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Abstract

Transfer learning addresses the problem of how to leverage acquired knowledge

from a source domain to improve the learning efficiency and accuracy of the

target domain that has insufficient labeled data. Instead of one source domain,

multiple domains could be the source domains that are available for knowledge

transfer in practice. However, there are large differences between the source and

target domains, how to extract the useful knowledge from these different source

domains remains a problem. To solve this problem, we propose a source-target

pairwise segment method for multi-source transfer regression (STPS-MTR). The

STPS-MTR method adaptively segments the different source domains and the

target domain into different similar parts, and it extracts the most similar part

in different source domains as the transfer knowledge. The STPS-MTR method

can effectively extract the transfer knowledge from different source domains

even when the source domain and the target domain have relatively low similar-

ity, and it can avoid the negative influence between different source domains to

ensure the transfer performance. Experimental results using synthetic dataset-

s and real-world datasets demonstrate that the proposed method has better

performance than existing methods, particularly when there are significant dif-

ferences between different source domains and the target domain.
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1. Introduction

Transfer learning methods use the source domain to help train the target

domain [19, 27, 15, 7, 13, 32]. The existing transfer learning methods require

that the feature space or the distribution of the source domain and the target

domain should have a certain similarity, and the similarity should be within a5

certain range. If the similarity is relatively low, the negative transfer may occur

[21]. In the real-world datasets, one source domain may have limited knowledge

to help target domain train a good model, and more than one source domain can

be used to help train the target domain [24, 9, 29, 3, 34]. Thus, the multi-source

domain transfer learning methods have been developed.10

Multi-source domain transfer learning methods use different source domains

to help train the target domain when the transfer performance with the single

source domain is still not good. The main challenge of the multi-source domain

transfer learning is how to describe the different similarities between the source

domains and the target domain and how to solve the negative influence between15

different source domains. Many multi-source domain transfer learning methods

theoretically analyze that the target domain can be expressed as the convex

combination of the multiple source domains, and they demonstrate from the

real-world applications that the different combination rules of the multi-source

domain can improve the transfer performance [6, 28, 23, 26]. However, much of20

the research on transfer learning concerns classification problems, the problem

of regression has been much less studied. Unlike classification problems, where

the outcome variables are discrete values, the ones in regression problems are

continuous.

In this paper, we focus on the multi-source domain transfer learning method25

for the regression problem. In previous studies, some researchers theoretically

analyze that the target domain can be expressed as a convex combination of
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multiple source domains [17, 18, 12]. Different algorithms such as the fuzzy

rule or Gaussian process are used to describe the different similarities between

the source and target domains, and the combination rules are established to30

extract knowledge from different source domains [16, 25]. And according to the

different similarities between the source domains and the target domain, the

highest similarity source domain is selected to help train the target domain [35].

Although these proposed methods have good theoretical analysis and transfer

performance, they did not consider that when the similarity between the source35

domain and the target domain is relatively low, how to extract the knowledge

to do the transfer without the negative transfer, or when the distributions of the

different source domains are very different, how to avoid the negative influence

between different source domains.

To solve the abovementioned problem, we propose the source-target pairwise40

segment method for multi-source transfer regression (STPS-MTR). The STPS-

MTR method adaptively segments the different source domains and the target

domain into different similar parts, each similar part can satisfy the condition

that the distributions of the source domain and the target domain have an

approximately linear relationship, and the STPS-MTR method extracts the45

most similar part in different source domains as the knowledge transfer. The

main contribution of this paper is that the STPS-MTR method can effectively

extract the transfer knowledge from different source domains even when the

source domain and the target domain have relatively low similarity, and it can

avoid the negative influence between different source domains to ensure the50

transfer performance.

The remainder of this paper is structured as follows. Section 2 presents

related work. Section 3 sets out preliminary knowledge. Section 4 describes the

proposed STPS-MTR method. The experiments and results used to analyze

and verify the method are presented in Section 5. The final section concludes55

the paper and outlines future work.
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2. Related work

This section reviews the existing multi-source domain transfer learning meth-

ods, and the pairwise similarity transfer learning methods.

The main challenge of the multi-source domain transfer learning methods is60

to establish a combination rule for the source domains and the target domain.

Yao et al. [30] use two different methods to solve the multiple source domains

transfer learning problems. One is to get the useful knowledge of the target do-

main by summarizing all the multiple source domains, the other one is to find

the mapping knowledge between each source domain and the target domain.65

Duan et al. [8] modify the least-squares SVM model by using the smoothness

assumption, it adds the dependent regularization to enforce the target domain

and source domains to share similar decision values. Chattopadhyay et al. [4]

consider the conditional probability of the multi-source domain adaptation, and

it proposes a two-stage weighting framework for multi-source domain adapta-70

tion. One is the marginal probability difference of the reweighted source domain,

and the other is the conditional probability difference of the reweighted source

domain. Zhao et al. [33] propose a new error bound for multiple source domain

adaptation. The method does not need to know the target distribution and the

combination rule of the multiple source domains, and it can automatically find75

the relationship between the source domains and the target domain using the

adversarial network. Although these methods have a good performance, these

methods only consider the situation that the distributions of the different source

domains and the target domain have high similarity.

To solve the problem that the distributions of the different source domains80

and the target domain are quite different. Gress and Davidson [11] propose

the pairwise similarity regularization transfer method, a flexible graph-based

regularization framework that can incorporate this modeling assumption into

standard supervised learning algorithms. Domain knowledge is encoded into

the regularizer in the form of spatial continuity and pairwise ”similarity con-85

straints”, and the method is extended to large data sets using Nystrom approxi-
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mation. Long et al. [14] use the joint distribution adaptation (JDA) to describe

the gap between the source domain and the target domain. When the marginal

and conditional distribution of source domain and target domain are different,

the maximum mean discrepancy (MMD) and generalized rayleigh quotient are90

used to optimize the objective function. JDA jointly adapts the marginal dis-

tribution and conditional distribution in a principled dimensionality reduction

procedure, and it constructs new effective and robust feature representations to

cope with large distribution differences. Courty et al. [5] propose the unsuper-

vised domain adaptation method. The method assumes that the target domain95

can be represented as a nonlinear function with the source domain. It uses

the separation ideal to recover the objective function when some parts of the

source domain and some parts of the target domain have similar distributions.

Through the joint estimation of the source domain data, the target function

can be optimized. Shao and Wu [22] propose an information-based criterion for100

determining the number of clusters in the problem of regression clustering. The

method shows that in the population of a probabilistic structure, the criterion

selects a real number of regression hyperplanes with a probability of one in all

class-growing classification sequences when the observed value of the population

increases to infinity. However, these methods do not focus on the multi-source105

domain transfer learning problem.

In this work, we propose the source-target pairwise segment method which

adaptively segments the source domain and the target domain into different

similar parts, and we build the combination rule to extract the most useful

knowledge for multiple source domains.110

3. Preliminary Knowledge

In this section, we introduce the problem statement and the adaptive transfer

learning method based on Gaussian process (AT-GP).
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3.1. Problem Statement

In this paper, we consider the multi-source domain transfer learning for115

regression problem, particularly when there are significant differences between

different source domains and the target domain.

We denote the source domains S = {S1, ..., SN}, where N is the number

of source domains, Sj = {(x(Sj)
1 , y

(Sj)
1 ), ..., (x

(Sj)

n(Sj)
, y

(Sj)

n(Sj)
)}, x(Sj)

i is the data in-

stance and y
(Sj)
i is the corresponding label, n(Sj) is the number of data in Sj .120

Similarly, the target domain T = {(x(T )
1 , y

(T )
1 ), ..., (x

(T )

n(T ) , y
(T )

n(T ))}, where x
(T )
i is

the input data and y
(T )
i is the corresponding output data, n(T ) is the number of

data in target domain. The marginal probability distributions of the source and

target domains are P (x
(Sj)
i ) and P (x

(T )
i ), the conditional probability distribu-

tions of the source and target domains are P (y
(Sj)
i |x(Sj)

i ) and P (y
(T )
i |x

(T )
i ).125

The source domains have a large amount of labeled data, but the target

domain has very few labeled data, n(Sj) � n(T ). The dimensions of x
(Sj)
i and

x
(T )
i are the same, and the dimensions of y

(Sj)
i and y

(T )
i are 1. Additionally, the

distributions of the different source domains and the target domain can be very

different, P (x
(Sj)
i ) 6= P (x

(T )
i ) and P (y

(Sj)
i |x(Sj)

i ) 6= P (y
(T )
i |x

(T )
i ).130

Our objective is to extract useful knowledge from different source domains to

help train the target domain and to avoid the negative influence between differ-

ent source domains, particularly when there are significant differences between

different source domains and the target domain.

3.2. The AT-GP method135

In a regression problem, a Gaussian process (GP) [20] is used as the prior

for Bayesian inference. The AT-GP method performs well when the distribu-

tions of the source domain and the target domain have an approximately linear

relationship [2].

AT-GP method uses the Gamma distribution to describe the similarity be-140

tween the source domain and the target domain, instead of using a point esti-
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mation, the proposed transfer kernel is

Knm =

 (2( 1
1+µ )b − 1)K(xn, xm), ζ(xn, xm) = 1,

K(xn, xm), otherwise.
(1)

Where K(xn, xm) is the covariance function of xn and xm, ζ(xn, xm) = 0,

if xn and xm come from the same domain, otherwise, ζ(xn, xm) = 1, and b ≥ 0,

µ ≥ 0.145

The conditional distribution of the outputs y(S) and y(T ) conditions on cor-

responding inputs x(S) and x(T ) as the posterior distribution for the target test

data, and it can be written in a Gaussian form as follows,

p(y(T )|y(S), x(T ), x(S)) ∼ N(µT , CT ), (2)

where

µT = K21(K11 + σ2
SI)−1y(S), (3)

150

CT = (K22 + σ2
T I)−K21(K11 + σ2

SI)−1K12, (4)

and K11 = K(x(S), x(S)), K12 = λK(x(S), x(T )), K21 = λK(x(T ), x(S)), K22 =

K(x(T ), x(T )), λ = 2( 1
1+µ )b − 1, b ≥ 0, µ ≥ 0, σS and σT are the noise items of

the source domain and the target domain.

The log likelihood function is

log p(y(T )|θ) = −1

2
log|CT | −

1

2
(y(T ) − µT )TC−1

T (y(T ) − µT )− n

2
log(2π), (5)

where θ are the covariance parameters, n is the number of the training data. The155

values for θ result from maximizing the log likelihood function, and it normally

assumes that the model belongs to the zero-mean Gaussian.

Wei et al. [25] extend the AT-GP method to a multi-source domain trans-

fer learning method (TCMSStack), the TCMSStack method uses the stacking

strategy to describe the different similarities between the different source do-160

mains and the target domain. However, the performance of TCMSStack will be

affected when there are significant differences between the different source do-

mains and the target domain. And the AT-GP method also has the constraint

that when the similarity between the source domain and the target domain is

relatively low, the negative transfer may occur.165
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4. The source-target pairwise segment for multiple source transfer

regression method

In this paper, we mainly research two problems in the multi-source domain

transfer learning regression method. The first is how to extract the knowledge

to do the transfer without the negative transfer when the similarity between the170

source domain and the target domain is relatively low, and the second is how

to avoid the negative influence when the distributions of the different source

domains are very different. This section presents our STPS-MTR method.

4.1. Problem Setting and Motivation

Since the AT-GP method performs well when the distribution of the source175

domain and the target domain is approximately linear, and the AT-GP method

is based on the kernel, this linear relationship also includes the linear relation-

ship of the function in the kernel space. Therefore, we propose a source-target

pairwise segment method to solve the situation that the similarity between the

source domain and the target domain is relatively low. This method can adap-180

tively divide the source and target domains into different similar parts so that

each similar part satisfies the distribution of the source domain and the target

domain in an approximately linear relationship, and we use the AT-GP method

to train these similar parts separately.

Although we segment the different source domains and target domain into185

different similar parts, the positive and negative correlations of these similar

parts will occur the negative influence between different source domains. We

assume the distribution functions of the source domain and the target domain

are fS(x) and fT (x), and fT (x) ≈ λfS(x) where λ is the correlation parameter

between the source domain and the target domain, if λ ≥ 0, we call it that the190

source domain and the target domain have the positive correlation, similarity,

if λ < 0, we call it that the source domain and the target domain have the

negative correlation. To avoid the negative influence, we should consider the

positive correlation and the negative correlation separately. However, when the

8



distributions of the different source domains and the target domain are very195

different, even if we build the independent combination rule for the positive or

negative correlation of these similar parts, it still occur unpredictable influence.

Thus, we propose a combination method that extracts the most similar part

in different source domains as the knowledge transfer to avoid the negative

influence.200

4.2. The STPS-MTR method

The STPS-MTR method has two purposes. The first one is to divide the

different source domains and the target domain into different similar parts ac-

cording to the different similarities between the source domains and the target

domain. The second one is to build a combination rule to extract the jointly205

similar parts between different source domains, and the most similar part is

selected in different source domains.

4.2.1. Explanation and Definition

To achieve the first purpose, we need to segment each source domain and

the target domain into different pairwise parts. And these pairwise parts should210

satisfy the condition that the discrepancy between each pairwise part has an

approximately linear relationship.

For the source domain Sj and the target domain T , we denote the source

function is fSj
(x), y

(Sj)
i = fSj

(x
(Sj)
i ), the target function is fT (x), y

(T )
i =

fT (x
(T )
i ), the discrepancy function between the target domain T and the source215

domain Sj is fDSj
(x), y

(DSj
)

i = fDSj
(x

(DSj
)

i ), where x(DSj
) = {x

(DSj
)

1 , ..., x
(DSj

)

n
(DSj

)}

are the input data of the discrepancy function, x(DSj
) include the input da-

ta of the source domain Sj and the target domain T , x(DSj
) = {x(Sj), x(T )},

x(Sj) = {x(Sj)
1 , ..., x

(Sj)

n(Sj)
}, x(T ) = {x(T )

1 , ..., x
(T )

n(T )}, n(DSj
) is the number of

data in x(DSj
), n(DSj

) = n(Sj) + n(T ), y
(DSj

)

i is the output data of the dis-220

crepancy function, and its value is the discrepancy between pairs of instances

y
(DSj

)

i = fT (x
(DSj

)

i )− fSj (x
(DSj

)

i ), as shown in Figure 1(a).
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We get all the inflection points I = {I1, ..., In(I)} of fDSj
(x(DSj

)) by calcu-

lating the partial derivatives value of fDSj
(x(DSj

)),
∂fDSj

(x
(DSj

)
)

∂x
(DSj

) = 0, where

n(I) is the number of inflection points. According to these inflection points,225

two adjacent inflection points become the segmented region. The source do-

main Sj and the target domain T are segmented into different pairwise parts,

P
(Sj)
k = {(x(Pk)

1 , y
(Pk)
1 ), ..., (x

(Pk)

n(Pk) , y
(Pk)

n(Pk))}, where x
(Pk)
i is data of x(DSj

) which

belongs to the segmented region, y
(Pk)
i is the corresponding output data of x

(Pk)
i ,

and n(Pk) is the number of data in P
(Sj)
k . In addition, we consider the noise230

bound that using the approximate solution to solve the partial derivative e-

quation, we get the solution of fDSj
(x(DSj

)),
∂fDSj

(x
(DSj

)
)

∂x
(DSj

) ≈ 0, instead of the

solution of fDSj
(x(DSj

)),
∂fDSj

(x
(DSj

)
)

∂x
(DSj

) = 0. As shown in Figure 1(b), each

pairwise part P
(Sj)
k is described by different colors, and it can satisfy the con-

dition that the distributions of the source domain and target domain have an235

approximately linear relationship.

(a) (b)

Figure 1: The pairwise part. (a) The distributions of S1 and T , and the discrepancy between

S1 and T . (b) Five inflection points I and the segment result of six pairwise parts P (S1).

To achieve the second purpose, we need to obtain the joint parts of the

different pairwise parts, and according to the different source domains, we re-

spectively train the prediction model for each joint part and select the part with

the minimum error in each joint part.240

10



Based on the different pairwise part P
(Sj)
k , we denote the joint part Jl =

{(x(Jl)1 , y
(Jl)
1 ), ..., (x

(Jl)

n(Jl)
, y

(Jl)

n(Jl)
)}, where x

(Jl)
i is the input data of P

(Sj)
k which

belongs to the jointly segmented region of all source domains, y
(Jl)
i is the corre-

sponding output data of x
(Jl)
i , and n(Jl) is the number of data in Jl, as shown

in Figure 2(a), for each joint part Jl, it can satisfy the condition that the distri-245

butions of each source domain and target domain have an approximately linear

relationship. We classify Jl according to different source domains and the target

domain, Jl = {R(Jl)
1 , ..., R

(Jl)
N }, whereR

(Jl)
m = {(x(Rm)

1 , y
(Rm)
1 ), ..., (x

(Rm)

n(Rm) , y
(Rm)

n(Rm))},

(x
(Rm)
i , y

(Rm)
i ) ∈ {Sj , T}, n(Rm) is the number of data in R

(Jl)
m , and N is the

number of source domains. We respectively train the prediction model for each250

R
(Jl)
m by using AT-GP method, and select the minimum error part of R

(Jl)
m in

each Jl. And we combine all these minimum error part as the final prediction

model, the selected parts are described by the solid line as shown in Figure 2(b).

(a) (b)

Figure 2: The joint part. (a) Seven joint parts of the source domain S1, the source domain

S2 and the target domain T , and the classified joint parts R
(J)
1 and R

(J)
2 . (b) The minimum

error part of R
Jl
m in each Jl.

4.2.2. The STPS-MTR method description

We theoretically analyze the STPS-MTR method, however, in the real-word255

application, when the dimension of the input data is relatively high, it is difficult

to find all the inflection points of the partial derivative equation. If we segment

the source domains and the target domain into too many different pairwise parts,
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it will occur overfitting problem. Thus, we separately consider each dimension

data of the input data and combine the segmented result of each dimension data260

to obtain the approximate solution of the partial derivative function with the

noise bound. Table 1 summarizes frequently-used notations in STPS-MTR and

the detail of the STPS-MTR method as follows.

Table 1: Notations and descriptions

Notations Descriptions Notations Descriptions

Sj The source domain x
(Sj)
i , y

(Sj)
i The input and output data of Sj

N The number of source domains n(Sj) The number of data in Sj

T The target domain x
(T )
i , y

(T )
i The input and output data of T

n(T ) The number of data in T DSj The discrepancy between Sj and T

x
(DSj

)

i , y
(DSj

)

i The input and output data of DSj
n(DSj

) The number of data in DSj

d
(xi)
p The pth dimension data of x

(DSj
)

i n(d) The dimension number of x
(DSj

)

i

Ep The pth dimension data of DSj d
(Ep)
i , y

(Ep)
i The input and output data of Ep

n(Ep) The number of data in Ep M The source-target segment matrix

I The inflection points n(I) The number of inflection points

Jl The joint part of different source domains x
(Jl)
i , y

(Jl)
i The input and output data of Jl

n(Jl) The number of data in Jl P
(Sj)
k The pairwise part

x
(Pk)
i , y

(Pk)
i The input and output data of P

(Sj)
k n(Pk) The number of data in P

(Sj)
k

R
(Jl)
m The classified joint part x

(Rm)
i , y

(Rm)
i The input and output data of R

(Jl)
m

n(Rm) The number of data in R
(Jl)
m

Step 1: Initialize the discrepancy between the source domain and the target

domain.265

For the source domain Sj and the target domain T , we select the Eu-

clidean distance and cluster the inputs data x(Sj) of Sj into n(T ) groups G =

{G1, ..., Gn(T )} by using the inputs data x(T ) of T as the clustering center, where

n(T ) is the number of groups, Gg includes one target domain data (x
(T )
i , y

(T )
i )

and the other clustering source domain data. In each clustering group Gg,270

we select the source domain data which is the nearest one to the target do-

main data, the selected source domain data and the target domain data as

the pairwise data, {(x(Sj)
Gg

, y
(Sj)
Gg

), (x
(T )
i , y

(T )
i )}. For the discrepancy between Sj

and T , DSj = {(x
(DSj

)

1 , y
(DSj

)

1 ), ..., (x
(DSj

)

n
(DSj

) , y
(DSj

)

n
(DSj

))}, where the input data

x
(DSj

)

i = x
(T )
i , the output data y

(DSj
)

i = y
(T )
i − y(Sj)

Gg
, and n(DSj

) is the number275

of data in DSj
.
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To avoid the overfitting problem, we separately consider each dimension

data of x
(DSj

)

i = [d
(xi)
1 , ..., d

(xi)

n(d) ], where d
(xi)
p is the pth dimension data of

x
(DSj

)

i and n(d) is the dimension number of x
(DSj

)

i , and we add the noise

bound B = |max d
(xi)
p − min d

(xi)
p |/α, where α is the positive integer, α ∈280

[2, 34n
(DSj

)], max d
(xi)
p is the maximum value of d

(xi)
p in DSj , and min d

(xi)
p is

the minimum value of d
(xi)
p in DSj . For each dimension data of x

(DSj
)

i , we de-

note the pth dimension data of DSj
is Ep = {(d(Ep)

1 , y
(Ep)
1 ), ..., (d

(Ep)

n(Ep) , y
(Ep)

n(Ep))},

where d
(Ep)
i is the pth dimension data of x

(DSj
)

i , y
(Ep)
i is the corresponding out-

put data of x
(DSj

)

i , and n(Ep) is the number of data in Ep. We sort Ep by285

d
(Ep)
i and get the adjacent data (d

(Ep)
a , y

(Ep)
a ) and (d

(Ep)
b , y

(Ep)
b ) of Ep, and if

|d(Ep)
a − d(Ep)

b | ≤ B, these two adjacent data of Ep combine into one new data

(
d
(Ep)
a +d

(Ep)

b

2 ,
y
(Ep)
a +y

(Ep)

b

2 ).

Step 2: Calculate the inflection points.

To get the inflection points I of Ep, we denote the source-target segment290

matrix M . According to the sort order of Ep, we generate the upper triangular

matrix M , each index (i, j) of the matrix M means from the ith data of Ep

to the jth data of Ep, and each element of the matrix is the value of the R2

statistic for the regression fitting using the data from the ith data of Ep to the

jth data of Ep. We replace all the elements in M that are equal to 1 with 0,295

and search the inflection points I.

Start searching from ith row and (i + 1)th row respectively, and find the

first time appear the value a of M(i, j) less than the value b of M(i + 1, k)

and |a − b| < δ, where δ is the noise item, δ ∈ (0, 0.1). Compare the index j

and k, if j 6= k, the ith inflection point Ii is the ith data of Ep, the (i + 1)th300

inflection point Ii+1 is the jth data of Ep, and if j = k, compare the value

of M(i, j) and M(i + 1, j), if M(i, j) ≤ M(i + 1, j), the result is the same, if

M(i, j) > M(i+ 1, j), the ith inflection point Ii is the (i+ 1)th data of Ep, the

(i+ 1)th inflection point Ii+1 is the jth data of Ep.

Step 3: Obtain the pairwise parts.305

The inflection points of Ep are used to segment Ep. The adjacent inflection

points become the segmented region, Ep is segmented into different parts, each
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part H
(Ep)
q = {(d(Hq)

1 , y
(Hq)
1 ), ..., (d

(Hq)

n(Hq) , y
(Hq)

n(Hq))}, where d
(Hq)
i is the data of

d
(Ep)
i which belongs to the segmented region, y

(Hq)
i is the corresponding output

data of d
(Ep)
i , and n(Hq) is the number of data in H

(Ep)
q . Ep is the pth dimension310

data of DSj
, after getting the segmented results of all the dimension data of DSj

,

all the segmented results are combined to get the pairwise parts of DSj .

We extract the intersection part C of all H
(Ep)
q , C = H

(E1)
q

⋂
...

⋂
H

(E
n(d) )

q .

If C has more than 3 intersection data, it means that DSj
has the same inflection

points from different dimension of x
(DSj

)

i and the distributions of the source do-315

main and target domain have an approximate linear relationship in this segment-

ed region, we obtain the pairwise part P
(Sj)
k = {(x(Pk)

1 , y
(Pk)
1 ), ..., (x

(Pk)

n(Pk) , y
(Pk)

n(Pk))},

where x
(Pk)
i is the input data of intersection data, y

(Pk)
i is the corresponding out-

put data of x
(Pk)
i , and n(Pk) is the number of data in P

(Sj)
k . And if C has less

than 3 data, it means that DSj does not have the same inflection points from320

different dimension of x
(DSj

)

i and the distributions of the source domain and tar-

get domain cannot have an approximate linear relationship in this segmented

region, so we abandon this intersection part C to prevent overfitting problem.

Step 4: Get the joint parts of different source domains.

We separately obtain the the pairwise part P
(Sj)
k of different source do-325

mains, and we get the joint part by combine all the pairwise parts, Jl =

P
(S1)
k

⋂
...
⋂
P

(SN )
k .

To avoid the overfitting problem, if Jl = ∅ or the number of the data of Jl less

than 3, we use the except set to replace the intersect set, Jl = P
(S1)
k −...−P (SN )

k .

The joint part is Jl = {(x(Jl)1 , y
(Jl)
1 ), ..., (x

(Jl)

n(Jl)
, y

(Jl)

n(Jl)
)}, where x

(Jl)
i is the data of330

x
(Pk)
i which belongs to the jointly segmented region for different source domains,

y
(Jl)
i is the corresponding output data of x

(Jl)
i , and n(Jl) is the number of data

in Jl.

Step 5: Build the prediction model.

To avoid the negative influence problem, we classify Jl according to dif-335

ferent source domains and the target domain, Jl = {R(Jl)
1 , ..., R

(Jl)
N }, where

R
(Jl)
m = {(x(Rm)

1 , y
(Rm)
1 ), ..., (x

(Rm)

n(Rm) , y
(Rm)

n(Rm))}, (x
(Rm)
i , y

(Rm)
i ) ∈ {Sj , T}, n(Rm)

14



is the number of data in R
(Jl)
m .

We respectively train the classified joint part R
(Jl)
m by using AT-GP method,

and get prediction function f∗(x). And we select the minimum error part of340

R
(Jl)
m in each Jl, min ΣNj=1(y

(T )
j −f∗(x

(T )
j ))2. For the target unlabeled test data

x
(T )
u , we calculate the distance between the target labeled data x

(T )
j and the

target unlabeled test data x
(T )
u , and get the nearest one data x

(T )
min, x

(T )
u and

x
(T )
min belong to the same joint part. In this joint part, we use the minimum

error prediction function to predict the output value y
(T )
u .345

The pseudo-code of the STPS-MTR method is given in Algorithm 1, the

STPS-MTR method includes a segmented process and a training process, the

time complexity of the segmented process is O(n2), and we use the AT-GP

method to train the model, the time complexity is O(n3). The STPS-MTR

method can adaptively segment the different source domains and the target350

domain into different similar parts, and it can extract the most similar part in

different source domains as the knowledge transfer. The STPS-MTR method

effectively extracts the transfer knowledge even when the similarity between

different source and target domains is relatively low, and it avoids the negative

influence between different source domains. The proposed STPS-MTR method355

has better transfer performance than existing methods, particularly when the

distributions of the different source domains and the target domain are very

different. The results are shown in the experiments.

5. Experiments and results analysis

To evaluate the proposed STPS-MTR method, we develop synthetic datasets360

and select four real-world public datasets to test scenarios when the distributions

of the source domains and the target domain are significantly different. The

details are described in the following subsections.

5.1. The experiments with Synthetic datasets

The experiments with synthetic data are designed to evaluate the perfor-365

mance of the proposed STPS-MTR. To best illustrate the characteristics of the
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Algorithm 1: The pseudo-code of STPS-MTR method

Input: The source domain data Sj and the target domain T , the number

of the source domain N , the dimension number of n(d), and the

unlabeled target domain data x
(T )
u .

Output: The predict value y
(T )
u for x

(T )
u .

for j ← 1 to N do

1 Initialize the discrepancy between Sj and T

for p← 1 to n(d) do

2 Get the pth dimension data Ep of DSj

3 Generate the inflection points I of Ep

4 Combine each dimension segment results to get the pairwise part P
(Sj)

k

5 Get the joint parts for all source domains Jl

6 Obtain the classified joint part R
(Jl)
m

7 Get the minimum error part of R
(Jl)
m in each Jl

8 Determine the prediction model minΣN
j=1(y

(T )
j − f∗(x

(T )
j ))2

Return y
(T )
u

segment process using STPS-MTR, we select one-dimensional input data and

two-dimensional input data as two case studies. The details of the task follow.

5.1.1. One-dimensional input data

The four source domains are y1 = 2x − 8, y2 = −(x − 5)2 + 12, y3 =370

−10sin2(x) + 3sin(x) + 2, y4 = 10cos2(x+ 2)− 3cos(x)− 5, the target domain

is y = 10sin(x). We generate 100 points, the spacing between the points is

0.11, x ∈ [0, 10], and 11 points are selected as the target domain training data,

the spacing between the points is 1, the others as the target testing data. The

segment process as follow.375

Step 1: for the first source domain y1 = 2x − 8, according to the 11 target

training points, the source domain and the target domain are clustered into 11

groups G, e.g. G1 = {(x(T )
1 , y

(T )
1 ), (x

(S1)
1 , y

(S1)
1 ), ..., (x

(S1)
4 , y

(S1)
4 )}, there are 4

source domain points and one target domain point.

Step 2: we initialize the discrepancy between the source domain and the380

target domain, DS1
= {(x(DS1

)
1 , y

(DS1
)

1 ), ..., (x
(DS1

)
11 , y

(DS1
)

11 )}, where x
(DS1

)
i =

x
(T )
i , y

(DS1
)

i = y
(T )
i − y

(S1)
G , y

(S1)
G is the output data of the source domain
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data which is the nearest one to the target domain data in G, min{‖x(S1)
1 −

x
(T )
1 ‖2, ..., ‖x

(S1)
4 − x(T )

1 ‖2}, x
(S1)
G = x

(S1)
1 , and y

(S1)
G = y

(S1)
1 .

Step 3: we generate the source-target segment matrix M is385

M =



0.73 0.07 0.53 0.74 0.76 0.55 0.38 0.42 0.55

0 0 0.99 0.98 0.82 0.40 0.17 0.21 0.39

0 0 0 0.96 0.64 0.07 0.01 0.01 0.18

0 0 0 0 0.10 0.36 0.61 0.28 0.02

0 0 0 0 0 0 0.86 0.05 0.26

0 0 0 0 0 0 0 0.57 0.81

0 0 0 0 0 0 0 0 0.98


.

And we get 3 inflection points, I1 = (x
(DS1

)
2 , y

(DS1
)

2 ), I2 = (x
(DS1

)
5 , y

(DS1
)

5 ),

I3 = (x
(DS1

)
8 , y

(DS1
)

8 ).

Step 4: we get pairwise part P
(Sj)
k and define {i} as {(x

(DSj
)

i , y
(DSj

)

i )}. The

segment result of the first source domain is {1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10,390

11}; The segment result of the second source domain is {1, 2, 3}, {4, 5}, {6,

7, 8, 9}, {10, 11}; The segment result of the third source domain is {1, 2, 3},

{4, 5, 6}, {7, 8, 9}, {10, 11}; The segment result of the fourth source domain is

{1, 2, 3}, {4, 5, 6}, {7, 8}, {9, 10, 11}. The result of the multi-source domains

segment is {1: 3, 2: 1, 3: 3, 4: 4, 5: 4, 6: 4, 7: 4, 8: 4, 9: 3, 10: 2, 11: 2}, where395

{1: 3} means the {(x(DS3
)

1 , y
(DS3

)
1 )} chooses the third source domain S3 as the

final prediction model.

The segment result as shown in Figure 3, the different colors and different

shapes describe the different pairwise parts, as we can see, from Figure 3(a) to

Figure 3(d), the four source domains and the target domain are respectively400

segmented into 4 different pairwise parts. We use the AT-GP method to train

these pairwise parts separately and select the most similar part, Figure 3(e)

shows the target domain selects the most similar parts of the four source domains

as the training model, each selected part is described by the solid line, and the

same color and shape mean that the target domain selects the same source405

domain. The prediction error MAE (mean absolute error) and MSE (mean

square error) of these four source domains are shown in Table 2.
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(a) (b)

(c) (d)

(e)

Figure 3: The segment results of the four source domains and the target domain. (a) S1 and

T are segmented into 4 pairwise parts. (b) S2 and T are segmented into 4 pairwise parts. (c)

S3 and T are segmented into 4 pairwise parts. (d) S4 and T are segmented into 4 pairwise

parts. (e) Target domain selects the most similar parts of the four source domains.
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Table 2: The prediction result of 4 source domains

Source 1th 2th 3th 4th All

MAE 4.87 4.70 4.41 5.46 2.48

MSE 33.60 32.11 24.53 39.52 11.83

5.1.2. Two-dimensional input data

The three source domains are y1 = 0.1(x21+x21)−30, y2 = 2x21e
−(0.01x2

1+0.01x2
2)−

30, y3 = −15(sin(x1

3 )+cos(x2

3 )), the target domain is y = 15(sin(x1

4 )+cos(x2

4 )).410

We generate 121 points, the spacing between the points is π, x1, x2 ∈ [−5π, 5π]

and 25 points are selected as the target domain training data, the spacing be-

tween the points is 2.5π, the others as the target testing data.

For the first source domain y1 = 0.1(x21 + x21)− 30, the input data have two

dimensions x1 and x2, the dimension x1 is segmented into two pairwise parts,415

we also define {1} as the {(x(DS1
)

1 , y
(DS1

)
1 )}, the first pairwise part is {1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, the second pairwise part is

{16, 17, 18, 19, 20, 21, 22, 23, 24, 25}. Similarity, the dimension x2 is segmented

into two pairwise parts, {1} as the {(x(DS1
)

1 , y
(DS1

)
1 )}, the first pairwise part is

{1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, 18, 21, 22, 23}, the second pairwise part is420

{3, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 20, 23, 24, 25}. After combining these two

dimension segment results, we get four joint parts, J1 is {1, 2, 3, 6, 7, 8, 11, 12,

13, 16, 17, 18}, J2 is {3, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 20}, J3 is {16, 17, 18,

21, 22, 23}, J4 is {18, 19, 20, 23, 24, 25}.

The other segment result as shown in Figure 4. Figure 4(a) to Figure 4(d)425

describes the function distributions of the source domains and the target do-

main. Figure 4(e) to Figure 4(g) describes the segment results of the source

domains and the target domain, the different colors mean the different segment

area of the input data, as we can see, 3 source domains and the target domain

are respectively segmented into 4, 6, 9 pairwise parts. Figure 4(h) describes430

that the target domain selects the most similar parts of three source domains,

the same color means these groups belong to the same source domain. Figure
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4(i) to Figure 4(l) describes the function distributions of the segment results,

the color of the different groups corresponding to the color from Figure 4(e)

to Figure 4(h). And the prediction error MAE and MSE of these four source435

domains are shown in Table 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: The segment results of the three source domains and the target domain. (a) The

distributions of S1 and T . (b) The distributions of S2 and T . (c) The distributions of S3

and T . (d) The distributions of all source domains and target domain. (e) S1 and T are

segmented into 4 pairwise parts. (f) S2 and T are segmented into 6 pairwise parts. (g) S3

and T are segmented into 9 pairwise parts. (h) Target domain selects the most similar parts

of the three source domains. (i) The segment result of S1 and T . (j) The segment result of

S2 and T . (k) The segment result of S3 and T . (l) The segment result of all source domains

and target domain.
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Table 3: The prediction of 3 source domain

Source 1th 2th 3th All

MAE 10.65 7.68 6.04 3.09

MSE 200.47 91.92 64.83 17.97

5.1.3. Discussion

The experiment results show that the proposed STPS-MTR method can

adaptively segment the source domains and the target domain into different

pairwise parts, and each pairwise part can satisfy the condition that the dis-440

tributions of the source domain and the target domain have an approximately

linear relationship. For the multi-source domain transfer learning problem, from

Figure 3(e) and Figure 4(l), as we can see, the target domain selects the most

similar part of different source domains as the training model to avoid the neg-

ative influence between different source domains. The STPS-MTR method has445

better transfer performance when the number of the different source domains

getting larger, the results are shown in Tables 2 and 3.

5.2. The experiments with Real-world datasets

We use the public GP dataset SARCOS, the public UCI dataset UJIIndoor-

Loc, the public Amazon reviews dataset, and the public SemEval-2014 dataset450

to evaluate the performance of the proposed STPS-MTR method.

5.2.1. SARCOS Dataset

This dataset relates to an inverse dynamics problem for a seven degrees-

of-freedom SARCOS anthropomorphic robot arm. The task requires to map

from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7 joint455

accelerations) to the corresponding 7 joint torques. This dataset is used to

test the multi-source domain transfer learning problem that there are large

differences in the similarities between the different source domains and the target

domain. We consider the seven degrees as seven domains, the first degree as the

target domain, and the others as six source domains.460
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5.2.2. UJIIndoorLoc Dataset

This dataset describes the WiFi Fingerprinting indoor location, it covers

three buildings of Universitat Jaume I with 4 floors. The 520 WiFi fingerprint

attributes are used as the input data, the location represented by the latitude

and longitude is taken as the output data. The latitude is almost the same465

in the same building, and the longitude is almost the same on the same floor.

To test the multi-source domain transfer learning problem that there are large

differences in the similarities between the different source domains and the target

domain, we choose the same building and the different floor as the domain, the

building 1 and the 1 floor as the target domain, the building 1 and the 2, 3, 4470

floors as the source domains, the longitude as the output data.

5.2.3. Amazon reviews Dataset

This dataset contains product review text and rating labels taken from A-

mazon. We select four different categories of products as four domains, clothing

(clothing, shoes, and jewelry), grocery (grocery and gourmet food), office (of-475

fice products), and movies (movies and TV). A vocabulary of 2000 words is

defined that occur at least five times at the intersection of the four domains.

These words are used to define input data, where every feature is encoded by

the number of occurrences of each word. The clothing domain as the target

domain, the others as the source domains.480

5.2.4. SemEval-2014 Dataset

This dataset contains customer reviews with human-authored annotations

identifying the mentioned aspects of the target entities and provides the sen-

timent polarity of each aspect. We select four different categories of products

as four domains, laptops, restaurants, food, and price. A vocabulary of 1000485

words is defined that occur at least five times at the intersection of the four

domains. These words are used to define input data, where every feature is

encoded by the number of occurrences of each word. The laptops domain as the

target domain, the others as the source domains.
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5.2.5. Experiment Settings490

Like other GP models, we assume the mean value of the model to be 0.

Therefore, in our experiments, we subtract the mean value of the output fea-

ture for both the source domain and the target domain. For each source domain

has 500 instances uniformly at random as the training data, likewise, the target

domain has 25 instances as the training data and 1000 instances as the testing495

data. To evaluate the results, we use the standard indicators of MAE and MSE.

For the two domains transfer problem, STPS-MTR is compared to GP for re-

gression which is not a transfer learning method [20], TwoStageTrAdaBoostR2

(TS-TR) [1], WDC [31], and AT-GP [2]; for the multi-source domain trans-

fer problem, STPS-MTR is compared to WDC [31], MultiSourceTrAdaBoost500

(MST) [30] and TCMSStack [25]. The proposed STPS-MTR method is based

on the AT-GP method, thus, in the experiments, we mainly compare the STPS-

MTR with TCMSStack which is also based on the AT-GP method.

For TS-TR and MST, we use the decision tree regression method as the

base learner and run all the datasets more than 30 times, and the minimum505

prediction error values are used as the result. For WDC, we use the source

domain to pre-train the model and use the target domain to fine-tune the model.

For STPS-MTR, AT-GP, and TCMSStack, we use the Gaussian kernel as the

learner, again running all datasets more than 30 times. Here, the minimum

value of the optimization function is used as the result. The objective of this510

overall set of experiments is only to compare the MAE and MSE for different

methods. Therefore, the variance of the GP method is not used as a comparison

as the above transfer learning methods do not consider a variance when solving

prediction tasks.

When the similarity between the source domain and the target domain is515

relatively low, the source domain and the target domain may be segmented too

many pairwise parts. To avoid the overfitting problem, we set the noise bound

parameter α ∈ [2, 20] and the noise item δ = 0.03, the number of data in each

pairwise part should be more than 5, otherwise, we will abandon this pairwise
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part.520

5.2.6. Results

Table 4 shows the results of these experiments. For the SARCOS dataset,

it has six source domains and one target domain. According to the number of

source domains, we build 6 experimental groups, the number of source domains

ranges from 1 to 6, each experimental group consists of the permutation and525

combination of these 6 source domains, the number of each experimental group

is 6, 15, 20, 15, 6, and 1 respectively. Figure 5(a) and Figure 5(b) show the

MAE and MSE of STPS-MTR for these experimental groups. And Table 4

shows the average MAE and MSE for 6 experimental groups. In terms of MAE

and MSE, STPS-MTR has the best result. When the number of the source is 1,530

TS-TR and WDC show the negative transfer problem that the prediction error

is worse than GP, where GP is not a transfer learning method and it only uses

the target domain to train the model. According to the order of MST, WDC,

TCMSStack, and STPS-MTR, the best result of these 6 experimental groups is

4, 5, 6, and 5 respectively. But the general trend is that the results get better535

as the number of different source domains increasing.

For the UJIIndoorLoc dataset, the STPS-MTR also shows the best result of

MAE and MSE. And except for STPS-MTR, all the methods suffer the negative

transfer problem that the prediction error is worse than GP. According to the

order of MST, WDC, TCMSStack, and STPS-MTR, the best result of these 7540

experimental groups respectively is F2, F2,3,4, F4, and F2,3,4. WDC and STPS-

MTR have the trend that the results get better as the number of different source

domains increasing. The STPS-MTR has better transfer performance when

the distributions of the source domains and the target domain are significantly

different.545

For the Amazon reviews dataset, the STPS-MTR still shows the best result

of MAE and MSE. And all the methods do not suffer the negative transfer

problem. According to the order of MST, WDC, TCMSStack, and STPS-

MTR, the best result of these 7 experimental groups respectively is O, G,O,M,
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G,O, and G,O,M. WDC and STPS-MTR still have the trend that the results get550

better as the number of different source domains increasing. The other methods

do not have this kind of characteristic.

For the SemEval-2014 dataset, the STPS-MTS also shows the best result of

MAE and MSE, WDC is the second best result of MAE and MSE. The other

methods still suffer the negative transfer problem that the prediction error is555

worse than GP.

For these four datasets, the Friedman Test [10] is used to prove the statistical

significance of these results. The null hypothesis for the test is, H0: there is

no significant difference in the prediction results of these comparison methods,

H1: there is a significant difference in the prediction results of these comparison560

methods. The test statistic values of four datasets are 40.47, 47.79, 51.43, and

42.17, respectively. The p-value of the test, returned as a scalar value in the

range [0,1], which is the probability of observing a test statistic as extreme as, or

more extreme than, the observed value under the null hypothesis. The p-values

of these test are 3.46e-08, 9.70e-10, 4.53e-11, and 1.53e-08, respectively, and565

their values are smaller than 0.01, so the null hypothesis of the test is rejected.

The results show that the prediction results of these comparison methods are

significantly different.

(a) (b)

Figure 5: The results of STPS-MTR for the SARCOS. (a) The MAE of STPS-MTR for the

SARCOS, (b)The MSE of STPS-MTR for the SARCOS.
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Table 4: The comparative of four datasets

SARCOS
GP TS-TR / MST WDC AT-GP / TCMSStack STPS-MTR

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Number of Source

1 17.96 487.32 24.37 913.59 22.86 821.92 16.81 427.70 14.68 345.44

2 17.96 487.32 18.40 552.09 16.35 603.24 14.78 422.71 12.63 263.85

3 17.96 487.32 15.40 353.60 14.82 434.65 13.18 311.59 11.62 215.29

4 17.96 487.32 15.36 346.89 13.34 320.91 12.57 279.63 10.71 183.34

5 17.96 487.32 15.48 345.06 12.96 283.43 11.95 272.02 9.87 162.38

6 17.96 487.32 16.42 378.60 14.07 415.78 11.55 286.46 10.17 155.97

UJIIndoorLoc
GP TS-TR / MST WDC AT-GP / TCMSStack STPS-MTR

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Source

F2 18.21 599.37 20.52 658.69 20.35 634.28 18.25 600.29 12.79 379.92

F3 18.21 599.37 23.57 1059.51 24.22 930.57 18.75 641.70 13.77 427.53

F4 18.21 599.37 20.73 899.87 19.55 602.06 16.34 499.37 12.80 390.42

F2,3 18.21 599.37 22.46 735.84 21.25 716.04 20.46 644.00 11.25 343.55

F2,4 18.21 599.37 22.32 737.55 18.75 557.47 19.35 601.41 11.81 360.41

F3,4 18.21 599.37 27.15 1220.67 21.05 702.63 18.27 601.22 12.45 386.53

F2,3,4 18.21 599.37 24.36 840.65 18.35 533.94 17.74 559.00 11.13 332.25

Amazon reviews
GP TS-TR / MST WDC AT-GP / TCMSStack STPS-MTR

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Source

Grocery(G) 0.94 1.47 0.88 1.23 0.65 0.84 0.93 1.40 0.65 0.82

Office(O) 0.94 1.47 0.86 1.19 0.74 0.98 0.90 1.35 0.71 0.95

Movies(M) 0.94 1.47 0.87 1.23 0.78 1.12 0.90 1.34 0.76 1.04

G,O 0.94 1.47 0.86 1.20 0.58 0.76 0.85 1.22 0.55 0.70

G,M 0.94 1.47 0.88 1.24 0.61 0.81 0.88 1.27 0.57 0.71

O,M 0.94 1.47 0.87 1.21 0.68 0.88 0.89 1.21 0.65 0.86

G,O,M 0.94 1.47 0.88 1.22 0.56 0.70 0.89 1.21 0.53 0.66

SemEval-2014
GP TS-TR / MST WDC AT-GP / TCMSStack STPS-MTR

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Source

Restaurants(R) 6.08 61.45 6.36 68.64 6.05 61.71 6.15 62.78 6.02 60.83

Food(F) 6.08 61.45 6.30 67.64 5.73 58.04 6.10 61.67 5.71 57.50

Price(p) 6.08 61.45 6.24 66.39 5.98 61.25 6.27 63.61 5.92 60.00

R,F 6.08 61.45 6.16 63.22 5.82 59.76 5.91 60.56 4.95 44.44

R,P 6.08 61.45 5.73 56.89 5.35 51.92 5.46 51.67 4.99 45.56

F,P 6.08 61.45 5.86 60.25 5.48 55.83 5.66 53.33 5.47 55.00

R,F,P 6.08 61.45 5.63 52.44 5.13 47.37 5.29 48.06 4.75 42.50

5.2.7. Discussion

From the above results, for the two domain transfer learning problems, the570

STPS-MTR method has smaller prediction error than other methods, it can

be adapted to the situation that the distributions of the source domains and

the target domain are significantly different, even if the source domain may not

be suitable for the transfer that the AT-GP method and the other method-

s occur the negative transfer problem when the similarity between the source575

domain and the target domain is relatively low. For the multiple source do-
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mains transfer learning problems, the STPS-MTR method also has the best

transfer performance, the TCMSStack and other methods suffer the negative

influence problem that the transfer performance becomes worse as the number of

source domains increases, but the transfer performance of STPS-MTR still has580

the improvement tend as the number of different source domains increases. The

WDC and STPS-MTR methods have the trend that the results get better as the

number of different source domains increasing, but the WDC method is main-

ly concerned with text datasets, the transfer performance on Amazon Review

and SemEval-2014 datasets is better than other datasets, and the STPS-MTR585

method can work well on these four datasets. We conclude that the STPS-MTR

method can effectively extract the transfer knowledge even when the similarity

between the source domain and the target domain is relatively low and it can

avoid the negative influence when the distributions of different source domains

and the target domain are significantly different.590

Table 5 shows the best result for each number of the source domains of Figure

5. For the multi-source domain transfer problem, although the STPS-MTR

method has the trend that the results get better as the number of source domains

increases and the transfer performance with the multiple source domains is

better than the transfer performance with the single source domain, from the595

Table 5 we can see, the best result is the number of 3 source domains when

we select the 2,4,7 degree as the source domains. We can conclude that the

STPS-MTR method can improve the transfer performance when the number of

source domains increases and it can make sure the transfer performance with

the multiple source domains is better than the transfer performance with the600

single source domain, but it still depends on the source domain selection, if we

select the source domain is not suit for transfer, it also will affect the transfer

performance.

27



Table 5: The best result of the STPS-MTR for SARCOS

Source 2 2,7 2,4,7 2,3,4,7 2,4,5,6,7 2,3,4,5,6,7

MAE 10.71 9.31 8.93 9.12 8.94 10.17

MSE 158.31 139.42 138.30 145.26 138.62 155.97

6. Conclusions and further study

In this paper, we focus on the multi-source domain transfer regression prob-605

lem when the transfer performance with the single source domain is still not

good and there are significant differences in the similarities between the differ-

ent source domains and the target domain. As demonstrated through a series

of experiments, the proposed STPS-MTR method has two advantages. The

first is the STPS-MTR method effectively extracts the transfer knowledge when610

the similarity between the source domain and the target domain is relatively

low. The second is the STPS-MTR method overcomes the negative influence

between different source domains. And a comparison between the STPS-MTR

method and the other existing methods such as TS-TR, AT-GP, MST, WDC,

and TCMSStack also shows that the proposed STPS-MTR method can bet-615

ter estimate the prediction values in the target domain and has better transfer

learning performance, particularly when there are significant differences in the

similarities between the different source domains and the target domain and

all the similarities between the different source domains and the target domain

are not relatively high. Although the STPS-MTR method also has better per-620

formance than other existing methods when the number of the different source

domains getting larger, the transfer performance of STPS-MTR still depends on

similarities between the different source domains and the target domain rather

than the number of the different source domains getting larger.

This study concerns on transfer learning on homogenous domains, that is,625

the source domains and the target domain share the same feature space, and the

proposed STPS-MTR method is based on the AT-GP method. In future studies,

we will focus on more general source-target segment modeling which can apply
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to any transfer learning method, and we will consider the transfer learning on

heterogeneous domains, where the source domains and the target domain have630

different feature space. We will further develop new feature mapping methods

to capture the similarity between different source domains and the target do-

main. In addition, real-world applications of the proposed multi-source transfer

learning methods will be developed.
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