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Abstract
The authors present a wideband circularly polarised antenna array consisting of a 10‐
element ellipse dipole antenna and a feed network. A metal pillar is vertically loaded at
the end of each ellipse dipole arm to extend the current path, thereby reducing the lateral
dimension of the antenna element. For uniform coverage over the Earth's surface, an-
tenna with an isoflux pattern is required due to its uniform power density over a wide
coverage area. To obtain wideband and isoflux characteristics, the amplitude and phase
distributions along the network are optimised by applying the hybrid of the genetic al-
gorithm and particle swarm optimisation. Particularly, the feed network with broadband
phase shifting performance is designed to attain a broad bandwidth requirement. The
proposed antenna can achieve excellent impedance matching and axial ratio character-
istics from 1.1 to 1.6 GHz. In addition, the isoflux radiation pattern is obtained with the
beamwidth of ±21° where the gain is higher than 0 dBi in the elevation plane (xoz‐Plane).
The realised gain is better than 10.2 dBi and the side lobes are below −14.2dB across the
operating frequency. Finally, the antenna array is manufactured and measured, and good
agreement is achieved between the simulation and measurement results.

1 | INTRODUCTION

Circularly polarised (CP) antenna are widely used in global
navigation satellite system (GNSSs), satellite communication
systems, radio frequency identification, and wireless power
transmission systems due to their capabilities of reducing
polarisation mismatch and suppressing multipath in-
terferences [1–4]. These CP antennas are developed by using
different approaches [1], such as excitation of two degen-
erate resonant modes and sequential arrangement of four
linearly polarised antenna elements with 90° phase delay. For
expanding the CP bandwidth, external feed networks
comprising of the Wilkinson power divider (PD) and the
90° phase shifter (PS) have been employed to increase the
bandwidth of the dual‐feed CP antennas [5–7]. Patch an-
tennas [8–12] also can achieve broad CP bandwidth. How-
ever, the size of patch antenna is normally quite large.

Isoflux radiation pattern [13–17] has a wide range of
applications in wireless communications. In [13], an isoflux
pattern antenna operating in the X‐band which was used in
transmitting the specific absorption rate data from the low
Earth orbit (LEO) satellite was presented. By employing a
ridged aperture and multistage choke rings, the desired
shaped pattern was achieved. The design in [15] developed a
modified S‐band satellite antenna using two crossed dipole
elements and a PD as the feeding network, but it exhibited
a relatively narrow input fractional impedance bandwidth of
approximately 4.8%. A planar metasurface isoflux‐type an-
tenna was designed and manufactured for the LEO satellite
application in [14], which was excited by a surface wave
generated by a coplanar feeder. However, the impedance
bandwidth is only 2.3%. In [18], a compact X‐band antenna,
consisting of a driving patch antenna and 12 parasitic
crossed dipoles, achieved an isoflux shaped beam with
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circular polarisation. Regretfully, the exact isoflux radiation
objective could not be achieved due to the platform size.

Here, a wideband CP antenna array with isoflux shaped
pattern is presented, which adopts a corporate‐fed network
[19] to provide the required amplitude and phase distribution.
By introducing the harpoon‐shaped feed patch and a square
coupling frame, the impedance bandwidth of the element is
effectively improved from 0.96 to 1.7 GHz, without using any
impedance matching circuits. More than that, the open and
short lines are employed to smooth the phase variation in the
feed network. The measured results of the array antenna
indicate that the frequency bandwidth for voltage standing
wave ratio (VSWR)≤1.5 and axial‐ratio (AR)≤3 dB ranges
from 1.1 to 1.6 GHz. Particularly, conical‐like isoflux pattern
characteristics are obtained at a cone of ±21° where a gain of
more than 0 dBi in the elevation plane was observed. The side
lobes are below −14.2 dB, and the gain of the antenna is better
than 10.2 dBi over the entire operating band.

2 | ANTENNA DESIGN AND
DISCUSSION

2.1 | Design of the element

The geometry of the proposed CP antenna element is
illustrated in Figure 1(a), (b), and (c). From Figure 1(a) and
(b), it is noted that a pair of elliptical printed dipoles are
placed orthogonally on the lower side of the FR4 substrate,
which has a relative dielectric constant of εr = 4.4, a loss

tangent of 0.02, and a thickness of 3 mm. In order to
increase the gain and impedance bandwidth of the antenna,
a square coupling frame is employed around the crossed
dipole antenna. Moreover, a metal pillar with length Lp is
employed at the end of each ellipse dipole arm to extend
the current path, thereby reducing the lateral dimension of
the dipole element. The overall size of the antenna is
0.31λ0 � 0.31λ0 � 0.27λ0 (λ0 is the free‐space wavelength
at 1.35 GHz). The upper side of the dielectric substrate is
printed with two orthogonal harpoon‐shaped feed patches
as shown in Figure 1(c). To avoid electrical contact, one of
harpoon‐shaped feed lines is modified. One part of the line
is printed on the bottom face of the substrate, and then is
connected to the top parts with two shorting pins. For the
feed network as shown in Figure 1(a), the crossed dipole
elements are fed by the Wilkinson PD (on the lower sur-
face of F4B) with 90° PS. This PS is essential for gener-
ating the CP radiation. In this design, a pair of open and
short lines with a length of λg/8 is employed to get a flat
phase variation over the whole bandwidth, where λg is the
wavelength on the substrate at the centre frequency of
1.35 GHz. The final optimal antenna parameters are shown
in Table 1.

2.2 | Optimisation and pattern synthesis

2.2.1 | Construction of the objective function

In the design of antenna element, the metal pillar serves to
extend the current path. The relationship between perfor-
mance of antenna element and the metal pillar is depicted in
Figure 2. Obviously, with the gradual increase of h1, the
resonant frequency of the antenna moves to the low fre-
quency. At the same time, the gain of low frequency first
increases and then decreases, while the gain of high fre-
quency shows a decreasing trend, as shown in Figure 2(a)
and (c).

Figure 2(b) and (d) shows the change curve of VSWR and
antenna gain with frequency and T. when T = 2, 3, and 4 mm
(the diameter of the short‐circuit column increases from 2 to
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F I GURE 1 Configuration of the antenna element: (a) perspective view,
(b) side view, and (c) top view

TABLE 1 Dimensions of the proposed antenna (mm)

Parameter Value Parameter Value

Ld 70 D 130

Dp 45 Wd 85

Lp 36 Wt 17.7

Wp 3 Lt 18

H 60 We 22.8

L1 10 Le 32

L2 11.8 W2 6

W1 1.2
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4 mm), the impedance bandwidth of the antenna becomes
wider. Because the characteristic impedance is reduced by the
thicker metal column, the input impedance curve becomes
flatter. Besides, the gain of the intermediate frequency de-
creases as T increases, and the low and high frequency gains
decrease as T increases.

The Figure 3(a) and (b) show that the element has a
fractional impedance bandwidth of 55.6% for VSWR≤1.5
ranging from 0.96 to 1.7 GHz and a 3‐dB AR bandwidth of
56.1% ranging from 1.0 to 1.78 GHz. Due to the loading effect
of square coupling frame, the element can achieve a relative
higher gain. The simulated antenna gain varies from 6.25 to
6.55 dBi over the whole band. Moreover, the radiation effi-
ciency of the antenna in the operating frequency band is higher
than 78%.

The xoz‐plane and yoz‐plane radiation at 1.145, 1.279 and
1.591 GHz are plotted in Figure 4(a)(c). At each frequency, the
half‐power beamwidth of the core polarisation patterns are 82,
86 and 90°, respectively. For the entire half‐power beamwidth,
the AR is below 3‐dB. The simulation results (Figure 3) show
that the broadband antenna element has a good impedance
match and CP radiation characteristics, which is a good
candidate as an element of the broadband CP antenna array.

To provide a uniform power density on ground, the an-
tenna mounted on the satellite must compensate the power
loss due to the propagation path by increasing the gain towards
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directions where the path is longer. Figure 5 shows a sketch of
the Earth‐satellite geometry. There, r is the radius of the Earth,
h is minimum distance from the satellite to the Earth surface,
θmax is the maximum coverage angle, and d is the distance of
the satellite from any point at the coverage area on the ground
Figure 6.

The distance from the satellite to the surface of the Earth is
given by its orbit, so h is known. Then, dmax is calculated using
the Pythagorean theorem and θmax is obtained which is as
follows:

sin θmax ¼ r=ðr þ hÞ ð1Þ

d is calculated as follows:

d ¼ ðr þ hÞ
�

cos θ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2θmax − sin 2 θ

p �

ð2Þ

where d∈[h,(r + h)2−r2].
Radiation pattern function faim(θ) can be describe as

follows:

f aimðθÞ ¼
UðθÞ
C
ðr þ hÞ

�

cos θ ‐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2θm ‐ sin 2 θ

p �
ð3Þ

where U(θ ) is radiant energy intensity and C is a constant.
Then, the normalised objective function is obtained as:

f aimðθÞ ¼

8
><

>:

A
�

cos
�

sinðθÞ
sinðθmÞ

⋅ arccos A
�

jθj ∈ ½0; θm�

B
�
sin 5 θ jθj ∈ ðθm; θ1�

ð4Þ

where θm corresponds to the angle of the peak gain and θ1
corresponds to the angle of the sidelobe level.

Adjusting the value of A can change the magnitude of the
concave. In this design, A is designed as 0.8, B is calculated to
be 0.0074 according to [14] and the criteria θ ∈ (0,θmax).

2.2.2 | Construction of fitness function

In order to obtain an isoflux radiation pattern, the amplitude
and phase distribution along the feed are optimised by applying
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the hybrid of the genetic algorithm (GA) and particle swarm
optimisation (PSO) methods. Figure 6 shows a linear array that
is deployed along the x‐axis, which consists of 10 crossed
dipole elements.

The far‐field radiation pattern of array can be described as
follows:

Eðλ; θÞ ¼ ∑
N

n¼1
αexp

�

j
�
2π
λ
ðn − 1Þd · cos θ þ β

��

· gðθÞ

ð5Þ

where θ is the angle between the axis of the array (x‐axis) and
the radial vector from the origin to the observation point, λ is
the wavelength, d is the distance between the adjacent ele-
ments, α and β are the amplitude and phase excitation co-
efficients, respectively. g(θ) is the element radiation pattern,
which embodies the influence of mutually coupled array, edge
effect and ground plane.

Suppose that the desired radiation pattern of the linear
antenna array is Ed(λi,θ), and its actual radiation pattern
function is Ea(λi,θ). Thus the deviation between the desired
pattern and the actual one is

me ¼ Eaðλi; θmÞ − Edðλi; θmÞm¼ 1; 2; …;M ð6Þ

where M represents the number of sampling points in main
beam.

Least mean square error of main beam is obtained as
follows:

Mu ¼

�
1
N

∑
N

n¼1
|me|2

�1
2

ð7Þ

Similarly, the deviation between the expected side lobe
(PSLLaim) and the actual one (PSLL1) is:

Mp ¼ PSLL1 − PSLLaim ð8Þ

The fitness function is defined as follows:

Fit¼ η1 ⋅ MU þ η2 ⋅ MP ð9Þ

where η1 and η2 represent the weight of Mu and Mp, respec-
tively. It is worth noting that actualvalues may be less than the
desired one. Therefore, there is section statement within the
algorithm to avoid this situation. If PSLL1 ≤ PSLLaim, η2 is
equal to zero.

Considering that the array is symmetric with respect to x‐
axis, the symmetrical amplitude and phase distributions of
element are applied to reduce the number of optimised vari-
ables. For consideration of the feed network manufacturability,
the amplitude and phase distributions of element are limited in
[0.3, 1] and [0, 360], respectively. The algorithmic parameter
values in the optimisation are: η1 = 0.65 and η2 = 0.35,
respectively.

The 10‐element linear array is optimised to produce an
isoflux beam pattern with a −14.0 dB side lobe level (SLL).
Table 2 shows the amplitude and phase distributions of the
feed.

The optimum radiation patterns obtained using the hybrid
of GA and PSO methods and from simulation in the com-
mercial EM‐simulator HFSS 13.0 are shown in Figure 7(a), (b),
and (c). It is noted that, the first SLL and isoflux beam pattern
level obtained by the hybrid of GA and PSO are very similar to
the simulated results. Furthermore, the radiation pattern is
almost identical to our targeted isoflux pattern, and the
maximum SLL for the co‐pol pattern of the array is less than
−15.4dB in the elevation plane. Particularly, the isoflux
beamwidth angle range is obtained at a cone of ±2° where the
gain is higher than 0 dBi in elevation plane. In the azimuth‐
plane (yoz‐Plane), the co‐pol patterns have a 3‐dB

1

2 3 4 5 6 7 8 9 10 11

x
y LGF I GURE 6 The proposed antenna array

TABLE 2 Optimised values of amplitude and phase distribution

Excitations

Port Amplitude Power Phase (degrees)

2 0.591 0.35 −246

3 0.775 0.6 −141

4 0.927 0.86 −116

5 0.837 0.7 −61

6 1.0 1.0 0

7 1.0 1.0 0

8 0.837 0.7 −61

9 0.927 0.86 −116

10 0.775 0.6 −141

11 0.591 0.35 −246
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beamwidth of approximately 69°. The cross‐polarisation levels
are −16.1, 16.5, and 16.3 dB at 1.145, 1.279, and 1.591 GHz,
respectively. There is reasonable agreement between the
simulated and optimised radiation patterns.

2.3 | Feed network of the 10‐element linear
array

Considering that the feed network is symmetrical, the
symmetrical amplitude and phase distribution of element are
achieved. Figure 8 reveals the measured S‐parameters from
1.1 to 1.6 GHz and the phase of each output port is
normalised to port 6. The return losses are lower than
−12 dB. The isolation between the output ports is better
than 15.0 dB over the entire operating band. Particularly, the
open and short lines are deployed to smooth the phase
variation, thus the feed network exhibits broadband phase
performance.

In order to verify the isoflux radiation characteristics, a
coplanar feed network is designed using the commercial EM‐
simulator HFSS13.0 and manufactured on a polytetrafluoro-
ethylene substrate which has a relative permittivity of 2.65, a
loss tangent of 0.002, and a thickness of 1 mm. In Figure 9(a),
the coplanar feed network formed of nine Wilkinson PDs and

PSs is designed to provide high isolation and desired power
ratio. Particularly, a broadband PS is employed to get a flat
phase characteristic in the operating band. The fabricated
wideband feed network is shown in Figure 9(b).

The details of the measured and simulated S‐parameters
are shown in Table 3. The phase differences between
measured and simulated results are within ±4.5°. However, the
transmission coefficients of the simulation are smaller than the
theoretical value due to the dielectric and reflection loss.
Specifically, the measured magnitude of S‐parameters is around
0.1 to 0.4 dB less than the simulated result, which is very
similar to the theoretical values. All of the above results show
that the feed network achieves desired wideband characteristic
and power distribution performance.

3 | MEASUREMENT RESULTS

The developed 110 antenna array was fabricated and the
photograph of the prototype is shown in Figure 10. The linear
array consists of 10 elements, a feed network, and a metal
plane. The crossed dipole elements are placed on the front side
of the metal plate, and the microstrip feed lines, numbered
sequentially per the corresponding radiators, are shown on the
bottom side. Its element spacing is 158 mm (0.71λ0). The
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length and width of the ground plane are, LG = 1700 mm and
WG = 300 mm, respectively.

The measured results were obtained using an Agilent
E8363 B network analyser and an anechoic chamber. Figure 11
(a) and (b) shows themeasured results of the antenna array, and it
can be seen that the proposed antenna achieves a measured
impedance (VSWR≤1.5) andAR≤3 bandwidth ranging from1.1
to 1.6 GHz. Meanwhile, the gain of the array combined with the
feed network is better than 10.2 dBi over the operating band.

Meanwhile, the measured and simulated radiation patterns
of the antenna array in both elevation and azimuth planes at
1.145, 1.279, and 1.591 GHz, are shown in Figure 12(a)–(c),
respectively. The maximum SLL is below −14.2 dB in the
elevation plane. The maximum radiation occurs at the main
beam direction of θ = 14–16° while the gain reaches 10.6 dBi

at 1.145 GHz. As the frequency increases, the conical radiation
pattern is narrowed by about 4°, and the gain variation for the
co‐polarisation is less than 1.5 dB. Meanwhile, the gain at
θ = 0° are about 3 dB less than the peak gain, which is similar
to the simulated results. In the azimuth plane, the co‐
polarisation patterns have a 3‐dB beamwidth of approxi-
mately 67°. Moreover, the measured crossed‐polarisation level
is lower than −15.6 dB. Finally, an acceptable agreement be-
tween the simulated and measured results validates the pro-
posed antenna. To further illustrate our design, a comparison
table with other works is listed in Table 4.

4 | CONCLUSION

A wideband CP antenna array with the isoflux radiation pattern
has been successfully designed and manufactured for the sat-
ellite application. First, the element has a fractional impedance
bandwidth of 55.6% for VSWR≤1.5 ranging from 0.96 to
1.7 GHz and a 3‐dB AR bandwidth of 56.1% ranging from 1.0
to 1.78 GHz and the antenna array has achieved a good
impedance matching and wideband AR characteristic from 1.1
to 1.6 GHz. Furthermore, the particular radiation pattern
exploited in the design is achieved by applying the hybrid of GA
and PSO optimisation methods. To verify the isoflux radiation
characteristics, a coplanar feed network is designed and man-
ufactured. Finally, the isoflusx angle is obtained at a cone of
±21° where the gain is more than 0 dBi in the elevation plane.
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TABLE 3 Amplitude and phase distribution of the feed work

Theoretical Value Simulated value Measured value

Frequency (GHz) 1.145 1.279 1.591 1.145 1.279 1.591

|S12| (dB) −13.0 −13.5 −13.4 −13.3 −13.8 −13.5 −13.4

Phase (°) −246 −242 −242 −251 −244 −243 −247

|S13| (dB) −10.1 −11.1 −11.1 −11.0 −10.9 −10.8 −10.6

Phase (°) −141 −136 −137 −145 −140 −141 −143

|S14|(dB) −9.1 −9.6 −9.5 −9.4 −9.8 −9.6 −9.6

Phase (°) −116 −112 −112 −118 −115 −116 −119

|S15|(dB) −10.0 −10.5 −10.4 −10.5 −10.6 −10.4 −10.6

Phase (°) −61 −58.8 −57.8 −62.6 −60.1 −62.3 −63.5

|S16|(dB) −8.5 −8.8 −8.7 −9.0 −8.7 −8.8 −8.7

Phase (°) 0 0 0 0 0 0 0

(a) (b)

(c)

F I GURE 1 0 Photograph of the fabricated antenna. (a) bottom view
of antenna element, (b) top view of antenna element, and (c) antenna array
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F I GURE 1 1 Measured and simulated results of (a) VSWR, efficiency,
(b) AR, Gain against frequency, and (c) the AR versus angular angle. VSWR,
voltage standing wave ratio

Measured results validate the design concept and indicate that
the proposed array exhibits good radiation characteristics.
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