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Glaucoma diagnosis using 
multi‑feature analysis and a deep 
learning technique
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Maitreyee Roy1*

In this study, we aimed to facilitate the current diagnostic assessment of glaucoma by analyzing 
multiple features and introducing a new cross-sectional optic nerve head (ONH) feature from optical 
coherence tomography (OCT) images. The data (n = 100 for both glaucoma and control) were collected 
based on structural, functional, demographic and risk factors. The features were statistically analyzed, 
and the most significant four features were used to train machine learning (ML) algorithms. Two ML 
algorithms: deep learning (DL) and logistic regression (LR) were compared in terms of the classification 
accuracy for automated glaucoma detection. The performance of the ML models was evaluated on 
unseen test data, n = 55. An image segmentation pilot study was then performed on cross-sectional 
OCT scans. The ONH cup area was extracted, analyzed, and a new DL model was trained for glaucoma 
prediction. The DL model was estimated using five-fold cross-validation and compared with two 
pre-trained models. The DL model trained from the optimal features achieved significantly higher 
diagnostic performance (area under the receiver operating characteristic curve (AUC) 0.98 and 
accuracy of 97% on validation data and 96% on test data) compared to previous studies for automated 
glaucoma detection. The second DL model used in the pilot study also showed promising outcomes 
(AUC 0.99 and accuracy of 98.6%) to detect glaucoma compared to two pre-trained models. In 
combination, the result of the two studies strongly suggests the four features and the cross-sectional 
ONH cup area trained using deep learning have a great potential for use as an initial screening tool for 
glaucoma which will assist clinicians in making a precise decision.

Glaucoma is a potentially blinding optic neuropathy with a variety of underlying etiologies characterized by the 
loss of retinal ganglion cells (RGCs). It is characterized clinically by anatomical changes of the optic nerve head 
(ONH), mainly thinning and posterior bowing of the lamina cribrosa sheets seen clinically as ONH cupping1. 
Detection and monitoring of glaucomatous optic neuropathy depend on several clinical features which are 
observed and assessed before making a clinical decision2. Currently, glaucoma diagnosis and monitoring require 
a complete eye examination and additional testing and gathering of a slew of data, which can be challenging to 
interpret. Furthermore, there is a significant overlap in the ocular features of normal subjects and patients with 
early glaucoma. For these reasons, there is interest in developing complementary techniques—such as artificial 
intelligence (AI) systems3—to assist in distinguishing true pathology from normal variability and true progres-
sion from inter-test variability.

Following the recent implementation of AI within ophthalmology, several machine learning (ML) algorithms 
have been investigated and developed for automated glaucoma detection that can quickly process the retinal 
images and accurately detect glaucomatous damage on pathological tests compared to conventional methods. 
Automated glaucoma detection using simpler ML to advanced deep learning (DL) algorithms, mainly from ocular 
images, has been widely researched with variable outcomes. Most DL algorithms trained from fundus and OCT 
images perform two common steps; segmentation of the region of interest and classification of glaucomatous and 
non-glaucomatous eyes. In the early stages, fundus photographs have been widely used to evaluate and detect 
glaucoma using AI techniques4–8. Ting et al.9 trained a DL model on 71,896 validated retinal fundus photographs 
to detect referable possible glaucoma with an AUC of 0.942.
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Additionally, Asaoka et al.10 applied a transfer learning model to macular OCT images and evaluated its 
diagnostic performance on an independent dataset consisting of normal eye and early-onset glaucomatous eyes. 
The model’s AUC was 0.93, which was significantly larger compared to other ML methods such as support vec-
tor machine (SVM) and random forest (RF). An et al.11 trained both fundus and OCT images using the VGG19 
model to distinguish glaucomatous from normal eyes and achieved an AUC of 0.94 for fundus and an AUC of 
0.94 for four features of OCT images, and the combination of all images achieved an AUC of 0.96.

Furthermore, Devalla et al.12 investigated the ability of a dilated-residual U-Net (DRUNET), a deep learn-
ing network, to detect glaucoma on 100 OCT B-scan images. DRUNET achieved a mean sensitivity of 92% and 
specificity of 99% in detecting both healthy and glaucomatous eyes. In another study, Gomez-Valverde et al.13 
trained five convolutional neural network (CNN) models-standard CNN, VGG19, ResNet50, GoogleNet and 
DENet using the RIM-ONE dataset and VGG19 performed best for glaucoma detection with an AUC of 0.94, 
the sensitivity of 87.0% and specificity of 89.0%. Asaoka et al.14 used a local dataset consisting of 1364 glaucoma 
and 1768 healthy retinal images to train from a pre-trained model ResNet and achieved an AUC of 0.95.

A small number of studies have used visual field (VF) data to train DL algorithms to detect glaucomatous 
damage, and those that exist show a similar, sometimes better, performance comparative to glaucoma experts15–17. 
Li et al.18 trained a deep CNN to differentiate between glaucomatous and non-glaucomatous VFs, with probability 
deviation (PD) maps as the data input. It achieved an AUC of 0.96 with accuracy, sensitivity, and specificity of 
87.6%, 93.2% and 82.6%, respectively. Bizios et al.19 showed that a feed-forward, multilayered artificial neural 
network (ANN) had considerably better performance and diagnostic accuracy in distinguishing between normal 
and glaucomatous VFs compared to conventional STATPAC global indices [Glaucoma Hemifield Test (GHT) 
and pattern standard deviation (PSD)] and achieved an AUC of 0.98. Kucur et al.20 have also developed a CNN 
capable of discriminating between normal and early glaucomatous VFs with an average precision score of 87%.

There is now compelling evidence that training a ML classifier model with combined structural and functional 
features could enhance discriminatory power compared to models trained with either structure or function 
alone21. For instance, clinical factors, intraocular pressure (IOP), and corneal thickness per se have been shown 
to partially enrich the diagnostic accuracy of the algorithms22. Brigatti et al.23 used a neural network to train 
combined features from standard automatic perimetry (SAP) indices (mean defect, corrected loss variance, and 
short-term fluctuation) and structural data (cup/disk ratio, rim area, cup volume, and nerve fiber layer height) 
together from a total of 185 glaucoma and 54 normal subjects and achieved 90% sensitivity and 84% specificity. 
Bowd et al.24 added retinal nerve fiber layer (RNFL) thickness and SAP parameters using a relevance vector 
machine classifier and achieved an AUC of 0.85. In another study, Grewal et al.25 used an ANN model to detect 
glaucoma combining age, sex, myopia, IOP, ONH, and RNFL, SAP parameters and achieved an AUC of 0.77. In 
a recent study, Kim et al.22 trained four ML algorithms: C5.0, RF, SVM, and k-nearest neighbors (KNN) combin-
ing Age, IOP, corneal thickness, RNFL, GHT, mean deviation (MD), PSD from total 342 subjects. The RF model 
performed best among the four models with an AUC of 0.98.

However, as listed in the literature, a few studies have been done for glaucoma detection using both machine 
and deep learning techniques combining structural and functional features. Moreover, as glaucoma is a multi-
factorial disease and is challenging to detect early on; hence, clinicians also consider risk factors. Such features 
include older age, family history of glaucoma, gender and ethnicity (e.g., African Americans are at higher risk 
of open-angle glaucoma)26. Higher IOP, decreased central corneal thickness (CCT), and myopia are other estab-
lished risk factors for glaucoma27,28. We could not find any ML studies that used combined features including risk 
factors for early glaucoma detection. Moreover, feature optimization from maximum clinical input is now highly 
requisite for both clinicians and glaucoma patients. Besides, this will resolve the time and resource limitations of 
AI models. Given the handful of proposed techniques, it is warranted to develop an effective AI algorithm that 
combines entire patient history with as much real-world data as possible, which can exceed human performance 
in diagnosing glaucoma.

Thus, we aimed to explore and compare the optimal features for diagnosing glaucoma by combining func-
tional, structural, and demographic/historical risk factor data. Our initial research aims to identify significant 
features aiding the detection of glaucomatous changes and observe the classification performance using machine 
learning techniques trained from the optimized features. Besides, in our study, we included the majority of the 
glaucoma patients from the early group, so that the ML model able to detect glaucoma at early stages. In addition 
to using the 2D data, we also used a new cross-sectional ONH OCT image which can be added as a new clinical 
feature for diagnosing glaucoma and enhance the accuracy if combined with 2D data.

Methods
Datasets.  Clinical data from two subject groups examined between 2015 and 2018 at the Centre for Eye 
Health, UNSW Sydney were analyzed (n = 200, consisting of 100 normal subjects and 100 glaucoma patients). 
Normal patients were matched to cases on age group (30–39, 40–49, 50–59, 60–69 and 70–85). Our main aim 
was to optimize the features that can also help to diagnose early glaucoma. Therefore, the glaucoma data consists 
of 73 early, 21 moderate, 4 advanced and 2 severe patients. The glaucoma stage labelling was done according to 
the criteria of Mills et al.29. Moreover, unseen data from 55 patients consisting of 25 glaucomatous and 30 normal 
eyes have been used as a test dataset.

Because glaucoma is considered a complex eye disease, optimizing its detection and monitoring is an impor-
tant public health issue. To this aim, we have explored optimal features, including functional, structural, demo-
graphic findings, and known risk factors for glaucoma. Table 1 summarizes the possible features of primary 
open-angle glaucoma (POAG)30–33.
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Based on possible glaucoma diagnosis features, we collected most of the data of Table 1 from the Cirrus 
HD-OCT (Carl Zeiss Meditec) and a total of 11 features (age, gender, average RNFL thickness, CDR, corneal 
thickness, IOP, MD, PSD, Spherical Equivalent (SE), ethnicity and family history) were extracted.

We performed a pilot study of segmentation and extraction of a new region of interest (ROI) from the ONH 
OCT B-scan (per eye 6 scans) images (Spectralis OCT, Heidelberg Engineering) of 60 eyes, including 30 normal 
and 30 glaucoma among 200 patient data. The ethics approval for the data collection was provided by the rel-
evant ethics committee of the UNSW Sydney, and the study followed the tenets of the Declaration of Helsinki. 
Patients provided written informed consent for the use of their de-identified clinical data for research purposes.

Statistical analysis.  Using traditional sources of information for glaucoma diagnosis, we first calculated 
the independent t test and performed a receiver operating characteristic (ROC) curve analysis to find significant 
features and examined the separability of their distributions using the AUC. Moreover, we calculated the power 
of the sample size for both the independent t test and ROC curve.

Segmentation of ONH feature.  A pilot study was performed to segment the cup surface area of the 
ONH OCT B-scan images of 60 eyes, including 30 normal and 30 glaucoma patients. For this study, the normal 
and glaucoma patient’s average age was 47 ± 11 and 61 ± 12.36, respectively. As glaucoma is optic neuropathy, we 
specifically explored features of the cross-sectional OCT B-scans of the optic nerve. The B-scans were radially 
arranged from the center of the ONH, as shown in Fig. 1a. We explicitly introduced a new technique for segmen-
tation and extraction of the cup surface area from the B-scan of OCT images and calculated the mean area of the 
first 6 B-scans of the ONH among a total of 24 OCT scans34, based on knowledge regarding known anatomical 
changes occurring at the ONH, specifically in the superior and inferior region of the eye in glaucoma35. The 
initial point of ROI selection was measured from the disk to cup with a minimum rim width as demonstrated 

Table 1.   The possible primary open-angle glaucoma diagnosis features.

Structural features Functional features Demographic features/clinical risk factors

Optic nerve head damage Mean deviation (MD) Age, gender, ethnicity

Inner macular thinning Pattern standard deviation (PSD) Family history

Thinning of the circumpapillary retinal nerve fiber 
layer (cpRNFL) Visual field index (VFI) Intraocular pressure (IOP)

Increased cup to disk ratio (CDR) Refractive error

Central corneal thickness (CCT) High or low blood pressure, Diabetes, previous 
eye injury

Figure 1.   (a) The radial pattern of optic nerve head OCT with B-scan. (b) ROI selection and extraction from 
B-scan. (c) Final ROI extracted images for glaucoma and normal subjects.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8064  | https://doi.org/10.1038/s41598-022-12147-y

www.nature.com/scientificreports/

in Fig. 1b and the cup surface area was selected from the rim point using a freehand polygon method and a 
binary mask was generated from the resultant polygon. The freehand segmentation was performed in MATLAB 
R2019b, and the cup area, mean cup area, and SD were calculated from binary images using the open-source 
software [ImageJ (www.​imagej.​nih.​gov/​ij/)]. We calculated the mean area of the cup surface from the first 6 
B-scans of 40 eyes among of 60. The resultant binary images are shown in Fig. 1c. Later, a DL algorithm was 
applied to the segmented OCT B-scan images. The segmented OCT B-scan was cropped from the original OCT 
scan and the new image size was 383 × 197 pixels.

Machine learning models.  The statistically significant features were trained using two machine learning 
algorithms, a LR and DL technique, to observe the classification accuracy of glaucoma detection. We initially 
started with a simple, efficient algorithm, LR, as our prediction based on a simple binary classification from the 
parametric dataset.

For the classification using only significant features, we divided the 200 datasets into 80% training and 20% 
validation data. The parameters for LR classifier were ‘libliner’, a linear classifier solver, L2 penalty (squared mag-
nitude of coefficient), a regularization technique to reduce the overfitting problem, and the tolerance value was 
0.0001. We then applied a DL model consisting of four layers to investigate whether the classification accuracy is 
enhanced. It is assumed that the accuracy will be increased as a single neuron in the deep neural network refers 
to a similar input–output mapping as occurs in LR36. For the DL technique, we used a sequential model consist-
ing of four layers, 64 nodes at each layer with ReLU (Rectified Linear Units) as the activation function. For the 
last layer, we used one node with a sigmoid activation function that squeezes all input values to an output range 
between 0 and 1. The model was compiled by using Adam37, a momentum-based optimizer with the loss function 
binary_crossentropy, which supplied the output in the form of a probability. To evaluate the performance of the 
models, an unseen 25 glaucomatous and 30 normal eye data were used as a test dataset.

In the pilot study, a simple CNN architecture has been developed to classify eyes as normal or glaucomatous 
directly from the segmented OCT B-scans. To evaluate the performance of our proposed CNN model, the result 
has been compared with two widely used pre-trained models. A total of 360 binary segmented OCT images of 
60 eyes were used to train the CNN using two subject groups: 180 images for normal and 180 from glaucoma 
patients. Due to the limited dataset, k-fold cross-validation was conducted for assessing the model’s generaliz-
ability on unseen data.

The cross-validation is performed k times to allow for the use of all subsets exactly once as a test set. Model 
performance is determined according to the average of model evaluation scores calculated across the k test 
subsets. We used five-fold cross-validation adapted from38 to utilize the whole dataset for training and observed 
the performance on the test dataset. The images were resized to 224 × 224 pixels during the data augmentation 
using MATLAB imageDataAugmenter. Hence, the rescaling will not affect the actual shape and volume of the 
ONH cup surface. The augmentation was performed using four arguments: ‘RandRotation’, ‘RandXTranslation’, 
‘RandYTranslation’, ‘RandXReflection’ (horizontally reflected) and ‘RandXShear’ (horizontally sheared). No other 
pre-processing was performed.

We used a CNN architecture of 24 layers consisting of five convolutional layers (3 × 3) with increased kernel 
sizes 32, 64, 128, 256 and 512. We added a ReLU and batch normalization layer after every convolutional layer to 
accelerate and improve the initialization of the network39,40. Then a max-pooling (2 × 2) layer has been added for 
every convolutional layer following the batch normalization and ReLU layer. A fully connected layer was added 
at the end of the network for final classification. We also added one dropout layer before the fully connected 
layer to exclude 25% of neurons from the previous layer of CNN to overcome the overfitting problem during 
the training period41. For the binary classification output, we used the “softmax” function instead of “sigmoid” 
as the softmax output is presented as the probability of the input belonging to the associated class, whereas the 
“sigmoid” function simply creates an output between 0 to 142. To train the network, we used Root Mean Squared 
Propagation (RMSProp) optimizer with an initial learning rate of 1 × 10–4. The training ’MiniBatchSize’ was set 
to 12 with ‘MaxEpochs’ 20.

To evaluate the performance of our DL model, we used two pre-trained models; ResNet1843 and VGG1644, 
which are trained from the ImageNet database (with more than a million images)45. The two models are specifi-
cally used for medical image classification, segmentation, and feature extraction46,47. These two models exhib-
ited comparatively better performance in the literature than other DL models on OCT images for glaucoma 
detection11,13,14,47. ResNet18 and VGG16 consist of total 71 and 41 layers, respectively, and both require 224 × 224-
pixel size images for the input layer. We used five-fold cross-validation for both networks and the same data 
augmentation and Stochastic Gradient Descent with Momentum (SGDM) model optimizer was used. To obtain 
the best results for the two models, training hyperparameters: learning rate, epochs and batch sizes were tuned to 
achieve optimal results. A batch size of 12, 20 epochs, and a learning rate of 1 × 10–5 was determined for VGG16 
and a batch size of twelve, 20 epochs and a learning rate of 1 × 10–4 was determined for ResNet18. The other 
hyperparameters associated with both network models were set according to their original structure.

Grad‑CAM visualization.  The gradient-weighted class activation mapping (Grad-CAM) technique was 
used to visualize the learned features of the network which influenced the model to classify the two groups. The 
Grad-CAM calculates the gradient of the image score for the specific class and estimates the gradient of the final 
classification score relating to the weights of the last convolutional layer. The Grad-CAM generates heatmap 
transparently on the image, where deep red is considered as the peak value of the predicting class and deep blue 
is the lowest class value48.

http://www.imagej.nih.gov/ij/
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Results
Power and sample size estimation.  Considering an effect size of 0.50, α error of 0.05 and group alloca-
tion ratio of 1:1 a minimum of 88 patients in each group is required to reach a statistical power of 95%. In our 
study, for n = 100 in each group has greater than 95% power to detect a statistical difference using independent 
t test for continuous variables. For ROC curve analysis, n = 100 in each group has greater than 90% power to 
detect a ROC AUC of 0.80 for a continuous predictor assuming a null ROC AUC of 0.70. For a dichotomous 
predictor, power is greater than 80%.

Classifying based on multiple features.  The patient demographics are presented in Table 2. Group dif-
ferences were tested using independent samples t test (continuous variables) or χ2 test (categorical variables).

Comparison of the extracted features in two groups suggests that only RNFL, CDR, IOP, MD and PSD are 
statistically significant (p < 0.05). Furthermore, the AUC of the ROC was > 0.7 for RNFL, CDR, PSD and MD 
(Table 3 and Fig. 2), and IOP had a poor separability between the two groups (AUC 0.63).

Classification results of LR and DL.  For glaucoma classification, we trained the LR and DL algorithms 
with the four features MD, PSD, RNFL and CDR; and observed the performance on both validation and unseen 
test dataset. We achieved the best performances for the LR classifier with 100 iterations, and the DL classifier 
with 1000 epochs and a batch size of 20. To evaluate both models’ performance, AUC was calculated from the 
ROC curve comparing true positive rate vs false positive rate, and sensitivity/specificity ratios were calculated 
from the confusion matrix as shown in Table 4. Every confusion matrix provides four outcomes—true positive, 
true negative, false positive and false negative. In our case:

(1)	 True positive (TP): correct glaucoma prediction
(2)	 False-positive (FP): incorrect glaucoma prediction
(3)	 True negative (TN): correct normal prediction
(4)	 False-negative (FN): incorrect normal prediction

We define sensitivity or true positive rate TPR = TP/(TP + FN) and
Specificity, or true negative rate TNR = TN/(TN + FP)49.

Table 2.   Demographic data of the study population.

Parameters/features Normal (n = 100) Glaucoma (n = 100) p-value

Age (mean ± SD) 55.11 ± 11.19 55.42 ± 12.12 0.851

Gender Female 51, Male 49 Female 31, Male 69 0.004

Family history Yes: 22, N/A:78 Yes: 22, N/A: 78 1

Ethnicity
Asian-27, Caucasian-62, Indigenous Australian-1
Hispanic (Central and South American)-2, Indian-2, Arab 
Caucasoid (Middle eastern)-3, African-1, Unknown-2

Asian-41, Caucasian-35, Indigenous Australian-2
Hispanic (Central and South American)-2, Indian-5, Arab 
Caucasoid (Middle Eastern)-3, African-3, Pacific Islander-1, 
Unknown-7, Refused-1

N/A

SE (mean ± SD) − 0.75 ± 2.17 − 1.33 ± 2.58 0.057

Average RNFL thickness (mean ± SD) 94.75 ± 8.97 77.62 ± 10.76 < 0.001

CDR (mean ± SD) 0.58 ± 0.15 0.72 ± 0.12 < 0.001

Corneal thickness (mean ± SD) 567.56 ± 37.16 557.56 ± 32.92 0.045

IOP (mean ± SD) 15.9 ± 3.12 17.87 ± 4.40 0.001

MD (mean ± SD) − 0.82 ± 2.21 − 3.20 ± 5.01 < 0.001

PSD (mean ± SD) 2.03 ± 1.52 3.51 ± 2.52 < 0.001

Table 3.   The area under the ROC curve for all features. Significant values are in bold.

Features AUC​ Std. error

RNFL_thickness 0.89 0.02

CDR 0.84 0.02

PSD 0.79 0.03

MD 0.74 0.04

IOP 0.63 0.04

Gender 0.6 0.04

Family_history 0.5 0.04

SE 0.43 0.04

Corneal_thickness 0.44 0.04
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From the confusion matrix of Tables 4 and 5, we can see both LR and DL models can successfully classify 
the group with an accuracy of 95% and 97%, respectively, with the four features. The DL model with an AUC 
of 0.98, a sensitivity of 100%, and a specificity of 96% performs better than the LR model. However, the LR and 
DL models showed similar performance on the test dataset with an accuracy of 96%, sensitivity of 100%, and a 
specificity of 93%.

DL results from segmented images.  We calculated the mean cup surface area from the segmented 
cross-sectional OCT B-scans and the mean cup area found significant [p < 0.05 (p = 0.01)] for two groups and to 
be lower for glaucoma than the normal group as shown in Fig. 3.

The results of our proposed DL model trained from segmented images are shown below and compared with 
the two pre-trained models using a confusion matrix in Tables 6, and 7.

Figure 2.   ROC curve for the features (AUC) > = 0.7

Table 4.   Confusion matrix of (a) LR from the result of validation dataset (b) DL from the result of the 
validation dataset (c) test dataset (similar for LR and DL).

Actual values

Glaucoma Normal

(a)

Predicted values
Glaucoma 17 (TP) 2 (FP)

Normal 0 (FN) 21 (TN)

(b)

Predicted values
Glaucoma 17 (TP) 1 (FP)

Normal 0 (FN) 22 (TN)

(c)

Predicted values
Glaucoma 25 (TP) 2 (FP)

Normal 0 (FN) 28 (TN)

Table 5.   Performance summary of the LR and DL models on validation data, trained from the significant 
features of glaucoma.

Classifier AUC​ Sensitivity (%) Specificity (%) Accuracy (%)

LR 0.97 100 91 95

DL 0.98 100 96 97
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Figure 3.   The mean cup surface area of the first 6 OCT B-scans (cross-sectional) of the ONH for normal and 
glaucoma groups.

Table 6.   Confusion matrix obtained from (a) ResNet18 (b) VGG16 and (c) proposed DL model using five-fold 
cross-validation.

Table 7.   Performance summary of ResNet18, VGG16 and proposed DL model, trained from the segmented 
OCT images.

DL architecture AUC (mean ± SD) Accuracy (mean ± SD)
Sensitivity 
(mean ± SD)

Specificity 
(mean ± SD)

Precision 
(mean ± SD)

ResNet18 0.99 ± 0.004 97.8 ± 2.12% 100 ± 0.0% 95.6 ± 4.21% 95.7 ± 3.77%

VGG16 0.99 ± 0.001 97.8 ± 1.60% 100 ± 0.0% 95.6 ± 3.16% 95.7 ± 2.94%

Proposed DL 0.99 ± 0.006 98.6 ± 1.50% 99.4 ± 1.25% 97.8 ± 2.34% 97.8 ± 2.22%
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From the confusion matrix of Tables 6 and 7, it was demonstrated that the classification result of the ResNet18 
and VGG16 model was similar with accuracy 97.8%, sensitivity 100%, specificity 95.6% and precision 95.7%. Our 
proposed DL model performed better than two pre-trained models with an AUC of 0.99, an accuracy of 98.6%, 
sensitivity 99.4%, and the specificity and glaucoma prediction precision of 97.8%. The AUC is 0.99 for the three 
DL model, which suggests that the maximum threshold values were able to successfully separate the two classes, 
i.e., glaucoma and normal, with the new segmented cup surface area. Among a total of 180 glaucoma images, 1 
image has been misclassified as normal eyes, which are not subsequent images of one eye, i.e., among of 6 images 
per eye, only one image has been misclassified as a normal eye and the majority of the images per eye were cor-
rectly detected as glaucoma. A similar misclassification rate was also observed in the context of normal eyes.

Heatmap visualization.  In Figs.  4 and 5, we show the heatmaps produced from Grad-CAM for a few 
randomly selected glaucomatous and normal OCT images to explain what features of the three models were 
considered to differentiate the two classes.

In Figs. 4 and 5, we can see the Grad-CAM produced deep red color inside or on the edges of the cup sur-
faces, which implied that the ONH cup surface area is able to differentiate between normal and glaucoma group 
by deep learning technique. Additionally, we can see the VGG16 and our proposed model accurately localized 
(deep red) the deformation of ONH cup surface for glaucoma images.

Discussion
In this research, we collected diagnostic features from both normal and glaucomatous patients based on struc-
tural, functional, demographic, and risk factors and successfully optimized the features to detect glaucoma 
using ML algorithms. The statistical results are broadly in agreement with previous research50 that suggested 
that certain risk factors such as refractive error, IOP, family history and the presence of a thin cornea are not 
significant for glaucoma screening.

There are many studies of ML for automated glaucoma detection based on structural and non-structural 
features trained from fundus photography, OCT, and VF images20–35 mentioned in the literature. Glaucoma is a 
very complex disease, and we cannot rely on a single test, as there is insufficient information to make a diagnosis. 
This is the first study where optimal features were combined from structural, functional, demographic and risk 
factors to differentiate normal and glaucomatous eyes. In our previous study34, we have included all features, 
including age and VFI. The age and VFI both were found statistically significant between the two groups. In this 
study, we increased the data size and investigated how glaucoma features affected the wide range of the same age 
group as it is not only limited to older ages. Since VFI is calculated from the PD and MD values, we discarded 
VFI from our final features to reduce data processing requirements. Furthermore, we have also compared the 
DL results with and without VFI; the presence of VFI has no impact on the classification results. Moreover, early 
detection is essential as early glaucoma treatment can save or halt further vision loss. Therefore, in our study, 
we included a large number of glaucoma patients at early stages, and with the four features: RNFL, CDR, MD 
and PSD, both LR and DL model successfully able to detect glaucoma even at early stages. To the best of our 
knowledge, this is the first study where maximum glaucoma features were combined, analyzed, and trained using 
machine learning so that the optimal features could be able to detect glaucoma at early stages. The designed DL 

Figure 4.   The GradCAM heatmaps for VGG16, ResNet18 and proposed DL model (left to right) obtained from 
segmented OCT images of glaucomatous eyes (left).
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model showed better performance than the LR classifier on validation dataset. However, the LR and DL model 
performed similarly on the test dataset. Table 8 shows the comparison of the performance of our proposed DL 
model with previous studies of glaucoma detection using both structural and functional features. Our DL model 
showed promising performance on the validation dataset with an AUC of 0.98, 97% accuracy, 100% sensitiv-
ity and 96% specificity. For the test dataset, the accuracy 96%, sensitivity 100% and specificity 93%. Here, we 
particularly compare our study with previous findings based on combined structural and functional features. 
The primary aim of the comparison here is to demonstrate that our identified distinct features trained with deep 
learning has improved in automated glaucoma detection. Furthermore, an additional strength of the study is 

Figure 5.   The GradCAM heatmaps for VGG16, ResNet18 and proposed DL model (left to right) obtained from 
segmented OCT images of normal eyes (left).

Table 8.   Comparison of the performance of our proposed model with previous studies of glaucoma detection 
combining structural and functional features.

Studies Method Trained features AUC​ Accuracy (%) Sensitivity (%) Specificity (%) No. of patients

Kim et al.22 RF model
Age, IOP, CCT, Average 
RNFL thickness, GHT, 
MD and PSD

0.98 98 98.3 97.5 202 healthy and 297 
glaucoma

Brigatti et al.23 NN (Back propagation)

MD, corrected loss, 
variance, short term, 
fluctuation, CDR, rim 
area, cup volume, and 
RNFL height

– 88 90 84 54 healthy and 185 
glaucoma

Bowd et al.24 RVM
OCT RNFL thickness 
measurements, MD, 
and PSD

0.85 – 81 72 69 healthy and 156 
glaucoma

Grewal et al.25 ANN

RNFL parameters on 
OCT, cup area, vertical 
CDR, cup volume, 
MD, loss variance, and 
GDx- Variable Corneal 
Compensation (VCC) 
parameters

– – 93.3 80 35 healthy and 35 
glaucoma

Eliash et al.51 SVM

Horizontal integrated 
rim width (HIRW), rim 
area, HCDR, vertical 
CDR, Mean NFL, NFL 
inferior, NFL superior, 
NFL 6, NFL 7, NFL 11, 
and MD

0.98 96.6 97.9 92.5 47 healthy and 42 
glaucoma

Proposed study DL
MD, PSD, Average 
RNFL thickness and 
CDR

0.98 97% (validation data), 
96% (test data)

100% (validation and 
test data)

96% (validation data), 
93% (test data)

130 healthy and 125 
glaucoma
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the inclusion of a wide range of ages, ranging from 30 to 85 in both groups, thereby resulting in a technique to 
optimize glaucoma features independent of subject age.

Based on the proposed DL result of validation and test data, the sensitivity was 100%, which outperformed the 
accurate prediction of glaucoma even at the early stages. The specificity was 96% and reduced to 93% on the test 
data. A total of three: one validation and two test normal eyes were misdiagnosed as glaucomatous eye. The sub-
jects were further investigated. First subject’s (age 60) MD, PSD, RNFL and CDR values were − 16.8, 8.1, 89.1 and 
0.6, respectively, which could be predicted as suspect glaucoma or related to other diseases. The second subject 
(68) has higher PSD (4.92), and another subject (68) has lower RNFL thickness (79.65) and higher CDR (0.66), 
which suggests that there could be some ageing effect on MD, PSD, RNFL and CDR but further analytical study 
on a larger dataset is required. The result of the test data also indicates that the 2D data had shown promising 
performance on validation data for detecting glaucoma. Still, the false positive rate increased on test data which 
might be challenging for DL to separate disease from the normal. Therefore, in the pilot study, we used cross-
sectional ONH OCT scans, which allowed us to assess the abnormalities of the anterior ONH and perform the 
quantitative measurement of the surface or contours if any damage results from glaucoma. We segmented and 
extracted a new structural feature, from the cross-sectional ONH OCT B-scans. We first segmented six radial 
B-scans of the SD-OCT ONH area and measured the ONH surface cup area for every scan, and finally calcu-
lated the mean area that revealed the actual changes of the superior and inferior region glaucomatous eyes. This 
demonstrated that the resultant mean cup area is significantly lower (p = 0.01) in glaucoma patients, which can 
be a useful marker for glaucoma diagnosis. We also developed a deep convolutional neural network to evaluate 
this new cup area feature for glaucoma detection.

The results of the DL trained with the segmented images showed good accuracy compared to two existing 
pre-trained models. Though VGG16, ResNet18 and our proposed model AUC were same for glaucoma detection, 
our DL model has a much simpler structure with less parameters and a shorter training duration than the two 
pre-trained models. Besides, our proposed DL model exhibited better performance compared to the results of 
previous studies11–14. Moreover, the GradCAM visualization also showed that the segmented cup surface is able 
to distinguish glaucoma from the normal group. The VGG16 and our proposed DL model accurately localized 
the affected region of glaucoma in the segmented OCT images. It is also noted that to the best of our knowledge, 
this is the first study using six cross-sectional OCT B-scan images trained together to increase the precision of 
the diagnostic assessments of ONH. The ONH cupping is a significant structural change for glaucoma patient. 
Based on previous literature52–54, the ONH cup is an important region of interest for the assessment of a glau-
coma patient. Therefore, we conducted this pilot study to segment the ONH surface cup area and found it is 
significant between the two groups. This study suggested that segmentation and measurement of cross-sectional 
ONH cup area could be a novel clinical imaging feature to be added in the diagnosis of glaucoma. The proposed 
DL model using OCT ONH segmented images, glaucoma detection may be used as an effective screening tool 
for clinicians in glaucoma diagnostics.

This study has several limitations. First, our study mainly relied on the standard test for glaucoma diagnosis 
(e.g. Tonometry, Funduscopy, Perimetry/visual fields, Pachymetry and OCT scans). We were not able to include 
other advanced features like gonioscopy measurement, Retinal Ganglion Cell Layer (GCL) and GCL + Inner 
Plexiform Layer (IPL) thicknesses, OCT angiography [e.g. vessel density, blood flow index, flow-index, parapap-
illary deep-layer microvascular dropout (MvD)], and other risk factors like high myopia, high blood pressure, 
diabetes, Cardiovascular disease, previous eye surgery or injury associated with glaucoma55–57. Secondly, the 
study was conducted at the CFEH, Australia, where most of the patients were Caucasian and Asian; therefore, 
we could not explore the effect of ethnicity fully. In addition, we did not investigate the correlation of other dis-
eases (like cataracts, diabetes, etc.) with glaucoma. These might have some effect on our glaucoma classification 
results. Finally, though the DL result of the pilot study with the new segmented feature is promising for glaucoma 
detection, but our study is limited to only the first 6 B-scans out of 24 radial B-scans collected by the Heidelberg 
SD-OCT. The segmentation of all 24 scans and measurement of the mean ONH cup area of total B-scans could 
make our study more reliable and clinically stable-which is an aim of future study.

Overall, the study of deep learning using four identical features and segmented ONH cup area as an input, 
individually has been found promising for glaucoma diagnosis. The cross-sectional segmented ONH cup area 
can be added as a new clinical feature for diagnosing glaucoma and might enhance the accuracy if combined with 
2D data. In future, we aim to establish the findings in a large-scale clinical trial investigating the performance 
of deep learning by combining four features with the new segmented ONH cup surface area to detect glaucoma 
precisely regardless of different risk factors and ethnicity.
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