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Abstract Turbulent flows play a major role in many fields of science and industry. Noticeable

attention is seen on turbulent flows of suspending fibers because of the sensitivity of the electrical,

thermal, and mechanical properties of the connecting fiber composites to the spatial configuration

and orientation of fibers. The involvement of fibers in the turbulent flow greatly affects the turbu-

lent energy. It is more influenced when the turbulent flow occurs in a rotating system. The effect of

fibers on the turbulent energy in the rotating frame must therefore be investigated. For turbulent

energy with fiber suspension, a mathematical model can be built in a rotating system that is very

important to enhance the quality of industrial goods. This paper, therefore, develops a mathemat-

ical model for turbulent energy motion in a rotating frame with a fiber suspension. The model was

formulated using the averaging procedure. The momentum equation for incompressible and viscous

fluid turbulent flow was considered to develop the model. The turbulent energy motion of the fiber

suspensions was presented in the rotating frame in second-order correlation ten-

sors,Wi;j;Si;j;Li;j;Fi;j;Gi;j;Di;j;Qi;j, andHi;j, where all the tensors are the function of time, distance,

and space coordinates.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Rigorous theoretical investigations have been made on the tur-
bulent flow due to its numerous applications. The applications

are often seen in science, engineering, and industry, particu-
larly in the ocean, nozzles and pipes, chemical mixers, the
atmosphere, turbo-machinery, and combustion engines. It is

occurred around the moving objects, e.g. different moving
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vehicles, influencing the resistance of flow to their bodies. Also,
turbulence extends the energy required to propagate blood
flow as turbulence may gain the energy loss for the case of fric-

tion like suspension of fibers in a turbulent flow.
The fluid flow behavior is described by turbulent motion

that is based on fundamental laws of momentum, energy,

and mass conservation. The equation of turbulent motion
was derived by Hinze [1] in the second-order correlation, where
the correlations were expressed in pressure–velocity and veloc-

ity fluctuations in the flow domain. But, the parameters that
may affect the turbulent motion were not considered in his
study to assess their impacts. A new mathematical model is
therefore needs to be developed to overcome these issues and

to conduct further research. The turbulent motion is signifi-
cantly affected when fibers are injected into the flow. Suspen-
sion of fibers in turbulent flow is utilized in a greater portion

of the industrial sector, especially in the papermaking, textile
industry, chemical engineering, environmental engineering,
producing composite materials, and so on. The fiber suspen-

sion property significantly affects the quality of products.
Fiber suspensions into the turbulent flow also influence the
light scattering, rheology, and transport properties of the sus-

pensions. As a result, the turbulent flow along with fiber sus-
pensions is becoming an incredible interest in several areas of
industrial engineering.

For about the last thirty years, several researches [2–17]

have been conducted on turbulent flow with fiber suspensions.
Cho et al. [18] carried out preliminary research on turbulent
fiber (ice crystals) motion. They discussed atmospheric turbu-

lence and its impact on the orientation of fibers. The mean ori-
entation of the fibers was not influenced substantially by
atmospheric turbulence. Some other researches on fiber

motion of turbulent flow involved glass fibers deposition in
the human source tract [19,20]. Bernstein and Shapiro [21]
assessed the lateral and axial orientation of fibers (glass) by

considering different types of flow, namely laminar and turbu-
lent flow. The axial distribution of fibers was observed wider
close to the center of the pipe for the laminar flow, whereas
nearly uniform distribution was found for the turbulent flow.

Equations of motion of fluid flow were solved by Lin et al.
[22] with a spectral approach, and fiber trajectories were calcu-
lated on the theory of the slender body. In their study, the

Stokes number was found as a critical parameter for describing
the spatial orientation of fibers on a large-scale. Its impact on
fibers’ orientation is trivial, and the fiber direction ratio has a

minimal impact on fibers’ orientation distribution. Fiber distri-
bution was also simulated in a turbulent pipe flow [23]. The
results showed that the distribution of fibers becomes broader
with expanding Reynolds number (Re). The fibers’ velocity

fluctuation intensity was larger along the flow direction than
that of cross direction whereas it was reverse for the fibers’
angular velocity fluctuation intensity.

Kagermann and Koehler [24] examined the motion of non-
spherical particles in turbulent flows. Noninteracting rigid
spheroids were considered and suspended in homogeneous tur-

bulent flows. The renormalized expansion was used in their
study for the development of a kinetic equation with the
Lagrangian correlation function of the turbulent velocity field

and the orientational spheroid relaxation frequenciesxuand the
coefficient of translational diffusion D. The moment method
was applied to obtain the coupled integral relations of D
andxu. These were numerically solved for various energy spec-
trum correlation frequencies. The rotational and translational
dispersion coefficients were found by Olson et al. [25], where
the velocity between fluid and particles was ignored. Such dis-

persion coefficients of fiber were also obtained by Gao et al.
[26] by balancing the virtual mass force and Stokes drag. They
also analyzed the relationships between flow length scale and

dispersion coefficients. Through these investigations, it is
found that the particle length is increased while the dispersion
coefficients are decreased. In most of the previous studies, the

orientations of fibers were emphasized in turbulent flows.
However, the turbulent properties of fiber suspensions were
not considered or focused on those studies.

Lin et al. [27] proposed an equation for the fluid fluctuating

velocity involving cylindrical particles in turbulent channel
flow. They determined the Reynolds stress and fluid turbulent
intensity by solving the equation with the mean of the fluctu-

ating velocity. It was found that fibers play a key role in turbu-
lent properties. However, the fluid impact on the suspended
fibers was not considered in this study. Yang et al. [28] derived

a two-way coupling model for turbulent flow to predict the
additive-carrier flow field interaction. The probability distribu-
tion of fiber orientation was calculated using the Fokker-Plank

equation. The impact of fiber concentration on rheological
properties of suspended fibers and the distribution of fiber ori-
entation were analyzed through numerical simulation. Numer-
ical results demonstrated that a proper rise in concentration

can enhance fiber alignment while the fiber concentration is
near the semi-dilute phase. In other studies [29–31], only the
experimental investigation was made to minimize the drag in

turbulence with fiber suspensions.
Several studies [5,32–42] have been conducted in a rotating

frame, particularly on the turbulent motion. Mahariq et al. [41]

identified a nonlinear model for a flexible high aspect ratio
with a free vibration response in a rotating system. The good
accuracy was illustrated for the identified nonlinear model in

contrasts between calculations and experiments. The average
rotation prompts dynamical impacts on the turbulent flow that
come into the transport equations over the pressure-strain-rate
correlation [43]. In rotating turbulent flows, the rotation gen-

erates auxiliary body forces such as Coriolis and Centrifugal
forces, following up on the turbulent structures, and thus the
transfer mechanism of momentum is quite complex. However,

most of the studies did not consider or discuss the impacts of
system rotation with various angles due to the difficulties in the
rotational frame.

Coriolis force performs a vital role in a rotating system for
turbulent flow [44]. You et al. [36,45] made an experimental
investigation to assess the Coriolis force impact on the turbu-
lent flow in the rotating system. The authors considered parti-

cle image velocimetry (PIV) to quantify the flow field. The flow
fields between the trailing and leading side were found different
because of the Coriolis force effect [35]. The Coriolis force

enlarged the vortex close to the leading side whereas it sup-
pressed the vortex close to the trailing side. Coriolis force
showed a noticeable impact on the vortices in the flow field.

It was also demonstrated that not only the Coriolis force but
also secondary flow affects the flow field which should not
be ignored.

Through a literature survey, it is found that several sorts of
research were presented on the laminar flow behavior of fiber
suspensions because of the simplicity in the laminar flow. But,
the turbulent flow behavior study of fiber suspensions are still
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inadequate owing to the complexity in turbulence and fiber
motion. The flow behavior is abruptly changed and suffered
from complexity if it occurs in a rotating frame. Due to the

complexity and the difficulty level in mathematical modeling,
no study has been undertaken on the turbulent energy of fiber
suspensions in a rotating frame. Thus, this study is very impor-

tant and timely for the industrial and engineering community.
Therefore, this study aims to develop a model for the turbulent
energy of fiber suspensions in a rotating frame. The resulting

equation modeled by partial differential equations can be gen-
eralized for time–space fractional-order [46–49], and can there-
fore be useful to the broader scientific community. Due to the
high accuracy, the spectral element method (SEM) [50–54] can

be applied in solving the presently developed energy motion
equation, and the SEM applications [55,56] are also recom-
mended for further research.

2. Formulation of the model

The momentum equations of motion and the continuity for

incompressible and viscous fluid turbulent flow are:
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In the case of fiber suspension in the flow field, the equation

(1) becomes [3],
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The following energy equation of motion is obtained for a
rotating frame:
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Therefore, the equation of turbulent energy motion for

fiber suspensions in the rotating frame is given by
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with the components of fluid velocity uiðx; tÞ, pressure field

pðx; tÞ, kinematical viscosity for the suspending fluid t, fluid
densityq, permutation symbol eijl (three-dimensional), turbu-

lence dissipation e (per unit mass), rotation vector Xj,

p ¼ P
q þ 1

2
X
�
� u

���� ���2indicates the generalized pressure consists of

prospective centrifugal force, apparent viscosity for fiber sus-

pensionslf, tensor of strain rate elm ¼ 1
2

@ul
@xm

þ @um
@xl

� �
, turbulent

intensity for fiber suspensionsIij, second and fourth-order ori-

entation tensors of fiber alm and aijlm respectively,
�2 Xiuigið Þsinh ¼ �2 X
�
� u

�� �
specifies the Coriolis force with

the angular velocity Xi and the unit vector g normal tou
�
andX

�
,

h is the measured angle betweenu
�
and X

�
, and tis time.

Consider B and C are any points of the flow domain and
suppose b & c are the given directions from the two points B
and C respectively. Thus, ub and uc can be taken as the velocity

components along with the directions B and C. Assume that

Ui

�
is the average velocity which is constant all over the field

considered and time-independent.

Therefore,

Ui ¼ U
�
i þ ui

� �
B
; Uj ¼ U

�
j þ uj

� �
C

Each term has a value that can be determined by utilizing
the equations for ui at B point and forujat C point.

At point B, the energy equation can be expressed foruifrom
Eq. (5),
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Since, ui
@uk
@xk

� �
B
¼ 0 for an incompressible fluid, the Eq. (6)

is derived as
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Multiplying by uj
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C
, the Eq. (7) gives
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where uj
� �

C
is considered as constant at point B for a differ-

ential approach.
Similarly, for ujthe energy equation is obtained at point C:
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By adopting the condition, uj
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¼ 0for an incompress-

ible fluid, Eq. (9) yields
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The Eq. (10) is expressed as the following by
multiplying uið ÞB:
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where uið ÞB are considered as constants in differential

approach at C point.
Adding the Eqs. (8) and (11),
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To address turbulent energy relations at C toward those at
B point, it will not make any differences if any of the points of

B and C is considered as the origin for the coordinate system.
Point B has been taken here as the origin. The independent
variables, skhave been chosen to distinguish the impacts
between location and distance,
sk ¼ xkð ÞC � xkð ÞB
Thus, the followings are obtained,
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Substituting the above expressions in Eq. (12) and taking

the average to all of the terms, Eq. (12) becomes
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Eq. (13) gives the average motion of turbulent energy for
the suspension of fibers in the rotating system, where the tur-

bulent fiber motions move with the average velocity, Uk as

regards to a coordinate system. The coefficient term of Uk

was vanished because of its constant-derivative.

The Eq. (13) consists of the double-velocity correlations
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,
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first-order tensors, since the pressure is considered as a scalar
quantity. Similarly, the triple-velocity correlations,
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form third-order tensors.

In the flow field, the double triple pressure–velocity and veloc-
ity correlations at the points B and C are illustrated in Fig. 1(a,
b) and Fig. 2 separately, where d is the gap between the points

B and C.
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Fig. 1 Double correlations between points B and C. (a) Pressure at B and velocity at C. (b) Velocities ubat B and ucat C.

Fig. 2 Triple velocity correlation at B and C.
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andDi;jkrespectively. Thus, the following expressions are

obtained:
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Substituting the above expressions of the correlations, Eq.
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where the correlations in Eq. (14) concerning the measured

points, B and C.
For an incompressible flow and isotropic turbulence, the

double correlations of pressure–velocity must be zero, that

means,
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The statistical properties have no specific directional prefer-
ence for the isotropy. The fluctuations in velocity are indepen-
dent regards to the reference axis, that is, invariant to
reflection and rotation of the axis. According to the isotropic
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The turbulence of isotropic is a model in a restricted
domain, where it is not affected by the constraints encasing
the fluid, also the measurable moments are orientation-
independent and spatially invariant. The invariance condition

under reflection in isotropic turbulence as regards to B is fol-
lowed by,

uið ÞB ukð ÞC uj
� �

C
¼ � ukð ÞB uj

� �
B
uið Þ

C

or, si;kj
� �

B;C
¼ � skj;i

� �
B;C

Thus, Eq. (14) can be derived as

@

@t
Wi;j � @

@sk
Sik;j þ Skj;i

� � ¼ 2t
@2

@sk@sk
Wi;j

� 2 Mi;j þNi;j

� �þ Fi;j þ Gi;j

� �
sinh

	 


þ lf

q
� @

@sk
Djk;i þDik;j

� �þ 1

3

@

@sk
Hik;j þHjk;i

� �� �
ð15Þ

The terms @
@sk

Djk;i þDik;j

� �
, @
@sk

Sik;j þ Skj;i

� �
, @
@sk

Hik;j þHjk;i

� �
,

Mi;j þNi;j

� �
, and Fi;j þ Gi;j

� �
form second-order tensors, let

denote these byDi;j;Si;j,Hi;j,Li;j, and Qi;jrespectively and defined

as:

Di;j ¼ @

@sk
Djk;i þDik;j

� �
Si;j ¼ @

@sk
Sik;j þ Skj;i

� �

Hi;j ¼ @
@sk

Hik;j þHjk;i

� �
,Li;j ¼ Mi;j þNi;j

� �
, and

Qi;j ¼ Fi;j þ Gi;j

� �
.

Therefore, Eq. (15) yields

@

@t
Wi;j � Si;j ¼ 2 t

@2

@sk@sk
Wi;j � Li;j �Qi;jsinh

� �

� lf

q
Di;j � 1

3
Hi;j

� �
ð16Þ

This equation expresses the turbulent energy motion for

fiber suspensions in the rotating system expressed in second-
order correlation tensors.



Table 1 Equations of turbulent motion in terms of the pressure–velocity correlation tensors of second order.

Equations of turbulent motion Consideration References

@
@tWi;j � Si;j ¼ 2 t @2

@sk@sk
Wi;j � Li;j �Qi;jsinh

h i
� lf

q Di;j � 1
3Hi;j

� �
- turbulent energy motion- fiber suspensions- rotating frame This study

@
@tWi;j � Si;j ¼ 2 t @2

@sk@sk
Wi;j � Li;j

h i
� lf

q Di;j � 1
3Hi;j

� � - turbulent energy motion- fiber suspensions Ahmed and Sarker [2]

@
@tWi;j � Si;j ¼ 2 t @2

@sk@sk
Wi;j � Li;j �Qi;jsinh

h i
- turbulent energy motion- rotating frame Ahmed [40]

@
@tWi;j � Si;j ¼ 2t @2

@sk@sk
Wi;j

- turbulent motion Hinze [1]

3350 S.F. Ahmed et al.
3. Results and discussion

The particle dynamics in turbulent flows are a basic problem

associated with the applications, for example, spray combus-
tion engines, and atmospheric clouds. Suspensions of fiber in
a gas or fluid have for some time been known to diminish

the sharing stresses created as the fluid passes through a hard
surface under turbulent flow conditions. The turbulent energy
motion of the suspension of fibers (16) was obtained in a sys-
tem of rotation. The equation was found in second-order

velocity and pressure–velocity correlation tensors. All these
tensors were formed as the function of distance, time, and
space coordinates. Table 1 shows a comparison between the

present and the existing similar type models.
Turbulent flows are broadly studied in the rotating system

due to their extensive application in both engineering and geo-

physical fluid mechanics such as in blade passages of a gas tur-
bine, nuclear reactor cores, rotary heat exchangers, rotary
shafts, and combustion systems. In most of these engineering
complications, a non-rotating (stationary coordinate) system

is frequently used to analyze the problems. As mentioned ear-
lier, the Coriolis force acts a vital role in a rotating system. For
the non-rotating system, the Coriolis force does not generate in

the flow field, which meansQi;j ¼ 0, and thus the resulting Eq.

(16) yields

@

@t
Wi;j � Si;j ¼ 2 t

@2

@sk@sk
Wi;j � Li;j

� �
� lf

q
Di;j � 1

3
Hi;j

� �
ð17Þ

The Eq. (17) represents the turbulent energy equation of
fiber suspensions in second-order tensors which was obtained

in the study of Ahmed and Sarker [2]. If fiber is not suspended
into the flow domain, the viscosity (apparent) of the suspend-
ing fluid vanishes, which means,lf ¼ 0, and therefore the Eq.

(17) takes the form

@

@t
Wi;j � Si;j ¼ 2 t

@2

@sk@sk
Wi;j � Li;j

� �
ð18Þ

Eq. (18) gives the energy motion of turbulent flow with cor-
relation tensors [57].

Without any influence of energy dissipation by turbu-
lence,Li;j ¼ 0so that Eq. (18) becomes

@

@t
Wi;j � Si;j ¼ 2t

@2

@sk@sk
Wi;j ð19Þ

Eq. (19) expresses the turbulent motion in the form of

second-order correlation tensors that is similar to the study
of Hinze [1].
4. Conclusion

In a rotating frame, the turbulent energy equation of fiber

motion was derived in respect of velocity and pressure–velocity
correlation tensors, where all the tensors are of second-order
and the function of distance, space, and time coordinates.

The turbulent flow of fiber suspensions undergoes random
motion owing to the fluctuating components of fluid velocity,
and average motion because of the average fluid velocity. The
turbulent energy motion with fiber suspensions was obtained

in a rotating frame by the averaging procedure. All the
second-order tensors, Wi;j;Si;j;Li;j;Fi;j;Gi;j;Di;j;Qi;jand

Hi;jfound in the resulting Eq. (16) are the correlation tensors,

where Wi;jand Si;j denote the velocity correlations, Di;jand

Hi;jsignifies the velocity correlations for the suspending fluid,

Li;jdesignates the velocity correlations for turbulent energy at

two points B and C of the flow field whereas Qi;jexpresses

the correlation between the fluid particle velocity and angular
velocity obtained because of the rotating frame. In our future
work, the resulting Eq. (16) will be solved both numerically
and analytically to assess the fiber suspension impact on turbu-

lent flow in a rotating system which would contribute to
science and industry, namely in papermaking, textile industry,
chemical, and environmental engineering, and producing com-

posite materials.
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