-
tation of the miRNAs and diseases on each layer can be characterized. Then, we train a
machine learning classifier on these experimentally confirmed MD-Ts and a set of selected
negative samples, where the feature vectors of MD-Ts are obtained by concatenating the
two vector representations of corresponding diseases and miRNAs. The algorithm flow
diagram is shown in Figure 4.

M2

M3

M4

M5

M1

D1

D2

D3

D4

MiRNA Disease

Figure 3. A single layer in our attributed multi-layer miRNA-disease heterogeneous network, where
XMi and XDj represent the feature vector of miRNA Mi and that of disease Dj, respectively.
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relation 
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Node2vec

Node2vec

sequence 

similarity

 Nodes 
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HMDD

GATNE

MiRNA

 Feature

 Map

5*m*BE 

Disease

 Feature

 Map

5*n*BE 

MiRNA-disease

 Feature

 Map

5*(m*n)*(2BE) 

concatenate

Association
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Random forest      

classifier

miRNA

disease

Figure 4. An illustration of predicting multiple types of miRNA-disease associations by mDLinker.
There are m miRNAs, n diseases and five layers in the network representing the five types of
associations. BE is the dimension number of the miRNA vector representation and also the dimension
number of the disease vector representation embedded by GANTE.

3. Experiments and Results
3.1. Experimental Setting

In order to validate the performance of mDLinker, we adopted two kinds of ex-
periments, termed CV-Type and CV-Triple, as similarly used by Huang et al. [21] for a
fair comparison.

By CV-Type, we randomly divided the confirmed MD-P instances into 10 equal parts,
one of which was reserved as a test set and the others are used as the training set. In both the
test set and training set, experimentally verified miRNA-disease-type triples are regarded as
the positive samples, while the unconfirmed or non-existent MD-Ts are served as negative
samples. For each MD-P in the test set, the association probabilities of all types of MD-T are
predicted. If the top one ranked MD-T is confirmed by HMDD, the corresponding MD-P is
predicted correctly. The purpose of the CV-Type is to demonstrate the ability of exploring
the most reliable MD-T from the corresponding MD-P. Precision, recall and f1 of top one
are calculated in CV-Type.

In CV-Triple, we randomly divided all MD-T instances into 10 equal parts, one part
reserved as a test set, and the others form the training set. Due to the lack of MD-T negative
samples provided by biologists, we constructed a set Nsample of negative samples from the
unconfirmed or non-existent MD-T by a strategy similar to [33,34]. For relation type r, we
calculated an average representation feature favg,r of all positive samples in the training set.
The Euclidean distances from favg,r to all unconfirmed or non-existent MD-T are measured,
where the average Euclidean distance is denoted as disr. For MD-T i, if the distance disr,i
from favg,r to i is greater than disr, MD-T i can be regarded as a more reliable negative
sample on relation type r. In this experiment, we randomly selected negative samples equal
to the number of positive samples on each edge type from Nsample. Three performance
indicators of AUPR, AUC and f 1-measure are calculated to confirm the effectiveness
of mDLinker.

3.2. Performance by Different Classifiers

We investigated the performance of different classifiers on predicting the potential
miRNA-disease-type triples under the setting CV-Type. Several classifiers were attempted,
including decision tree, naive Bayes, logistic regression, KNN, SVM and random forest.
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The performances are shown in Table 1. As an ensemble classifier, random forest achieved
the best performance.

Table 1. Ten-fold cross validation performance in CV-Type by different classifiers based on
HMDD v3.2.

Method Top-1 Precision Top-1 Recall Top-1 F1

Decision tree 0.4203 0.3224 0.3649
Naive Bayes 0.4748 0.3640 0.4121

Logistic Regression 0.4960 0.3803 0.4305
KNN 0.6001 0.4602 0.5209
SVM 0.5706 0.4357 0.4952

Random Forest 0.6509 0.4991 0.5649

3.3. Performance Comparison with the State of the Art

Several methods have been proposed to predict the types of miRNA-disease asso-
ciations. We compared the performance of our mDLinker with two newest algorithms
TFAI [21] and TDRC [21] on the same data set used in our paper from HMDD v3.2. NLPM-
MDA [20] can effectively predict each association type, respectively, but it only models the
binary association on each type of miRNA-disease association. On the one hand, according
to the comparison results of Huang et al. [21], TDRC algorithm has the best performance
compared to the other methods, and it is significantly superior to NLPMMDA. On the
other hand, we cannot run NLPMMDA on our data set because the authors of NLPM-
MDA did not provide the source code of it. Thus, we did not perform the comparison
between mDLinker and NLPMMDA in our study. The parameters in TFAI and TDRC
are set as suggested by the original paper. From Tables 2 and 3, one can observe that
mDLinker consistently outperforms TFAI and TDRC under all evaluation criteria. By the
ranking-based evaluation (Table 2), mDLinker, TFAI and TDRC achieved top one f1 of
0.5649, 0.4832 and 0.5071, respectively. This suggests that utilizing non-linear relationships
between miRNA nodes and disease nodes has greatly contributed to the high performance
of identifying potential MD-T from MD-P. Under the setting CV-Triple, the most significant
improvement is made again by mDLinker. In particular, the scores of F1, AUPR and AUC
are improved by 4.99%, 5.15% and 6.41%, respectively, in comparison with the previous
best model TDRC.

Table 2. Performance comparison among TFAI, TDRC and mDLinker under the setting CV-Type.

Method Top-1 Precision Top-1 Recall Top-1 F1

TFAI 0.5874 0.4501 0.4832
TDRC 0.6116 0.4686 0.5071

mDLinker 0.6509 0.4991 0.5649

Table 3. Performance comparison among TFAI, TDRC and mDLinker under the setting CV-Triple.

Method AUPR AUC F1

TFAI 0.9261 0.912 0.8559
TDRC 0.93 0.9222 0.865

mDLinker 0.9799 0.9737 0.9291

3.4. Sensitivity Study on Parameters

Sensitivity analyses were conducted on three hyper-parameters: NE (the attribute
dimension of miRNA nodes and disease nodes), DE (the dimension of edge embedding)
and BE (the dimension of base embedding). These three hyper-parameters determine the
framework of mDLinker and affect the performance of prediction.
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Figure 5 shows the performance when different hyper-parameter settings were tested
under CV-Type. NE was ranged in {16, 32, 64, 128, 256}. It can be observed that when NE
becomes larger, the performance trends better. Therefore, we set NE = 128 to prevent
overfitting. DE and BE are searched in the ranges {2, 4, 8, 16, 32, 64} and {16, 32, 64, 128}.
The best and most stable performance is achieved when DE = 32 and BE = 32.
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Figure 5. Sensitivity analysis on different parameter settings, including dimension of node attribute (a),
dimension of edge embedding (b) and dimension of base embedding (c), where the red polyline represents
Top-1 precision, the green polyline represents Top-1 F1 and the blue polyline represents Top-1 recall.

3.5. Case Study: miRNA-Disease Association Types Predicted beyond the HMDD Databases

The database HMDD v3.2 has recorded much more miRNA-disease associations
than its early version 2.0. We conducted a case study to observe whether the newly
recorded miRNA-disease associations and their types in HMDD v3.2 can be predicted
by a mDLinker model established from HMDD v2.0. For this case study, we used the
disease name mapping table provided by Huang et al. [35] to map disease names from
HMDD v2.0 to HMDD v3.2, and we selected 15 unique disease names in HMDD v3.2
that each have at least 20 miRNA-disease-type triples (i.e., at least 20 miRNA-disease
associations of different types) as test cases. Node2vec and GATNE are sampled via biased
random walk and the meta-path-based random walk, respectively. In order to eliminate
the error caused by sampling, we ran it 50 times and considered the top 20 MD-Ts with
the highest consensus frequency as the prediction result. Figure 6 shows the detailed
prediction performance by mDLinker on the 15 diseases. We can observe that many of the
predicted associations are actual associations recorded in HMDD v3.2, especially for lung
neoplasms and hepatocellular carcinoma, where 85% of the top 20 predicted associations
are actual associations confirmed in HMDD v3.2.

Our second case study is to use all the associations and the association type infor-
mation stored at HMDD v3.2 to train our prediction model and then to apply this model
to predict currently unknown miRNA-disease associations and their types. We run the
model 50 times. Each time, from the miRNA-disease-type triples that are not recorded in
HMDD v3.2, we stored those triples with the highest association probability predicted by
our model. Over 50 times, the top 10 predicted associations with the most consensus in
the stored top lists were regarded as the most likely miRNA-disease associations with a
specific type. For example, an miRNA-target association type between mir-224 and Gastric
Neoplasms predicted by our method mDLinker was confirmed by Fang et al. [36], and mir-
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224-5p negatively regulates OPCML in gastric cancer tissues; the abnormal expression
of miR-148a in prostate cancer predicted by MDLinker is consistent with the findings by
Fujita et al. [37] that the expression level of miR-148a in PC3 and DU145 hormone-resistant
prostate cancer cells is lower than that in PrEC normal prostate epithelial cells. More
details of these predicted associations are presented in Table 4. Although none of them
are currently recorded in HMDD v3.2, all of these predictions can be confirmed by the
literature works from NCBI (see the PMIDs at the fourth column of the table).
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Figure 6. Case study on 15 diseases unique in HMDD v3.2. The training model is based on the
miRNA-disease-type triples recorded in HMDD v2.0. Numbers of predicted miRNA-disease associa-
tions, which are confirmed by HMDD v3.2, are highlighted in the middle of the bars.

Table 4. miRNA-disease associations predicted by our model trained on HMDD v3.2 with their association types and their
supporting literature from NCBI.

MiRNA Disease Type PMID Experimental Methods Description

hsa-mir-224 Gastric
Neoplasms Target 32359894 RT-qPCR;

Western blot analysis
OPCML is negatively regulated by

miR-224-5p in Gastric cancer tissues.

hsa-mir-193a Carcinoma,
Hepatocellular Target 30710422

qRT-PCR;
Dual luciferase reporter assay;

RNA pull-down assay

miR-193a-5p inhibits the growth of
hepatocellular carcinoma by targeting

SPOCK1.

hsa-mir-31 Gastric
Neoplasms Target 30677405 Silico analysis; Dual luciferase

reporter assay

Zeste homolog 2 (ZH2) is
the potential target of miR-31 in

AGS cells to inhibit Gastric cancer.

hsa-mir-218-1 Carcinoma,
Hepatocellular Target 30003726

Fluorescence protein analysis;
RT-qPCR;

Western blotting

miR-218 suppresses the growth of
hepatocellular carcinoma by

inhibiting
the expression of proto-oncogene

Bmi-1.

hsa-mir-148a Prostate
Neoplasms Tissue 20406806 the trypan blue;

dye exclusion assay

miR-148a expression levels
are lower in PC3 and DU145

hormone-refractory prostate cancer
cells than PrEC normal human

prostate epithelial cells.

hsa-mir-218-1 Breast
Neoplasms Target 29378184

RT-qPCR analysis;
Luciferase reporter assay;

Cancer biostatistical analysis

miR-218 regulates breast cancer
progression by targeting Lamins.

hsa-let-7 Carcinoma,
Hepatocellular Target 27821157

MTT assay;
western blot;

immunofluorescence;
luciferase-reporter assay

Let-7 inhibits the self-renewal of stem
cell-like cells by regulating

Wnt signaling pathwayand EMT.
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Table 4. Cont.

MiRNA Disease Type PMID Experimental Methods Description

hsa-mir-193a Colorectal
Carcinoma Target 29104111 qRT-PCR;

Western bolt analysis

MiR-193a-3p plays a tumor
suppressive

role by targeting KRAS in colorectal
adenocarcinoma patients.

hsa-mir-200c Carcinoma,
Cervical Target 27693631 Luciferase reporter;

qRT-PCR assays

Disrupting MALAT1/miR-200c
sponge

decreases invasion and migration
in endometrioid endometrial

carcinoma.

hsa-mir-34c Ovarian
Neoplasms Target 32308421

qRT-PCR; MTT;
Western blot assays;

Immunoprecipitation;
Flow cytometry analysis

miR-34c targets MET to improve the
Anti-Tumor effect of Cisplatin on

ovarian cancer.

4. Conclusions

It is well known that there is a strong correlation between disease and miRNA. miRNA
can be used as a diagnostic marker and therapeutic target for disease. Unless evidence of
miRNA-disease association is confirmed, it is not sufficient to understand pathology at
the molecular level of miRNA. In this study, we have proposed an innovative algorithm
(mDLinker) based on embedding techniques and machine learning ideas in order to predict
the heterogeneous types of miRNA-disease associations and showed the significance and
usefulness of utilizing non-linear relationships in uncovering potential miRNA-disease-
type triples. By mDLinker, the miRNAs and diseases attributes are obtained through
Node2vec to embed the miRNA sequence information and DAG structure information
of the diseases, respectively. All the nodes in AMH-MD are projected into a vector on
each association by the powerful embedding technique GATNE. In order to calculate
the probability of each association type between an miRNA and a disease, the random
forest classifier is adopted. Compared with the state-of-the-art algorithms, mDLinker
achieves significantly better performance in the systematical experiments. Furthermore,
it performs excellent in the prediction of currently unknown associations in the HMDD
v3.2, as demonstrated in our case studies. The mDLinker is shown to be a reliable model in
exploring multiple relationships between miRNAs and diseases, and it is a useful tool in
enhancing understanding of the molecular basis of disease formation.
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Appendix A

Table A1. Details of the two data sets in this work: a represents miRNA-disease pair association, and b represents
miRNA-disease-type triple.

HMDD MiRNA Disease MD-P a MD-T b

Type-1 Type-2 Type-3 Type-4 Type-5

v2.0 321 168 1506 355 215 441 676 0
v3.2 695 445 12,495 1578 519 3300 5822 5079
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