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Abstract: Wi-Fi-based device-free human activity recognition has recently become a vital under-
pinning for various emerging applications, ranging from the Internet of Things (IoT) to Human–
Computer Interaction (HCI). Although this technology has been successfully demonstrated for
location-dependent sensing, it relies on sufficient data samples for large-scale sensing, which is
enormously labor-intensive and time-consuming. However, in real-world applications, location-
independent sensing is crucial and indispensable. Therefore, how to alleviate adverse effects on
recognition accuracy caused by location variations with the limited dataset is still an open question.
To address this concern, we present a location-independent human activity recognition system based
on Wi-Fi named WiLiMetaSensing. Specifically, we first leverage a Convolutional Neural Network
and Long Short-Term Memory (CNN-LSTM) feature representation method to focus on location-
independent characteristics. Then, in order to well transfer the model across different positions with
limited data samples, a metric learning-based activity recognition method is proposed. Consequently,
not only the generalization ability but also the transferable capability of the model would be signifi-
cantly promoted. To fully validate the feasibility of the presented approach, extensive experiments
have been conducted in an office with 24 testing locations. The evaluation results demonstrate that
our method can achieve more than 90% in location-independent human activity recognition accuracy.
More importantly, it can adapt well to the data samples with a small number of subcarriers and a low
sampling rate.

Keywords: Wi-Fi sensing; human activity recognition; location-independent; meta learning; metric
learning; few-shot learning

1. Introduction

Human Activity Recognition (HAR) has been considered as an indispensable tech-
nology in many Human–Computer Interaction (HCI) applications, such as smart home,
health care, security surveillance, virtual reality, and location-based services (LBS) [1,2].
Traditional human activity sensing approaches are the wearable sensor-based methods [3,4]
and the camera (vision)-based methods [5,6]. While promising and widely used, these
device-based approaches suffer from respective drawbacks, making them fail to be suit-
able for all the application scenarios. For instance, the wearable sensor-based method
works only if the users are carrying the sensors, such as smartphones, smart shoes, or
smartwatches with built-in inertial measurement units (IMUs), including gyroscope, ac-
celerometer, magnetometer, etc. However, it is inconvenient for constant use. In addition,
although the camera (vision)-based method could potentially achieve satisfactory accuracy,
it is limited by certain shortcomings, such as privacy leakage, line-of-sight (LOS) and light
conditions, etc. Moreover, both methods require dedicated devices, which are high cost. In
addition, the durability of the devices is another critical factor that should be considered.
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Recently, Wi-Fi-based human activity recognition has attracted extensive attention
in both academia and industry, becoming one of the most popular device-free sensing
(DFS) technologies [7,8]. Compared with the other wireless signals, such as Frequency
Modulated Continuous Wave (FMCW) [9,10], millimeter-wave (MMW) [11,12], and Ultra
Wide Band (UWB) [13–17], Wi-Fi possesses the most prominent and potential advantage,
which is that it is ubiquitous in people’s daily lives. Leveraging the commercial off-
the-shelf (COTS) devices, Wi-Fi-based human activity recognition obviates the need for
additional specialized hardware. Beyond this, it also has the same merits as other wireless
signals, including the capability to operate in darkness and non-line-of-sight (NLOS)
situations while providing better protection of users’ privacy in the meantime. As a result,
research on Wi-Fi-based human activity recognition has proliferated rapidly over the past
decade [18–21].

Previous attempts involving Wi-Fi-based sensing yielded great achievements, such as
E-eyes [22], CARM [23], etc. However, the major challenge referring to the generalization
performance of the approaches and systems has not been fully explored and solved. For
instance, when deployed in a room, the system must work well in each location rather
than a specified location. Location-independent sensing is one of the most necessary
generalization capabilities. It can also be regarded as the ability of a method to transfer
among different locations. Note that this is a crucial factor to determine whether the
technology can be commercialized. According to the principle of wireless perception, it
is not difficult to find that human activities in different locations have different effects
on signal transmission. Specifically, activities conducted by people in different locations
will change the path of wireless signal propagation in different ways, leading to diverse
multipath superimposed signals at the receiver. It is worth noting that these signals have
different data distributions, which can be treated as different domains. Hence, it is clear
that the human activity recognition model trained in a specific domain will not work well
in the other domains. The most obvious solution is to provide abundant data for each
domain to learn the characteristics of activities in the different domains. However, it is
labor-intensive, time-consuming, and with poor user experience to obtain a large amount of
data in practical applications. Therefore, how to utilize as few samples as possible to solve
the problem of location-independent perception to achieve outstanding generalization
performance is desired.

Some solutions have been proposed to solve the above problems, and remarkable
progress has been made, which lays a solid foundation for realizing location-independent
sensing with good generalization ability. The solutions fall into the following four cate-
gories: (1) Generate virtual data samples for each location [24], (2) Separate the activity
signal from the background [25,26], (3) Extract domain-independent features [27], and
(4) Domain adaptation and transfer learning. Some approaches involving other domains
(such as environment, orientation, and person) can also be grouped into these four cate-
gories. However, they pay less attention to location-independent sensing [28–31]. Although
the above methods promote the process of device-free human activity recognition from
academic research to industrial application, there are still some limitations. WiAG [24]
requires the user to hold a smartphone in hand for one of the training sample collections in
order to estimate the parameters. Widar 3.0 [27] is limited by link numbers and complex
parameter estimation methods. FALAR [25] benefits from its development of a new Open-
Wrt firmware which can get fine-grained Channel State Information (CSI) of all the 114
subcarriers, improving data resolution. Similarly, high transmission rates of the perception
signal (such as 2500 packets/s in Lu et al. [26]) can also boost the resolution. As the author
described by Zhou et al. [30], a low sampling rate may miss some key information, which
accounts for the deterioration in the system performance. However, using shorter packets
helps reduce latency and has less impacts on communication. The detailed discussions
about the effect of different sampling rates on the sensing accuracy can be found in the
evaluation in [27,30]. In summary, a location-independent method that can adapt to data
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with a small number of antennas and subcarriers as well as a small data transmission rate
is required.

This work aims to realize device-free location-independent human activity recognition
using as few samples as possible. It means that the model trained with the source domain
data samples can perform well on the target domain with only very few data samples. We
describe our task as a few-shot learning problem, improving the performance of the model
in the unseen domain when its amount of available data are relatively small [32]. The task
is also consistent with meta learning, whose core idea is learning to learn [33]. They have
been successfully applied in a variety of fields to solve classification tasks. Inspired by the
typical meta learning approach matching network, we apply the learning method obtained
from the source domain to the target domain by means of metric learning [34,35]. Assuming
that, although there is no stable feature that can describe a class of actions well, we can
still identify its category through maximizing the inter-class variations and minimizing
intra-class differences. Judging the category of a sample by calculating the distance can be
regarded as a learning method. To realize location-independent sensing, we expect to learn
not only the discriminative features representation specific to our task but also the distance
function and metric relationships that can infer the label with a confident margin.

In this paper, we first comprehensively and visually investigate the effects of the same
activity at different locations on wireless signal transmission. We also analyze the signal
received in different antennas and subcarriers with different sampling rates. Moreover,
we discuss how different locations affect signal transmission without any other variable
influence factors by utilizing data collected from the anechoic chamber. Then, we propose a
device-free location-independent human activity recognition system named WiLiMetaSens-
ing, which is based on meta learning to enable few-shot learning sensing. Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) are introduced for feature
representation. Unlike the traditional feature extraction process for Wi-Fi signal based on
LSTM, in this paper, the memory capacity of LSTM is utilized to retain the valuable infor-
mation of the samples from all the activities. In addition, an attention mechanism-based
metric learning method is used to learn the metric relations of the activity with the same or
different categories. Finally, extensive experiments are conducted to explore the recognition
performance of the proposed system. The evaluation refers to the property involving single
location, mixed locations, and location-independent sensing. Unlike existing evaluations,
we reduce the sampling rate, the number of subcarriers, and antennas. Experiments show
that WiLiMetaSensing achieves satisfying results with robust performance in a variety
of situations.

2. Preliminary
2.1. Channel State Information

The Wi-Fi-based wireless sensing principle is leveraging the influence of perceptual
targets on the transmitted signal for recognition. During the transmission from the transmit-
ter (TX) to the receiver (RX), the wireless signal would be refracted, reflected, and scattered
when encountering obstacles and objects (dynamic or static), which results in the superpo-
sition of multipath signals at the receiver. In a Multiple Input Multiple Output (MIMO)
and Orthogonal Frequency Division Multiplexing (OFDM)-based Wi-Fi communication
system, this process can be described by fine-grained CSI. In recent years, the physical layer
information of some commercial off-the-shelf (COTS) Wi-Fi devices has gradually become
available, making it possible to obtain CSI directly [36]. Compared with coarse-grained
Received Signal Strength Indicator (RSSI), CSI provides richer channel characteristics.

Letting y and x respectively denote the received signal and transmitting signal, the
relation between y and x can be modeled as:

y = Hx + N (1)

where H is the channel matrix, and N is the noise vector. H completely describes the
characteristics of the channel. The process of calculating the channel matrix is called
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channel estimation. H can be represented in either channel frequency response (CFR)
in frequency domain or channel impulse response (CIR) in time domain. The former is
given by ∥∥Hij( fk)

∥∥ej∠Hij( fk), k ∈ [1, NS], i ∈ [1, Nt], j ∈ [1, Nr] (2)

where Hij( fk) is a complex number, which denotes the CSI corresponding to the subcarrier
k whose carrier frequency is fk.

∥∥Hij( fk)
∥∥ and ∠Hij( fk) denote amplitude and phase,

respectively. i and j are the index of TX and RX antennas, respectively. Nt and Nr stand
for the number of antennas at the TX and RX, respectively. Ns represents the number of
subcarriers for each pair of transceiver antennas.

2.2. Data Acquisition

To thoroughly analyze the challenges in Wi-Fi-based human activity recognition and
evaluate the performance of the method proposed in this paper, we built a dataset in an
office environment. The data collection scene is shown in Figure 1. Specifically, Linux
802.11n CSI Tool based on Intel 5300 Network Interface Card (NIC) is leveraged to acquire
the raw CSI data [36]. The TX and RX work on 802.11n and operate on a 5 GHz frequency
band with a bandwidth of 20 MHz. They are both equipped with three antennas. In
addition, 30 subcarriers from each TX-RX pair can be obtained. Thus, there are 3 × 3 × 30
subcarriers in total. We can only use the signal collected from part of the antennas. The
data transmission rate is 200 frames/s. We can also subsample the signal measurement to
verify the performance of the system at low sampling rates.

Figure 1. Data collection experimental scene in the office.

Table 1 shows the predefined four activities conducted by six volunteers (five males
and one female), whose ages range from 23 to 30. We collected the data in a cluttered
office environment with lots of tables, chairs, and experimental facilities. The room size
is approximately 6 m × 8 m. The distance between the antennas of the TX and the RX is
4 m, and the antennas were both fixed at 1.2 m above the floor. The samples are collected
at 24 different locations within a region between the transceivers. The specified location
layout is given in Figure 2. The distance between adjacent positions is approximately 0.6 m.
We collect 50 samples for each activity at each location for each person. Since the initial
sampling rate is 200 frames/s, and the actual duration of the actions is 3.5∼4 s, namely
700∼800 frames, we take 750 frames as a sample.

Table 1. Predefined activities.

Mark Activity

O Draw a circle with right hand
X Draw a cross with right hand

PO Lift up and lay down two arms
UP Push and open with two arms
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Figure 2. The layout of data collection locations.

To further demonstrate the influence of activities at different locations on the transmit-
ted signal, we also conducted some experiments in a half-wave anechoic chamber. It is a
six-sided box with a shielded design, covering the electromagnetic wave absorbing material
inside except for the floor. It simulates an ideal open field situation, in which the site has
an infinitely large, well conductive ground plane. In a semi-anechoic chamber, since the
ground is not covered with absorbent material, the reflected path will be existing, so that
the signal received by the receiving antenna will be the sum of the direct and reflected
path signals. More importantly, without the influence of the environment and the other
same frequency wireless interference, the same activity conducted by the same person at
different locations can effectively reflect the characteristics affected by the locations. The
data collection scene is shown in Figure 3. Four activities in Table 1 are conducted by one
person. The distance between the antennas of the TX and the RX is 3 m, and the antennas
were both fixed at 1.1 m above the floor. The samples are collected at five different locations
whose coordinates are (0, 0), (0.6 m, 0.6 m), (0.6 m, −0.6 m), (−0.6 m, −0.6 m), (−0.6 m,
0.6 m). (0,0) is the midpoint of the line between the TX and the RX.

2.3. Problem Analysis

To illustrate the issues and challenges of location-independent human activity recog-
nition using Wi-Fi signals, we comprehensively analyze the CSI measurements involving
different human activities at distinct locations collected in the office and anechoic chamber.

As shown in Figure 4, at a fixed location in both two environments, CSI amplitudes
of the received signal for four different activities own different waveforms, leading to
diverse characteristic patterns. Furthermore, it can be observed that the two different
samples of the same activity seem to have a very similar variation tendency. These are the
fundamentals of wireless sensing.
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Figure 3. Data collection experimental scene in the anechoic chamber.

As illustrated in Figure 5, the measured signals possess varying CSI amplitudes for the
same activity at different locations. Particularly in the anechoic chamber, other variables
were eliminated as far as possible except for the locations, which more clearly reflects
the influence of different positions on the signal transmission. As can be seen, although
it is relatively easy to identify the categories of human activities by translating the CSI
patterns at a single location, it may not be possible to ensure good classification accuracy for
location-independent sensing. A practicable solution is to minimize the distance of the same
activity in different locations, while maximizing the distance between different actions,
and apply this learned metric relationship to the target domain. For this reason, a metric
learning-based approach is selected for location-independent human activity recognition.

In order to further explore the influence of activities on signal transmission, we
illustrate the distinction of the signal between the empty environment and the activity-
influenced environment. The three-dimensional maps of the signal are shown in Figure 6,
which indicate that the fluctuation of the signal in an empty environment and activity-
influenced environment. Each point on the stereogram represents the amplitude of signal
corresponding to the frame and subcarrier. From the figure, we can see a higher level of
chaos in the three-dimensional waveform of the activity-influenced environment than the
empty environment.

(a) CSI amplitude in the office (b) CSI amplitude in the anechoic chamber

Figure 4. CSI amplitude of four different activities at the same location in two experimental scenes. (a) CSI amplitude in the
office. (b) CSI amplitude in the anechoic chamber. Two curves in each subgraph are two samples for the same activity. The
horizontal axis of each subgraph represents the frame, the ordinate of each subgraph indicates amplitude of CSI.
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(a) CSI amplitude in the office (b) CSI amplitude in the anechoic chamber

Figure 5. CSI amplitude of the same activity at different locations in two experimental scenes. (a) CSI amplitude in the office.
(b) CSI amplitude in the anechoic chamber. Each curve in each subgraph represents an activity sample at one location.

(a) Three-dimensional map of signal in empty environment. (b) Three-dimensional map of signal in activity-influenced environment

Figure 6. Three-dimensional map of the signal in empty environment and activity-influenced environment. (a) Three-
dimensional map of signal in empty environment. (b) Three-dimensional map of signal in activity-influenced environment.
The three coordinate axes are frame-axis, subcarrier-axis, and amplitude-axis, respectively. The three-dimensional waveform
can be mapped to three planes, including the planes parallel to the subcarrier-axis and frame-axis, and perpendicular to the
amplitude-axis.

To demonstrate the difference more clearly, Figure 7 shows the two-dimensional maps
corresponding to the two vertical planes in Figure 6. As can be seen in Figure 7a, compared
with the activity-influenced environment, the amplitude of each subcarrier is almost
constant in the empty environment. In other words, the signal waveform changes smoothly
with time when there is no human activity interference, while it changes obviously when
the signal transmission is affected by human activity. In addition, the activity has a great
influence on some subcarriers and a relatively small influence on others.

In Figure 7b, we name the curves channel waveforms, which could reflect the channel
state to some extent, revealing the states of each subcarrier. The curve will change with the
influence of the activity and the surrounding environment, such as other signal sources,
interior layout, and furnishings, especially obstacles on the line-of-sight path. In the left
figure, the amplitude of each subcarrier is almost unchanged within 3.5 s, while, in the right
figure, the amplitude of each subcarrier varies to different degrees. In each environment,
there is a basic channel waveform describing the channel situation (shown as the subgraph
on the left of Figure 7b). After being affected by human activity, the curve generates an
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additional perturbation based on the basic waveform (shown as the subgraph on the right
side of Figure 7b). The thickness of the whole curve represents the fluctuation degree of
CSI subcarriers, which shows the extent to which human activity and the surrounding
environment affect the transmission of signals. Therefore, we should pay more attention
to the added activity-related changes. Deep learning methods can be used to extract
action-specified characteristics.

(a) Signal waveforms in empty environment and activity-influenced environment.

(b) Channel waveforms in empty environment and activity-influenced environ-
ment.

Figure 7. Two-dimensional map of signal in empty environment and activity-influenced environment.
(a) The horizontal axis represents the frame/packet, the ordinate indicates the amplitude of CSI.
Each curve in the figure represents one of the 30 subcarriers; (b) the horizontal axis represents the
subcarrier index, the ordinate indicates the amplitude of the subcarriers. Each curve in the figure
represents one of the 750 curves, which illustrate the amplitude change of each subcarrier within
3.5 s (The sampling rate is 200 frames/s).

We also investigate the CSI measurements in different TX-RX antenna pairs. As shown
in Figure 8, we can see it intuitively, the three subgraphs of each row vary largely, and the
three subgraphs of each column are similar in amplitude changes, with a horizontal shift,
which can be explained by the phase shift caused by the delay of different transmitting
antennas arriving at the receiving antenna. Therefore, the information carried by 1 × 3 ×
30 subcarriers from one transmit antenna and three receive antennas is enough for a sample
description. Although more subcarriers cover richer information, it is more desirable to
extract sufficient activity characteristics from only one transceiver antenna pair, which can
effectively reduce computing costs and obviate the need for the number of antennas. In
this paper, we hope that the proposed method can be applied to data samples with a small
number of antennas and subcarriers.

In this part, we study the signal affected by human activity with different sampling
rates. As shown in Figure 9, as the sampling rate decreases, the signal becomes smoother.
It may remove some of the noise, but, more importantly, it will lose some of the details
referring to the activity. In this paper, while realizing the location-independent human
activity recognition, we try our best to ensure the sensing performance of the data samples
with a small sampling rate.
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Figure 8. Amplitude of subcarrier of nine TX-RX antenna pairs.

Figure 9. CSI Amplitude of the human activity with different sampling rates.

3. WiLiMetaSensing

In this section, we provide a detailed introduction to the proposed WiLiMetaSens-
ing system. We first present the system overview. Then, a CNN-LSTM-based feature
representation method is described. Finally, an attention mechanism enhanced metric
learning-based human activity recognition method is presented.

3.1. System Overview

The workflow of the location-independent human activity recognition system WiL-
iMetaSensing is shown in Figure 10, which mainly consists of four parts, including data
collection, data preprocessing, feature representation, and model training/testing. In the
data collection phase, we collect the raw CSI measurements, which describe the changes in
the environment. In the data preprocessing step, the amplitude is calculated by the raw
complex CSI. Due to the noisy raw data, a 5-order lowpass Butterworth filter is utilized for
denoising. Beyond that, the collected data are divided into samples with the size of time ×
subcarrier, which indicates the number of frames corresponding to an activity multiplied by
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the number of subcarriers. Then, we map the data samples to high dimensional embedding
space to fulfill the feature representation through CNN and LSTM. Finally, in order to
achieve location-independent perception with as few samples as possible, regarding a
few-shot learning problem, the human activity perceptive method based on metric learning
is proposed. Subsequently, we will introduce the system in detail.

Figure 10. The workflow of WiLiMetaSensing.

3.2. CNN-LSTM-Based Feature Representation

In this section, in order to extract activity-specified and location-independent features
from input samples for few-shot learning, deep learning methods, including CNN and
LSTM, are introduced for feature representation shown as Figure 11. Following the learning
strategy of meta learning, the data samples are divided into two parts, including the support
set and the query set with the same data selection strategy, which will be presented in
detail in the next section.

We use xi and x̂ to denote the samples from the above two sets. S = {xi}, i ∈
1, . . . , n× k indicates the support set which is made up of samples from n categories, and k
samples for each class. g(xi, S) and f (x̂, S) are modeled to achieve feature representation
of xi and x̂ fully conditioned on the support set, respectively.

The feature embedding function g(xi, S) for each sample xi can be expressed as:

g′(xi) = CNN(xi) (3)

−→
hi ,−→ci =

−−−→
LSTM(g′(xi),

−→
h i−1,−→c i−1) (4)

←−
hi ,←−ci =

←−−−
LSTM(g′(xi),

←−
h i−1,←−c i−1) (5)

g(xi, S) =
−→
hi ⊕

←−
hi + g′(xi) (6)

The samples are first mapped to high-dimensional embedding space through CNN to
capture the feature in subcarrier and time dimensions. Specifically, the embedding model is
made up of a cascade of blocks, each including a convolutional layer, a batch normalization
layer, and a MaxPooling layer, followed by a fully-connected layer. The activation function
is a rectified linear unit (ReLU).

The samples embedded by CNN form a sequence, which serves as the input of
bidirectional long short-term memory (Bi-LSTM). It consists of a forward propagation
LSTM and a backward propagation LSTM. The basic structure of LSTM is shown in
Figure 12, which consists of three control gates, including an input gate it , a forget gate ft ,
an output gate ot . In addition, a memory cell ct and a hidden unit ht are also significant
components. With the current input xt ,the hidden state ht−1, and cell state ct−1 at time
t− 1 , the LSTM parameters at timestep t can be calculated as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(7)
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it = σ(Wi[ht−1, xt] + bi) (8)

ot = σ(Wo[ht−1, xt] + bo) (9)

C̃t = tanh(Wc[ht−1, xt] + bC) (10)

Ct = ft × Ct−1 + it × C̃t (11)

ht = ot × tanh(Ct) (12)

where W f , Wi, Wo are the weight and b f , bi, bo are the bias of the three gates. σ and tanh
denote sigmoid and hyperbolic tangent activation functions, respectively. × stands for the
element-wise multiplication.

Figure 11. The architectures of human activity recognition method.

Figure 12. The structure of the LSTM cell.

Through the forget gate, the previous memory cell can be selectively forgotten. The
input gate controls the current input, while the output gate determines how the memory
unit is converted to a hidden unit. However, the LSTM network processes the sequential
data in one direction resulting in only partial categories of features that can be utilized.
Therefore, the Bi-LSTM is leveraged to merge the information from two directions of the
sequence. The final hidden vector of the Bi-LSTM at the t− th moment can be expressed as:

ht =~ht ⊕
←
h t (13)

where ⊕ is the concatenation operation,
−→
h t and

←−
h t are the outputs (hidden vector) of the

forward LSTM and the backward LSTM, respectively.
Through the above CNN-LSTM feature representation, we aim to leverage the com-

mon characteristics of different activities to calibrate the high-dimensional embedding of
each sample. In other words, in the feature representation of each class sample, the infor-
mation of other class samples can be used. As we all know, the received CSI measurements
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contain not only dynamic activity information but also static environment information
and varying location information. Therefore, there are some common features about the
background for different samples in each category. We hope that the model can learn and
memorize the common characteristics of different types of activities, as well as the distinct
information of different categories. The distinct information can be utilized to increase the
distance of inter-class, and reduce the distance of intra-class.

The embedding function f (x̂, S) for a query sample x̂ is defined as follows:

f (x̂, S) = attLSTM
(

f ′(x̂), g(S), K
)

(14)

where f ′ is a neural network, the same as g′. K denotes the number of “processing” steps
following work from Vinyals et al. [37]. g(S) represents the embedding function g applied
to each element xi from the set S. Thus, the state after k processing steps is as follows:

ĥk, ck = LSTM
(

f ′(x̂), [hk−1, rk−1], ck−1
)

(15)

hk = ĥk + f ′(x̂) (16)

rk−1 =
|S|

∑
i=1

a(hk−1, g(xi))g(xi) (17)

a(hk−1, g(xi))=so f t max
(

hT
k−1g(xi)

)
(18)

Noting that the LSTM(x, h, c) in both g and f follows the same LSTM implementation
defined by Sutskever et al. [38].

3.3. Metric Learning-Based Human Activity Recognition

Our location-independent activity recognition task can be described as a few-shot
learning problem and a meta learning task. Meta learning trains the model from a large
number of tasks and learns faster on new tasks with a small amount of data. Unlike the
traditional meta learning and few-shot learning methods, which apply the model learned
from some classes (source domain) to the other new classes (target domain) with very few
samples from the new classes, our work is intended to utilize the model to the data with
the same label, but with different data distribution.

Meta learning includes training process and testing process, which is called meta-
training and meta-testing. In our task, samples in part of locations are selected as the
source domain data, while samples from other locations are the target domain data. Both
the source domain data and the target domain data are classified into the support set and
query set with the same data set selection strategy.

Assuming that there is a source domain sample set S with n classes, and a target
domain set T with the same n classes. We randomly select support sets S′={(xi, yi)}n×m

i=1
and T′={(xi, yi)}n×k

i=1 , query sets S′′={(x̂, ŷ)}n×l
i=1 and T′′={(x̂, ŷ)}n×t

i=1 from S and T datasets.
m and l , k, and t are the number of samples picked from each class of source domain
and target domain, respectively. This is the so-called k-shot learning. More precisely,
leveraging the support set S′ from the source domain, we learn a function which can
map test samples x̂ from S′′ to a probability distribution P(ŷ|x̂, S′) over outputs ŷ. P is
a probability distribution parameterized by a CNN-LSTM feature representation neural
network and a classifier. In the target domain, when a new support set T′ is given, we
can simply use the function P to make a prediction P(ŷ|x̂, T′) for each test sample x̂ from
T′′. In short, we predict the label ŷ for the unseen sample x̂ and a support set S′ can be
expressed as:

ŷ = arg max
y

P
(
y|x̂, S′

)
(19)
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A simple method to predict ŷ is calculating a linear combination of the labels in the
support set as follows:

ŷ =
N

∑
i=1

a(x̂, xi)yi (20)

where a is an attention mechanism which is shown as:

a(x̂, xi) =
ec( f (x̂),g(xi))

∑N
j=1 ec( f (x̂),g(xj))

(21)

It is softmax over the cosine similarity c of the embedding functions f and g, which are
the feature representation neural network. In addition, the cosine similarity is calculated as:

c( f (·), g(·)) = cos( f (·), g(·)) = f (·) · g(·)
‖ f (·)‖‖g(·)‖ (22)

The training procedure is an episode-based training, which is a form of meta-learning,
learning to learn from a given support set to minimize a loss over a batch. More specifically,
we define a task T as a distribution over possible label sets L (four activities in our experi-
ment). To form an “episode” to compute gradients and update our model, we first sample
L from T (e.g., L could be the label set X, O, PO, UP). We then use L to sample the support
set S and a batch B (i.e., both S and B are labelled examples of X, O, PO, UP). The network
is then trained to minimize the error predicting the labels in the batch B conditioned on the
support set S. More precisely, the training objective is as follows:

θ= arg max
θ

EL∼T

ES∼L,B∼L

 ∑
(x,y)∈B

log Pθ(y|x, S)

 (23)

where θ represents the parameters of the embedding function f and g.

4. Evaluation

In this section, we evaluate the performance of the proposed WiLiMetaSensing system
through extensive experiments. The evaluation contains the following three parts. Firstly,
we explore the feasibility and effectiveness of our system. Then, we investigate the system
Modules. Finally, the robustness of the system is discussed by demonstrating the influence
of different data samples.

4.1. Experiment Setup

We first evaluate the performance of our sensing method in a traditional way, including
the single location sensing and the mixed locations sensing. In addition, we validate the
effectiveness of location-independent sensing. There are 50 samples for each activity at
each location for each person, 60% of which are randomly selected as the training set, 20%
as the validation set, and the rest as the testing set. For single location sensing, we train
and test at the same location. For mixed locations sensing, we apply the activities of all the
locations for training and testing. For location-independent sensing, we show the overall
average accuracy with four locations for training and 24 locations for testing. In this section,
we show the overall accuracy for one-shot learning using the samples with 200 frames/s
sampling rate, which lasts for 3.5 s, and 90 subcarriers. According to the training strategy
of meta learning method, when we test for k-shot learning, we set the number of samples in
each category of the support set as k for the testing sets. We set the support set of training
and validation sets the same as the testing sets.

Specifically, the CNN embedding module consists of four CNN blocks, each including
a convolutional layer, a batch normalization layer, and a 2× 2 max-pooling layer, followed
by a fully-connected layer with 64 neurons. In addition, 64 filters with the kernel size 3× 3
are used. In the Bi-LSTM embedding module, the number of hidden units is n ∗ k, which
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is the number of activities multiplied by the k-shot. The input size of Bi-LSTM is decided
by the dimension of a fully-connected layer which is 64. The number of hidden layers is
1. Hidden size (the dimension of the hidden layer) is 32, while, in attLSTM, it is 64. We
minimize the cross-entropy loss function with Adam to optimize the model parameters.
The exponential decay rate ρ1 and ρ2 are empirically set as 0.9 and 0.999. The learning rate
is set as 0.0001. The total number of training iterations is 300. The batch size is set as 16.
Unless otherwise specified, the following evaluations follow the above settings.

4.2. Overall Performance

Table 2 illustrates the recognition average accuracy of our method compared with the
traditional deep learning method CNN and WiHand [25]. WiHand is based on the low rank
and sparse decomposition (LRSD) algorithm and extracts the histogram of the gesture CSI
profile as the features, which outperforms the other location-independent approach. It can
be seen that our system outperforms these two methods in both location-dependent sensing
and location-independent sensing. All the methods can recognize with high accuracy for
single location sensing and mixed locations sensing. For the location-independent sensing,
WiLiMetaSensing can also obtain an average 91.11% recognition accuracy, which is about
7% higher than CNN, and about 9% higher than WiHand. Specifically, the confusion matrix
of a test for our location-independent human activity recognition method is shown in
Figure 13 with a 91.41% accuracy. We can see that all of the activities can be recognized
with high accuracy. Note that Table 2 shows the optimal recognition accuracy of WiHand
with 30 subcarriers and 20 features. We analyze the reason why WiHand did not perform
as well as the original dataset, including (1) The nine data collection locations of WiHand
are relatively close to the TX and RX, while our 24 locations have a wider coverage. (2) The
sampling rate of WiHand is 2500 packets/s, which is much larger than our 200 packets/s.
(3) WiHand could extract CSI streams of all 56 subcarriers from the customized drivers,
while ours is 30 subcarriers. A higher sampling rate and more subcarriers may provide
richer fine-grained information. After the matrix decomposition, more activity-related
information will be preserved.

Table 2. The recognition accuracy for single location sensing, mixed locations sensing, and location-
independent sensing.

Accuracy (%) WiLiMetaSensing CNN WiHand [26]

Single location 99.13 99.00 96.15
Mixed locations 98.36 95.53 91.50

Location-independent 91.11 84.02 82.20

Figure 13. The confusion matrix of location-independent human activity recognition.
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4.3. Module Study

Comparison with different feature representation modules. In this section, we explore
the effect of the embedding module g (Bi-LSTM) and f (attLSTM) for the samples from
the support set and the query set. We test for one-shot learning using the samples with
90 subcarriers. From Table 3, we can see that both modules enhance the performance of
the method. Leveraging all the activity samples from the support set, common features
can be obtained to adjust the feature representation, so as to pay more attention to the
location-independent features. The embedding module for the query set enables the sample
in the source domain to effectively calibrate the feature representation of the sample in the
target domain.

Table 3. The recognition accuracy with different embedding modules.

Embedding Modules Accuracy (%)

WiLiMetaSensing with Bi-LSTM with attLSTM 91.11
WiLiMetaSensing with Bi-LSTM without attLSTM 90.25

WiLiMetaSensing without Bi-LSTM without attLSTM 88.73

4.4. Robustness Evaluation

Performance of location-independent sensing in terms of different number of training
locations. The activity samples of each position have different data distributions. The
further the distance of the locations, the higher the probability of a broader distribution
distance will be. Therefore, when it comes to the samples collected for training the models,
we hope the positions of the training samples become more decentralized. We adopt a
fixed training position selection strategy, in which the positions should be distributed as
far as possible in the entire space, instead of clustering together in a line parallel to the
transceiver. We choose 4/6/8/12/24 locations for training and 24 locations for testing. The
selections of fixed 4/6/8/12 training positions are depicted in Figure 14. Specifically, for
4/8/12 training locations, the positions where the same colored straight line goes through,
or the inflection points and the enthesis of the same colored broken lines, constitute the
training samples. For six training locations, the straight lines or broken lines together with
the same colored marked locations form the training pairs.

Figure 14. The layout of the training locations.

As demonstrated in Table 4, when we pick four training locations and 1-shot, the
accuracy is 91.11%. When eight training locations and 1-shot are selected, the accuracy is
92.66%. The results indicate that the more training positions there are, the higher accuracy
the recognition obtains.
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Table 4. The average recognition accuracy for different numbers of training locations.

Number of Training Locations 4 6 8 12 24

Accuracy (%) 91.11 92.23 94.98 96.00 98.36

Performance of location-independent sensing for samples with different numbers of
subcarriers. We explore one-shot human activity recognition with different numbers of
subcarriers. As illustrated in Table 5, the recognition accuracy reduces with the decrease of
the number of subcarriers. However, it still maintains an acceptable recognition rate when
there are only 30 subcarriers from one pair of antenna.

Table 5. The accuracy for different number of subcarriers with four training locations.

Training Locations 90 Subcarriers 60 Subcarriers 30 Subcarriers

3,8,15,20 92.63 91.75 86.75
1,10,13,22 91.25 88.50 87.50
2,8,14,20 91.75 90.75 87.75
3,9,15,21 89.13 89.00 85.13
1,8,15,22 91.25 89.50 85.75
4,9,14,19 90.63 90.13 85.00

Average accuracy (%) 91.11 89.94 86.31

Performance of location-independent sensing for different TX-RX antenna pairs. We
investigate the recognition accuracy with 30 subcarriers from different TX-RX antennas. As
shown in Table 6, different antenna pairs have similar recognition effects. The difference
reflects that different antenna pairs contain more or less diverse information. Therefore, 90
subcarriers which integrate these features can obtain superior results. Note that, in Table 6,
iTX-jRX represents CSI data from i-th TX and j-th RX.

Table 6. The accuracy for different TX-RX antenna pairs.

TX-RX 1TX-1RX 1TX-2RX 1TX-3RX

Accuracy (%) 86.31 87.00 85.60

Performance of location-independent sensing for different number of shots. We
explore the number of samples in support set for testing. As examples, we also select four
locations for training and 24 locations for testing. The samples with 90 subcarriers are used.
The identification results are listed in Table 7. It is noted that all the average accuracy is
above 90%, and the accuracy will increase with the growth of the sample size.

Table 7. The accuracy for different number of shots with four training locations.

Number of Shots 1-Shot 2-Shot 3-Shot

Accuracy (%) 91.11 92.25 93.21

Performance of location-independent sensing for samples with different sampling
rates. We collect CSI measurements at the initial transmission rate of 200 packets/s, and
down-sample the 750 CSI series to 375, 250, 150, 75. The one-shot results with different
sampling rates are shown in Figure 15. As can be seen, when he sampling rate decrease to
20 frames/s, the method can still obtain satisfying accuracy.
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Figure 15. The recognition accuracy with different number of subcarriers and sampling rates.

5. Limitations and Future Work

Although the proposed WiLiMetaSensing system realizes location-independent sens-
ing with very few samples, there remain many challenges to be overcome. First of all,
there are some strict restrictions in the data collection process. For example, volunteers are
required to perform the same activity facing nearly the same direction in the same room.
Consequently, except for the types of activity and location variations, other factors that
would affect the transmission of the signals are not seriously taken into account, such as the
status of a person (e.g., pose and direction) and the environmental variations (i.e., altering
the room or the locations of surrounding objects). In addition, as signals can be easily
blocked, reflected, or scattered by different targets, the existence of other people would
also result in different signal patterns. However, the impact of interference from the other
person on the classification accuracy was either not considered. As a result, in future work,
we will further explore the generalized and robust human activity recognition method
with an adequate account of these aforementioned factors. Only in this way can human
activity recognition technology develop from academic research to industrial application.

6. Conclusions

In this paper, we present a novel human activity recognition system, named WiL-
iMetaSensing. It realizes location-independent sensing with very few samples in the Wi-Fi
environment. Inspired by the idea of meta learning, we endow the system with the ability
that can utilize the knowledge acquired from one location for others. Technically, we
propose a CNN-LSTM feature representation and metric learning-based human activ-
ity recognition system. The model focuses on the common characteristics of different
locations and extracts discriminative features for different activities. The performance
evaluation is conducted on the comprehensive dataset we build. It demonstrates that the
WiLiMetaSensing system can achieve an average accuracy of 91.11%, with four locations
for training, given only one sample for other testing locations. More importantly, it can
well adapt to the data samples with a small number of subcarriers and a low sampling rate.
Therefore, we can firmly conclude that the presented approach is feasible and robust for
location-independent sensing.
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