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NETWORK CONSENSUS IN THE WASSERSTEIN METRIC SPACE
OF PROBABILITY MEASURES\ast 

ADRIAN N. BISHOP\dagger AND ARNAUD DOUCET\ddagger 

Abstract. Distributed consensus in the Wasserstein metric space of probability measures on
the real line is introduced in this work. Convergence of each agent's measure to a common measure
is proven under a weak network connectivity condition. The common measure reached at each
agent is one minimizing a weighted sum of its Wasserstein distance to all initial agent measures.
This measure is known as the Wasserstein barycenter. Special cases involving Gaussian measures,
empirical measures, and time-invariant network topologies are considered, where convergence rates
and average-consensus results are given. This work has possible applicability in computer vision,
machine learning, clustering, and estimation.
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1. Introduction. The problem of distributed (network) consensus concerns a
group of agents that seek to reach agreement upon certain state variables of interest
by exchanging information across a network. Typically, the agents are connected via
a network that changes over time due to link failures, node failures, packet drops,
etc. For example, in distributed sensor networks the interaction topology may change
over time as individual nodes (or some subset of such) may be mobile or unreliable
or communication constraints are also present. All such variations in topology can
happen randomly and often the network is disconnected for some time. Studies on
the convergence of consensus algorithms (to a common agreed ``value"" at each agent)
are often motivated by such complex time-varying networks.

1.1. Background. The consensus problem has a long history, e.g., [1], which
is too broad to cover here. We highlight [2, 3, 4, 5, 6, 7] for further history and
background.

Many consensus algorithms have been proposed in the literature. References
[2, 4, 6, 8] focus on linear update rules (at each agent) and typically concern average-
consensus or consensus about some linear function of all initial agent states in Euclid-
ean space. The average-consensus problem has a natural relationship with distributed
linear least squares or distributed (linear) maximum likelihood estimation [9] and dis-
tributed Kalman filtering [10, 11, 12, 13]. Alternative consensus algorithms using
nonlinear update rules have been proposed and studied in [5, 14, 15, 16]. Here con-
sensus to general functions (e.g., the maximum or minimum etc.) of all initial agent
states may be sought as in [17, 18] and even finite-time convergence may be achiev-
able [18, 19]. One may also want to achieve consensus to some time-varying reference
signal as in [20, 21].

\ast Received by the editors June 13, 2019; accepted for publication (in revised form) June 22,
2021; published electronically September 21, 2021. A preliminary draft of this work appeared in a
conference proceedings as [33].

https://doi.org/10.1137/19M1268252
Funding: This work was supported by AFOSR/AOARD via AOARD-144042.

\dagger CSIRO and University of Technology Sydney, Broadway, NSW, 2007, Australia (adrian.bishop@
uts.edu.au).

\ddagger University of Oxford, Oxford, OX1 3LB, UK (doucet@stats.ox.ac.uk).

3261

D
ow

nl
oa

de
d 

03
/1

1/
22

 to
 1

63
.1

.2
03

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M1268252
mailto:adrian.bishop@uts.edu.au
mailto:adrian.bishop@uts.edu.au
mailto:doucet@stats.ox.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3262 ADRIAN N. BISHOP AND ARNAUD DOUCET

We note here that the majority of the literature on consensus concerns agreement
in Euclidean space as exemplified by the seminal papers of [2, 3, 4, 5, 6, 7]. However,
there are exceptions. The problem of synchronization is closely related to consensus
but typically deals with the problem of driving a network of oscillators to a common
frequency/phase. This work typically concerns nonlinear manifolds such as the circle.
A survey on synchronization is given in [22, 23] while consensus and synchronization
are related in [24]. Some other notable exceptions of consensus in non-Euclidean
spaces are [25, 26, 27, 28, 29, 30]. In particular, [26, 28] consider general nonlinear
consensus on manifolds by embedding such manifolds in a suitable high-dimensional
Euclidean space. In particular, this embedding approach is used to perform consensus
on the special orthogonal group and on Grassmann manifolds. In [30] a consensus
algorithm on the Riemannian manifold of (Gaussian) covariance matrices is introduced
under the Fisher metric (related to to the Kullback--Leibler divergence). The authors
in [25, 27, 29] study consensus in different metric spaces which is more closely related to
the present work. For example, the author of [29] develops an analogue of Wolfowitz's
theorem [3] for a class of metric spaces with nonpositive curvature which leads to a
notion of consensus in such spaces.

The (distributed) consensus problem (as referenced above) has been widely stud-
ied across the fields of control and optimization; e.g., see again the seminal arti-
cles [2, 3, 4, 5, 6, 7] published in the control literature, the references therein, and the
many (thousands) of citing articles. This extensive and broad interest in distributed
consensus protocols stems from interesting applications such as distributed estimation,
filtering [10, 11, 12, 13] and distributed information fusion [9], interesting applications
in distributed control [3, 4, 5, 7] and in distributed optimization [26, 30], and many
related topics too broad to discuss here; see also the survey articles [23, 28, 31].

1.2. Contributions. The main contributions of this paper are a novel algorithm
and convergence results for distributed consensus in the space of probability measures
with time-varying interaction networks. We introduce a well-studied metric known
as the Wasserstein distance which allows us to consider an important set of proba-
bility measures as a metric space [32]. The proposed consensus algorithm is based
on iteratively updating each agent's probability measure by finding a measure that
minimizes the weighted sum of its Wasserstein distances to the agent's own previous
measure plus all neighbor agents' measures. We show that convergence of the individ-
ual agents' measures to a common probability measure is guaranteed under a weak
network connectivity condition. The common measure that is achieved asymptotically
at each agent is the one that is closest simultaneously to all initial agent measures in
the sense of the Wasserstein distance. Focus in this work is on probability measures
over the real line.

This work has potential applicability in the field of computer vision and image
processing, distributed computation, clustering and data aggregation, distributed es-
timation, filtering and information fusion, distributed optimization in metric spaces,
and machine learning more broadly, among other fields discussed later. Applications
and related topics, particularly relevant in the Wasserstein domain, are discussed
later. However, the main focus of this article is on the general Wasserstein consensus
idea itself and its convergence.

This paper extends [33] with the addition of results detailing convergence rates
and network properties in which particular consensus values may be achieved.

1.3. Paper organization. The main contribution is given in section 2 where a
consensus algorithm in the space of probability measures is introduced, and its con-
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CONSENSUS IN THE WASSERSTEIN METRIC SPACE 3263

vergence is studied. In section 3 we establish for specific scenarios---initial Gaussian
measures; for empirical measures; and time-invariant networks---the exponential con-
vergence of this consensus algorithm and various computational aspects. In section 4
we discuss potential applications. Concluding remarks are given in section 5.

1.4. Notation and conventions. Consider a group of agents indexed in \scrV =
\{ 1, . . . , n\} and a set of (possibly) time-varying undirected links \scrE (t) \subset \scrV \times \scrV defining
a network graph \scrG (t)(\scrV , \scrE (t)). The neighbor set at agent i is denoted by \scrN i(t) = \{ j \in 
\scrV : (i, j) \in \scrE (t)\} . Time is indexed using \BbbN .

The graph adjacency matrix A(t) \in \BbbR n\times n obeys A (t) = A (t)
\top 
= [aij(t)], where

aij(t) = 1 \leftrightarrow (i, j) \in \scrE (t) and aij(t) = 0 otherwise. Implicit throughout is that
aii(t) = 1 for all i and t and thus i \in \scrN i(t) for all t. A weighted adjacency matrix
is denoted by W(t) = [wij(t)] \in \BbbR n\times n with aij(t) = 1 \leftrightarrow wij(t) > 0 and wij = 0
otherwise. We require

\sum 
j\in \scrN i(t)

wij(t) = 1 and assume that wii(t) > 0 for all i and t

so that wij(t) \in [0, 1) whenever i \not = j and for all t.
The adjacency matrix A (t) defines \scrG (t)(\scrV , \scrE (t)) and vice versa because aij(t) =

1 \leftrightarrow (i, j) \in \scrE (t) and aij(t) = 0 \leftrightarrow (i, j) /\in \scrE (t). The weighted adjacency matrix
defines \scrG (t)(\scrV , \scrE (t)) because wij(t) > 0 \leftrightarrow (i, j) \in \scrE (t) and wij(t) = 0 \leftrightarrow (i, j) /\in \scrE (t),
but \scrG (t)(\scrV , \scrE (t)) alone defines only the sparsity pattern of W(t).

Consider the sequence of graphs \scrG (tk),\scrG (tk+1), . . . ,\scrG (tk+T ) on the same vertex
set \scrV . The union of this sequence is denoted by \frakG (tk, tk+T )(\scrV ,\cup t\in [tk,tk+T ]\scrE (t)), i.e.,
\frakG (tk, tk+T ) is just a graph on the vertex set \scrV with edges \cup t\in [tk,tk+T ]\scrE (t). The se-
quence is said to be jointly connected if \frakG is connected.

2. Consensus in the Wasserstein space of probability measures. The
main contribution of this work is given in this section where we introduce and es-
tablish the convergence of a consensus algorithm in the Wasserstein metric space of
probability measures.

Suppose the state of agent i is given by a Radon probability measure \mu i defined
on the Borel sets of (\BbbR , d) where in this section we restrict d : \BbbR \times \BbbR \rightarrow [0,\infty ) to
be the usual Euclidean distance. Define the space of all such measures on (\BbbR , d) by
U(\BbbR ) and the subset of all such measures with finite pth moment by Up(\BbbR ) where
henceforth we assume that 2 \leq p < \infty . That is, Up is the collection of probability
measures such that

\int 
\BbbR d(x, x0)

p d\mu i(x) <\infty for a given, arbitrary, x0 \in \BbbR .
One can associate the Wasserstein metric \ell p : Up(\BbbR ) \times Up(\BbbR ) \rightarrow [0,\infty ) with Up

which is defined by

\ell p(\mu i, \mu j) =

\biggl( 
inf

\gamma \in \Gamma (\mu i,\mu j)

\int 
\BbbR \times \BbbR 

d(xi, xj)
p d\gamma (xi, xj)

\biggr) 1/p

,

where \Gamma (\mu i, \mu j) denotes the collection of all probability measures on \BbbR \times \BbbR with
marginals \mu i and \mu j on the first and second factors; see [34, 35].

Let us recall some standard results about the Wasserstein metric space (Up(\BbbR ), \ell p)
when p \geq 2; see, e.g., [34, 35, 36, 37].

1. (Up(\BbbR ), \ell p) is a complete and separable metric space.
2. limk\rightarrow \infty \ell p(\mu k, \mu ) = 0 is equivalent to weak convergence and convergence of

the first p moments.
3. Given two measures \mu i, \mu j \in Up(\BbbR ), then \ell p(\mu i, \mu j) = \ell p(\mu i, \mu )+ \ell p(\mu j , \mu ) for

some \mu \in Up(\BbbR ).
4. More generally, there exists a continuously parameterized constant speed path
\mu s \in Up(\BbbR ), s \in [0, 1], such that for \mu i, \mu j \in Up we have \mu s=0 = \mu i and
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3264 ADRIAN N. BISHOP AND ARNAUD DOUCET

\mu s=1 = \mu j and \ell p(\mu i, \mu j) = \ell p(\mu i, \mu s) + \ell p(\mu j , \mu s) \forall s \in [0, 1]. The measure
\mu s is known as the interpolant measure [38].

5. The interpolant measure defines a geodesic, and consequently, (Up, \ell p) is ge-
odesic.

6. (Up(\BbbR ), \ell p) has vanishing curvature in the sense of Alexandrov (a subset of
CAT(0)); see Proposition 4.1 in [36].

7. (Up(\BbbR ), \ell p) is simply connected; see [36, 37].
All metrics are continuous, and we recall that a constant speed geodesic in

(Up(\BbbR ), \ell p) is a curve \mu s : \BbbI \rightarrow Up parameterized on some interval \BbbI \subset \BbbR that satisfies
\ell p(\mu si , \mu sj ) = v| si  - sj | for some constant v > 0 and for all si, sj \in \BbbI .

Suppose the measure at agent i is updated by

(1) \mu i(t+ 1) = argmin
\eta \in Up(\BbbR )

\sum 
j\in \scrN i(t)

wij(t) \ell p(\eta , \mu j(t))
p

for all i \in \scrV where we recall that we assume
\sum 

j\in \scrN i(t)
wij(t) = 1 and wii(t) > 0 so

that consequently wij(t) \in [0, 1) whenever i \not = j. This operation is well defined as
discussed below.

Application of the update rule (1) to each agent i \in \scrV corresponds to the proposed
nonlinear (distributed) consensus algorithm. Note that we consider only undirected
(or bidirectional) network communications in this work for simplicity. Directed com-
munication may be studied as in, e.g., [5, 6], with additional conditions needed for
convergence in that setting [5].

2.1. Main result. We state here our main result.

Theorem 1. Consider a group of agents \scrV and network \scrG (t)(\scrV , \scrE (t)) where each
agent i has initial state \mu i(0) \in Up (\BbbR ) and updates its state \mu i(t) \in Up(\BbbR ) according
to (1). If for all t0 \in \BbbN the graph union \frakG (t0,\infty ) is connected, then there exists
\mu \ast \in Up(\BbbR ) such that

lim
t\rightarrow \infty 

\ell p(\mu i (t) , \mu 
\ast ) = 0

for any i \in \scrV .
The proof of Theorem 1 is given in the next subsection following the provision of

a number of supporting results.

2.2. Proof of the main result. Before proceeding to the general proof, we
note briefly here that the Wasserstein metric \ell p : Up(\BbbR ) \times Up(\BbbR ) \rightarrow [0,\infty ) may be
written as

\ell p(\mu i, \mu j) =

\biggl( \int 1

0

| F - 
i (x) - F - 

j (x)| p dx
\biggr) 1/p

,

where F - 
i (x) : [0, 1] \rightarrow \BbbR is the inverse cumulative distribution function for \mu i(t) \in 

Up(\BbbR ), defined in more detailed later. This form for \ell p(\mu i, \mu j) is given by Major
in [39]. It follows with p = 2 that the solution to (1) at any i \in \scrV and any t \in \BbbN has
an inverse cumulative distribution function given by

F - 
i (t+ 1)(x) =

\sum 
j\in \scrN i

wijF
 - 
j (t)(x)

for all x \in [0, 1], as proven more formally later. From this formulation one can derive a
kind of convergence result for consensus with the update rule (1); e.g., see Proposition
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CONSENSUS IN THE WASSERSTEIN METRIC SPACE 3265

2 later, its proof, and, e.g., (5) later and the surrounding discussion there. This
formulation of the metric in terms of the inverse cumulative distribution functions
conveys intuition on the space (Up(\BbbR ), \ell p), for example, implying immediately that
(Up(\BbbR ), \ell p) is isometric to a convex subset of the Banach space (Lp([0, 1]), d) and thus
inherits many familiar properties (which is rather unique to the case of measures on
\BbbR ).

For generality we proceed with the proof using more metric space/geometric argu-
ments that in many places may carry over to the more general case involving measures
on \BbbR n (albeit we do not explore those cases here). Where ideas do not carry over we
highlight that in this more general geometric formalism so as to distinguish where a
generalized proof may need to be extended.

The proof proceeds now via a series of supporting lemmas. Note that a subset
X \subset Up(\BbbR ) is convex if every geodesic segment whose endpoints are in X lies entirely
in X. The (closed) convex hull co(Y) of a subset Y \subset Up is the intersection of all
(closed) convex subsets of Up that contain Y.

Lemma 1. If \mu i(t) \in Up(\BbbR ), then the operation (1) is well defined in the sense
that it admits a solution and this solution is unique whenever (at least) one \mu j(t) \in Up,
j \in \scrN i(t) does not give support to small sets.1

Recall that (Up(\BbbR ), \ell p) is CAT(0) (indeed, it has the stronger property of vanishing
curvature, e.g., owing to its relationship with the Banach space (Lp([0, 1]), d)), in
addition to being uniquely geodesic, complete, and separable, i.e., (Up(\BbbR ), \ell p) is a
Hadamard space. This lemma then follows from the fact that (Up(\BbbR ), \ell p) is Hadamard,
and Fr\'echet averages such as those defined by operations of the form (1) are well
defined in such spaces; see page 334 in [43]. The existence and uniqueness of solutions
to (1) is also discussed in [40] more generally; see also [41, 42]. It is worth noting
in passing the related work in [25, 29] which deals with similar consensus topics in
CAT(0) spaces, and [27] which deals with consensus in a general class of convex metric
spaces.

The convex hull of the set of measures \{ \mu i\} , i \in \widetilde \scrV \subseteq \scrV , is defined by

co(\{ \mu i\} ) =
\biggl\{ 
argmin
\eta \in Up(\BbbR )

\sum 
i\in \widetilde \scrV 

wi\ell p(\eta , \mu i)
p| wi \geq 0,

\sum 
i

wi = 1

\biggr\} 
.

Lemma 2. Consider a collection \{ \mu i\} , i \in \widetilde \scrV \subseteq \scrV , of distinct measures in (Up(\BbbR ), \ell p).
The convex hull of \{ \mu i\} is co(\{ \mu i\} ) \subset Up(\BbbR ) and is isometric to an l-sided convex
polygon in \BbbR 2 with 2 \leq l \leq | \{ \mu i\} | .

Before proceeding with the proof we point to [44] for background on comparison
triangles and Alexandrov curvature of metric spaces. We also note that in a general
geodesic CAT(0) space, i.e., some arbitrary geodesic space with nonpositive curvature,
the preceding lemma is not true and the convex hull of a ``geodesic triangle"" defined

1A small set is defined [40] as a set of Hausdorff dimension 0. This condition only plays a
role in uniqueness and it is generally unnecessary [40, 41]. However, this requirement does exclude
empirical measures on \BbbR which arise in numerous applications relevant to this work (as discussed
later). Luckily, it is generically true (i.e., excluding particular, nongeneric, arrangements) that (1)
has a unique solution even in such cases; see [41, 42]. Note that if all inputs are discrete, we allow
for both common and uncommon supports. Going forward we will not repeatedly call on the need
for (at least) one initial measure to exclude support on small sets, and later results may be read as
implicitly assuming uniqueness (or implicitly assuming exclusion of sole support on small sets).
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3266 ADRIAN N. BISHOP AND ARNAUD DOUCET

by three points in such spaces may be of dimension greater than two;2 see Chapter
II.2 in [44].

Proof. Lemma 2 is a simple consequence of the vanishing curvature property of
(Up(\BbbR ), \ell p). We elaborate for completeness. (Up(\BbbR ), \ell p) has vanishing curvature in
the sense of Alexandrov (see Proposition 4.1 in [36]) which formally means that for
any triangle of points \{ \mu i\} , i \in \{ i1, i2, i3\} , and any point on the geodesic \mu s \in Up(\BbbR ),
s \in [0, 1] such that, for example, \mu s=0 = \mu i1 and \mu s=1 = \mu i2 , then the \ell p distance
between \mu i3 and \mu s, s \in [0, 1], is the same as the corresponding Euclidean distance
in a comparison triangle in \BbbR 2. Consider also any pair of points \mu j and \mu k with \mu j

on the geodesic connecting \mu i1 and \mu i2 and \mu k on the geodesic connecting \mu i1 and
\mu i3 with \{ \mu j , \mu k\} \cap \{ \mu i\} = \emptyset , i \in \{ i1, i2, i3\} . Then vanishing curvature also implies
\angle \mu i1

(\mu j , \mu k) is equal to the usual interior Euclidean angle at the corresponding vertex

in the comparison triangle in \BbbR 2. Here the angle \angle \mu i1
(\mu j , \mu k) is the Alexandrov angle

in arbitrary metric spaces; see Chapter II.1 in [44]. It now follows that the convex
hull of any triangle of points \{ \mu i\} in (Up(\BbbR ), \ell p) is isometric to a triangle in \BbbR 2; e.g.,
see Proposition 2.9 (Flat Triangle lemma) in [44]. Now define \frakC = \{ \Delta j\} to be the
collection of geodesic triangles in (Up(\BbbR ), \ell p) defined by every combination of three

points in \{ \mu i\} , i \in \widetilde \scrV \subseteq \scrV . Clearly, co(\{ \mu i\} ) = \cup j\Delta j . Consider also the corresponding
collection \frakC + = \{ \Delta +

j \} of comparison triangles in \BbbR 2. The Flat Triangle lemma implies

that this collection can be arranged in \BbbR 2 such that each angle \angle \mu i
(\mu j , \mu k) and each

distance \ell p(\mu i, \mu j) for all i, j, k \in \widetilde \scrV in (Up(\BbbR ), \ell p) equals exactly the corresponding
angle or distance in the comparison configuration of points in \BbbR 2. Obviously, the
convex hull of the comparison configuration is an l-sided convex polygon in \BbbR 2 with
2 \leq l \leq | \{ \mu i\} | and equal to \cup j\Delta 

+
j . Define the following map:

(2) f\ell p,d : co(\{ \mu i\} ) \rightarrow \BbbR 2, i \in \widetilde \scrV ,
so the restriction

f\ell p,d(\Delta j) = f\ell p,d(co(\{ \mu j1 , \mu j2 , \mu j3\} ))
= co(\{ f\ell p,d(\mu j1), f\ell p,d(\mu j2), f\ell p,d(\mu j3)\} ) = \Delta +

j

\forall j \in \frakC = \{ \Delta j\} is an isometry. Then

f\ell p,d(co(\{ \mu i\} )) = f\ell p,d(\cup j\Delta j) = \cup jf\ell p,d(\Delta j) = \cup j\Delta 
+
j

from the Flat Triangle lemma and the property of vanishing curvature. For any
two points in co(\{ \mu i\} ) there exists a \Delta j \in \frakC that contains them and the restriction
f\ell p,d(\Delta j) is an isometry to a convex subset of \cup j\Delta 

+
j . Thus, f\ell p,d is an isometry, which

completes the proof.

Lemma 3. Consider the convex hull co(\{ \mu j(t)\} ), with j \in \scrN i(t) at time t. If
agent i applies (1), it follows that \mu i(t+1) is strictly within the convex hull co(\{ \mu j(t)\} )
whenever | \{ \mu j(t)\} | \geq 2 and two agent states are distinct and wij(t) \in (0, 1).

2Our Euclidean intuition is generally wrong when it suggests the existence of a two-dimensional
convex hull for a triangle defined by three points and the geodesics connecting them (albeit this is
hard to visualize of course).
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Proof. It is enough to consider two agents3 i, j \in \scrV with (1) then given by

\mu i(t+ 1) = argmin
\eta \in Up(\BbbR )

wii(t) (\ell p(\eta , \mu i(t))
p  - \ell p(\eta , \mu j(t))

p) + \ell p(\eta , \mu j(t))
p

and to note that \eta must lie on a geodesic \mu s : \BbbI \rightarrow Up(\BbbR ). The proof relies on showing
that \mu i(t+ 1) /\in \{ \mu i(t), \mu j(t)\} when wii, wij \in (0, 1). The first term

wii(t) (\ell p(\eta , \mu i(t))
p  - \ell p(\eta , \mu j(t))

p)

is strictly negative at \eta = \mu i(t) and strictly increasing as \eta moves from \mu i(t) to \mu j(t)
and conversely \ell p(\eta , \mu j(t))

p is strictly positive at \eta = \mu i(t) and strictly decreasing
to zero as \eta moves from \mu i(t) to \mu j(t). Then for any wii \in (0, 1) and because \ell p is
continuous, it follows that there exists some \mu \varepsilon on \mu s with \varepsilon > 0 such that

wii(t) (\ell p(\eta , \mu i(t))
p  - \ell p(\eta , \mu j(t))

p) < 0,

| wii(t) (\ell p(\eta , \mu i(t))
p  - \ell p(\eta , \mu j(t))

p) | < \ell p(\eta , \mu j(t))
p

on \eta \in \mu s, s \in [0, \varepsilon ]. Consequently, \mu i(t+1) is strictly decreasing on \eta \in \mu s, s \in [0, \varepsilon ].
Hence for any wi1 \in (0, 1) the point \mu i(t) cannot be a minimum. The same argument
applies to \mu j(t).

The following is a simple consequence of the preceding result.

Corollary 1. Consider the convex hull co(\{ \mu i(0)\} ) of all initial agent states in
(Up(\BbbR ), \ell p). If each agent applies (1), it follows that co(\{ \mu i(t)\} ) \subseteq co(\{ \mu i(0)\} ) for all
t.

The next result concerns an importance special case of the main result.

Lemma 4. Suppose \scrG (\scrV , \scrE ) is time-invariant and connected. Suppose the state
of each agent is \mu i(t) \in Up(\BbbR ) and that each agent applies (1). Then there exists
\mu \ast \in Up(\BbbR ) such that for any i \in \scrV it holds that

lim
t\rightarrow \infty 

\ell p(\mu i (t) , \mu 
\ast ) = 0.

Proof. It almost goes without saying that \ell 2(\mu i(t), \mu j(t))
p = 0 \forall i, j \in \scrV with a

constant \mu i(t) in Up(\BbbR ) an equilibrium state of (1). Consider a Lyapunov-like function
\nu (\mu ) : Un

p (\BbbR ) \rightarrow \BbbR given by

(3) \nu (\mu ) = sup
\eta ,\chi \in \{ \mu i(t)\} i\in \scrV 

\ell p(\eta , \chi )
p

and note that \nu (\mu ) \geq 0 with \nu (\mu ) = 0 if and only if \mu i = \mu j for all i, j \in \scrV .4
By Corollary 1 it follows that \nu (\mu ) is nonincreasing along trajectories of (1). It
suffices to show \nu (\mu (t + n  - 1)) < \nu (\mu (t)) for each t. First, pick a t0 \geq 0 and
note co(\{ \mu i(t0)\} ) \subseteq co(\{ \mu i(0)\} ) and f\ell p,d(co(\{ \mu i(t0)\} )) \subseteq f\ell p,d(co(\{ \mu i(0)\} )) from
Corollary 1 and where f\ell p,d is an isometry given by (2). Without loss of generality, via

3This is because Fr\'echet averages in Euclidean space (on a set of input points) are associative,
and can be found iteratively by computing the average initially for a pair of points (in a larger set of
inputs), and then computing the average between this result and the next point (in the input set),
and so on (adjusting the weights defining the average each time); see [45]. Owing to Lemma 2, this
associativity property still holds here.

4We abuse notation here slightly. We use the shorthand \mu as the argument in \nu (\mu ) to represent
the collection of all agent measures \{ \mu i(t)\} i\in \scrV with | \scrV | = n.
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3268 ADRIAN N. BISHOP AND ARNAUD DOUCET

Lemma 2, suppose that f\ell p,d(co(\{ \mu i(t0)\} )) is an l-sided polygon in \BbbR 2 with 2 \leq l \leq | \scrV | 
on the collection of vertices \{ xj(t0)\} , j \in \{ 1, . . . , l\} , with xj(t0) \in \BbbR 2. If we chose a
t0 such that l = 1, then we would be done. Define the following set-valued function:

(4) hj(t) =
\bigl\{ 
i \in \scrV : f\ell p,d(\mu i(t)) = xj(t0)

\bigr\} 
\forall j \in \{ 1, . . . , l\} 

for each time t \geq t0. It is immediate from Lemma 3 that hj(t + 1) \subseteq hj(t) for
all j \in \{ 1, . . . , l\} ; i.e., more generally, no agent state f\ell p,d(\mu i(t)) which is not on
the boundary of the l-sided polygon at time t can ever reach this same boundary at
t + 1 as a consequence of Lemma 3. Note that | hj(t0)| \leq n  - 1 for all j \in \{ 1, . . . , l\} 
with l \geq 2 at t0. Recall the neighbor set at agent i is given by \scrN i(t). Because the
network is connected, for each k \in hj(t0) the neighbor set obeys \scrN k(t0) \not = \emptyset for each
j \in \{ 1, . . . , l\} . Then by Lemma 3 it follows that hj(t0 +1) \subset hj(t0) since at least one
k \in hj(t0) must be connected to an agent outside hj(t0) and this agent's state must
change \mu k(t0) \not = \mu k(t0+1) as a consequence of Lemma 3 such that f\ell p,d(\mu k(t0+1)) \not =
xj . At the next time t0 + 1 it holds again that for each k \in hj(t0 + 1) (assuming
hj(t0+1) \not = \emptyset ) the neighbor set obeys \scrN k(t0+1) \not = \emptyset for each j \in \{ 1, . . . , l\} . Then by
application of Lemma 3 it follows again that hj(t0 + 2) \subset hj(t0 + 1) \subset hj(t0). Thus,
hj(t + 1) \subset hj(t) is a strictly decreasing set-valued function unless hj(t) = \emptyset . By at
most time t0 + n - 1 it follows that hj(t0 + n - 1) = \emptyset and the argument can reset by
redefining t0. It follows that f\ell p,d(co(\{ \mu i(t0 + n  - 1)\} )) \subset f\ell p,d(co(\{ \mu i(t0)\} )) for all
t0 \geq 0. Following the proof of Lemma 2 we know co(\{ \mu i(t0 +n - 1)\} ) \subset co(\{ \mu i(t0)\} ),
and thus because we chose t0 arbitrarily \nu (\mu (t+n - 1)) < \nu (\mu (t)) for each t \in \BbbN unless
\mu i(t + n  - 1) = \mu i(t) \forall i, as desired. The existence of a strictly decreasing Lyapunov
function completes the proof.

The preceding lemma specializes this theorem to the case where the network
topology is connected and time-invariant (but otherwise arbitrary). This lemma is of
interest on its own in many applications in which the topology is static. Proof of this
lemma, given Lemmas 1--3, follows roughly the analysis of [5] on nonlinear consensus
in the usual Euclidean metric space.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The proof here relies on extending the previous lemma to the
case where \scrG (t)(\scrV , \scrE (t)) is time-varying and for all t0 \in \BbbN the graph union \frakG (t0,\infty )
is connected. Recall the same Lyapunov function (3) as used in the proof of Lemma
4 (we assume familiarity with the proof of Lemma 4 going forward).

We note that it suffices to show that there is a countably infinite number of finite
time intervals t \in [tq0,\widehat tq0], q \in \BbbN , such that \nu (\mu (tq0 + \widehat tq0)) < \nu (\mu (tq0)).

Pick tq0 \geq 0, q \in \BbbN , so f\ell p,d(co(\{ \mu i(t
q
0)\} )) is an l-sided polygon in \BbbR 2 with 2 \leq 

l \leq | \scrV | on the collection of vertices \{ xj(t
q
0)\} , j \in \{ 1, . . . , l\} , with xj(t

q
0) \in \BbbR 2. Recall

(4). Then define a sequence of times \{ tqs(j)\} , s(j) \in \BbbN , each greater than tq0 for each

j \in \{ 1, . . . , l\} with l \geq 2. The connectivity condition implies the existence of such a
sequence for each j with the property that if hj(t

q
s(j)) \not = \emptyset , there exists a k \in hj(t

q
s(j))

that is connected to an agent outside hj(t
q
s(j)). Then, this agent's state must change

\mu k(t
q
s(j)) \not = \mu k(t

q
s(j)+1) as a consequence of Lemma 3 and f\ell p,d(\mu k(t

q
s(j)+1)) \not = xj(t

q
0).

Then hj(t
q
s(j) + 1) \subset hj(t

q
s(j)) for all j \in \{ 1, . . . , l\} unless obviously hj(t

q
s(j)) = \emptyset . As

in the proof of Lemma 4 it holds that s(j) \geq n - 1 implies hj(t
q
s(j)+1) = \emptyset for all j. Let\widehat tq0 = min\{ t \in \BbbN : t > tq0, s(j) \geq n - 1 \forall j\} and note then that the interval t \in [tq0,\widehat tq0] is

finite owing to the connectivity condition. Moreover, as in the proof of Lemma 4 one
can then show that \nu (\mu (\widehat tq0)) < \nu (\mu (tq0)). Restart the argument by picking tq+1

0 to be
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CONSENSUS IN THE WASSERSTEIN METRIC SPACE 3269

equal or sufficiently close to \widehat tq0 and note that the connectivity condition then implies
the number of such (finite) intervals t \in [tq0,\widehat tq0] is countably infinite on q \in \BbbN .

We thus have a strictly decreasing Lyapunov function \nu (\mu (\widehat tq0)) < \nu (\mu (tq0)) on the
sequence of finite intervals t \in [tq0,\widehat tq0], q \in \BbbN , and this completes the proof.

3. Special cases and convergence details. First, given Theorem 1, it is worth
noting the following result.

Proposition 1. Consider a group of agents \scrV and network \scrG (t)(\scrV , \scrE (t)), where
each agent i has initial state \mu i(0) \in Up (\BbbR ) and updates its state \mu i(t) according to
(1). Suppose for all t0 \in \BbbN the graph union \frakG (t0,\infty ) is connected so that Theorem 1
applies and there exists \mu \ast \in Up(\BbbR ) such that limt\rightarrow \infty \ell p(\mu i (t) , \mu 

\ast ) = 0 for any i \in \scrV .
Then there exists some symmetric weight matrix W = [wij ] \in \BbbR n\times n with wij \in (0, 1)
and

\sum 
j\in \scrV wij = 1 for all i such that for any i \in \scrV 

\mu \ast = argmin
\eta \in Up(\BbbR )

\sum 
j\in \scrV 

wij \ell p(\eta , \mu j(0))
p,

where we emphasize that W is not (generally) the same as W(t) but it is solely
dependent on the sequence W(t), t \in \BbbN , and (possibly) the initial measures \{ \mu i(0)\} i\in \scrV .

Proof of this proposition is straightforward given the actual convergence result
stated in Theorem 1. This result states that the common measure which all agent
states converge to is within the convex hull of all initial agent measures in Up.

An interesting open problem is how one can design the evolution of W(t), t \in \BbbN ,
such that for a set of measures \{ \mu i(0)\} i\in \scrV the final weighting matrix W specifies a
limit \mu \ast , i.e., limt\rightarrow \infty \ell p(\mu i (t) , \mu 

\ast ) = 0 for any i \in \scrV , that is optimal, or desired, in
some sense (e.g., minimum variance over all possible W given \mu i(0) \in Up (\BbbR ), i \in \scrV ).
One example of ``average"" consensus is given later.

In the remainder of this section we consider convergence to particular limits of
interest, e.g., to a limit equally close to all agents' initial measures. We also consider
convergence speeds and we consider computational aspects of the update protocol for
given classes of input measures.

3.1. General convergence speeds and average Wasserstein consensus.
In this subsection we consider only undirected, connected, and time-invariant network
graphs \scrG (\scrV , \scrE ). We consider only measures with finite second moment, and we work
solely in the Wasserstein metric space denoted by (U2(\BbbR ), \ell 2).

The first result considers the convergence speed of the entire group of agents
under the protocol (1).

Proposition 2. Consider a group of agents \scrV and a connected time-invariant
network \scrG (\scrV , \scrE ) where each agent i updates its state \mu i(t) \in U2(\BbbR ) according to (1).
Then there exists \mu \ast \in U2(\BbbR ) such that for any i \in \scrV ,

lim
t\rightarrow \infty 

\ell 2(\mu i(t), \mu 
\ast ) = 0

at an exponential rate.

Proof. If \mu i(0) \in U2(\BbbR ), then the solution to (1) at any i \in \scrV and any t \in \BbbN can
be written in the form

\mu i(t+ 1)(M) =
\Bigl( \sum 

j\in \scrN i
wij T

i
j (t)

\Bigr) 
\#\mu i(t)(M)
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for all Borel sets M on (\BbbR , d); see [40]. Here (T i
j (t))\#\mu i(t) denotes the push forward

of \mu i(t) to \mu j(t) through the nondecreasing measurable map T i
j (t) : \BbbR \rightarrow \BbbR such that

(T i
j (t))\#\mu i(t) = \mu j(t). Obviously, we have (T i

i (t))\#\mu i(t) = \mu i(t). For any measure
\psi (t) dominated by the Lebesgue measure on \BbbR it follows that\Bigl( \sum 

j\in \scrN i
wij T

i
j (t)

\Bigr) 
\#\mu i(t)(M) =

\Bigl( \sum 
j\in \scrN i

wij Tj(t)
\Bigr) 
\#\psi (t)(M)

where (Tj(t))\#\psi (t) denotes the push forward of \psi (t) to \mu j(t); see [46]. Write the
cumulative distribution function for each \mu i(t) \in U2(\BbbR ) by Fi(x) : \BbbR \rightarrow [0, 1] and
Fi(x) = \mu i (( - \infty , x]). Define its inverse F - 

i (x) : [0, 1] \rightarrow \BbbR by

F - 
i (x) = inf

y
\{ y \in \BbbR : Fi(y) \geq x\} 

for all x \in [0, 1]. One can show [40] that T i
j (t) = F - 

j \circ Fi or if \psi (t) is uniform on [0, 1],

then Tj(t) = F - 
j and

\mu i(t+ 1)(M) =
\Bigl( \sum 

j\in \scrN i
wij F

 - 
j

\Bigr) 
\#\psi (t)(M)

with \psi (t) uniform on [0, 1]. It follows directly that the solution to (1) at any i \in \scrV 
and any t \in \BbbN has an inverse cumulative distribution function given by

(5) F - 
i (t+ 1)(x) =

\sum 
j\in \scrN i

wijF
 - 
j (t)(x)

for all x \in [0, 1].
Now one can stack these functions so F - (t + 1)(x) = WF - (t)(x)\forall x \in [0, 1]n.

From the assumed network connectivity condition and the weighting assumptions we
conclude that W is row-stochastic and primitive with a distinct maximum eigenvalue
of 1. The remaining n - 1 eigenvalues have an absolute value strictly less than 1. The
convergence rate of F - (t)(x) is determined by the convergence rate of Wt to the rank
one matrix 1u\top associated with the maximum eigenvalue. Writing

Wt =

n\sum 
i=1

\lambda tiviu
\top 
i = 1u\top +

n\sum 
i=2

\lambda tiviu
\top 
i ,

where \lambda i is the ith eigenvalue ofW, it then follows that \| Wt - 1u\top \| = \| 
\sum n

i=2 \lambda 
t
iviu

\top 
i \| 

vanishes exponentially at a rate dominated by the absolute value of the second largest
eigenvalue (which is strictly less than 1) and the proof is complete.

Note that a time-invariant network model is certainly not necessary for exponen-
tial convergence but we do not consider further generalization in this work. It is also
important to note that the time-varying network connectivity condition allowed in
Theorem 1 is also certainly too weak to ensure exponential convergence in general.
Indeed, Theorem 1 does not even require the network to be jointly connected until
some arbitrary finite future time.

Corollary 2. Consider a group of agents \scrV and a connected time-invariant
network \scrG (\scrV , \scrE ). Suppose that W is doubly stochastic and that each agent i updates its
state \mu i(t) \in U2(\BbbR ) according to (1). For any i \in \scrV , we have limt\rightarrow \infty \ell 2(\mu i(t), \mu 

\ast ) = 0
at an exponential rate where

\mu \ast = argmin
\eta \in U2(\BbbR )

1

n

\sum 
j\in \scrV \ell 2(\eta , \mu j(0))

2.

D
ow

nl
oa

de
d 

03
/1

1/
22

 to
 1

63
.1

.2
03

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSENSUS IN THE WASSERSTEIN METRIC SPACE 3271

Proof. This result follows again because linear consensus in \BbbR over a time-invariant
network with a doubly stochastic weighting matrix leads asymptotically to ``average""
consensus [9]. Looking at (5) we see that (nonlinear) consensus via (1) is related to
(linear) consensus in the space of inverse cumulative distribution functions. Moving
from the limiting inverse cumulative distribution function to a probability measure
does not change the limiting 1/n averaging coefficient.

This corollary provides sufficient conditions5 under which exponential convergence
to a measure is achieved and where the consensus measure achieved asymptotically
at each agent is an average distance to all initial measures. In this case, as per
Proposition 1, we have W = 1

n11
\top . We note that other consensus measures may be

more desirable, e.g., one may want to reach an agreement on that measure with the
smallest variance within the convex hull of all initial measures.

3.2. Convergence with Gaussian measures. In this subsection we consider
the flow of operation (1) when \mu i(0) is a Gaussian measure. As in the preceding
subsection, we consider only the case (U2(\BbbR ), \ell 2).

Suppose \mu i(t) \in U2(\BbbR ) for all i \in \scrV admits a Gaussian density of the form
\scrN (pi, Pi). Then it follows that \mu i(t + 1) \in U2(\BbbR ) is a Gaussian measure [38, 40] of
density \scrN (q,Q) where the updated mean and variance are given by

q =
\sum 

j\in \scrN i(t)
wij(t) pj ,

Q =
\Bigl( \sum 

j\in \scrN i(t)
wij(t)P

1/2
j

\Bigr) 2

.

One may find this result in the scalar case by studying (5) and noting in this case
that

F - 
i (t)(x) = pi + P

1/2
i

\surd 
2 erf - 1(2x - 1),

where erf(\cdot ) is the standard error function. The (weighted) averaging in (5) taken
pointwise in x is then just an averaging over the input means and standard deviations.

The following corollary then specializes those results in the preceding subsection
to Gaussian measures.

Corollary 3. Consider a group of agents \scrV and a connected time-invariant net-
work \scrG (\scrV , \scrE ). Assume W is doubly stochastic and \mu i(0) \in U2(\BbbR ) admits a Gaussian
density \scrN (pi(0), Pi(0)). Then \mu i(t + 1) \in U2(\BbbR ) in (1) admits a Gaussian density
\scrN (pi(t+ 1), Pi(t+ 1)), where

pi(t+ 1) =
\sum 

j\in \scrN i
wijpj(t),

P
1/2
i (t+ 1) =

\sum 
j\in \scrN i

wijP
1/2
j (t).

Moreover, we have for any i \in \scrV limt\rightarrow \infty \ell 2(\mu i(t), \mu 
\ast ) = 0 exponentially fast where \mu \ast 

satisfies

\mu \ast = argmin
\eta \in U2(\BbbR )

1

n

\sum 
j\in \scrV \ell 2(\eta , \mu j(0))

2.

This corollary collapses to a (classical) scalar average consensus algorithm [7] on
the mean and standard deviation at each iteration. More general results achieving

5A time-invariant network topology and a doubly stochastic weighting matrix. The time-
invariance constraint can be relaxed---it is just sufficient---but we do not consider generalization
here.
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average consensus in this Gaussian setting that accommodate time-varying networks,
finite-time convergence, etc. [4, 6, 7, 19] may be substituted.

Although the update (1) is linear (in mean and standard deviation) and closed
in the event of Gaussian input measures, this is not generally true. The consensus
problem (1) is, in general, inherently nonlinear.

3.3. Computational aspects of the update protocol. In the case of Gauss-
ian input measures, we have shown that the updating step of our consensus algorithm
can be performed in closed form and that the resulting algorithm resembles a partic-
ular case of standard linear consensus in \BbbR ; e.g., see [9].

Consider the important scenario where all the input initial measures are empirical
measures,6

\mu N
i (0) (dx) =

1

N

N\sum 
j=1

\delta xi
j(0)

(dx) ,

where \delta y (dx) denotes the delta-Dirac measure located at y. In this case, the mini-
mization in (1) can be solved exactly. First, we define the order statistics,

xi1,\ast (t) \leq xi2,\ast (t) \leq \cdot \cdot \cdot \leq xiN,\ast (t)

corresponding to \{ xij(t)\} , 1 \leq j \leq N . Then, with notation as in (1) we define

x i
k,\ast (t) =

\sum 
j\in \scrN i(t)

wij(t)x
j
k,\ast (t)

for all 1 \leq k \leq N . Then,

\mu N
i (t+ 1) (dx) =

1

N

N\sum 
j=1

\delta x i
j,\ast (t)

(dx) .

This computation involves only sorting and averaging of numbers in \BbbR .
We note as an aside that for empirical measures in \BbbR n, for any integer n \geq 1, the

minimization in (1) can still be solved exactly via a finite-dimensional linear program
[47, 48] and the resulting measure is again an empirical distribution.7 However, the
computational requirements of this linear program (in \BbbR n, when n \geq 2) may explode
quickly with the number of input measures and the number of atoms of these measures;
see [47, 48, 49, 50]. Numerous fast approximation methods have been derived for
computing the barycenter update (1) itself [42, 45, 51, 52]. The details of these
algorithms are beyond the scope of this work, but it follows that the update (1) itself
is thus computable with empirical measures in higher dimensions \BbbR n. Albeit not the
focus of this article, we note in passing that convergence of the distributed protocol
(1) with empirical measures on \BbbR n follows readily from arguments on the convergence
of Euclidean (linear) consensus [5, 49].

Consider now, more generally, arbitrary input measures on \BbbR . The optimization
problem (1) typically does not admit a closed-form solution. However, it is convex
[40, 42] and thus numerical methods/approximations are feasible and already exist

6Interestingly, if each input measure is defined by a single Dirac (in (U2(\BbbR ), \ell 2), i.e., with p = 2),
then the classical (linear) consensus algorithm in \BbbR is recovered, e.g., as in [5, 9]. Of course, typically
one is interested in more general empirical input measures.

7As discussed previously, for special, certainly nongeneric, arrangements of discrete measures the
minimization in (1) may not have a unique solution (though a solution always exists) [42].
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in a number of cases; see [41, 42, 52]. The issue of convergence under approximate
update steps is unclear and beyond the scope of this work; but practically one would
intuit that close approximation leads to close convergence. While convexity of the
minimization problem is advantageous in general, for measures on \BbbR there are yet
further virtues. The update in (5) is typically computable in closed form and thus
we ``almost"" have a general closed-form expression for (1). The relationship between
(1) and the inverse cumulative distribution in (5) is the basis for the solution with
empirical measures on \BbbR given in the preceding paragraph. This relationship has also
been explored in [40, 41, 42] with further example computations, and as a lead into
more general computational results.

4. Discussion and applications. The output of each iteration of operation
(1) is known in the literature as the Wasserstein barycenter. Similarly, the limit
\mu \ast \in Up(\BbbR ) to which all agents converge upon repeated iteration of operation (1)
is also a Wasserstein barycenter (on a fully connected graph of all agent's initial
measures). In other words, this work studies the convergence properties of a consen-
sus algorithm concerned with distributed (iterative) computation of the Wasserstein
barycenter over a (possibly) time-varying, arbitrary, network topology. We consider
undirected networks in this work for simplicity; but directed networks may be studied
as in, e.g., [5, 6], with additional conditions needed for convergence in that setting [5].

While this is the first such study in this direction, potential applications/uses for
the Wasserstein barycenter (itself) have been considered previously in a number of
fields [42, 45, 48, 49, 50, 51, 51, 52, 53, 54], and this list is by no means exhaustive.

Arguably the most popular domain in which the Wasserstein barycenter has found
applications is in computer vision and image/video processing [42, 48, 51]. We do not
consider specifics here, but the interested reader may consult [42], where numerous
examples and a detailed discussion are given. It is noted [42] that state-of-the-art
advancements in a number of related problems have arisen via the use of Wasserstein
barycenters. Importantly, both Gaussian and discrete measures find applicability
through the Wasserstein barycenter in computer vision and image/video processing;
again, see [42].

Applications in machine learning and Bayesian statistics have also made use of
the Wasserstein barycenter [41, 52, 53], and it is envisioned that this technology (and
the related optimal transportation problem) will find wider adoption in this field. In
this setting, distributed (or even parallel) computation of the Wasserstein barycenter
is likely important; e.g., distributed Bayesian computation on large data sets is the
subject of [53].

Related work on consensus in spaces of probability distributions has been con-
sidered in the field of distributed estimation and information fusion. Suppose each
agent starts with a (posterior) probability measure associated to some common un-
derlying event of interest. Then one may like to combine all these measures (which
amount to each agents' estimate and/or belief of the underlying event) into a common
probability measure that captures all the agents' beliefs; this is often called opinion
pooling. Related work in [55] considers the application of consensus to the problem of
distributed Bayesian computations. In [56, 57, 58] the consensus algorithm from [55]
is further extended and applied in distributed estimation and filtering. The Bayesian
ideas in [55, 56, 57, 58] are related to so-called log-linear opinion pools which are
related to the barycenter defined with respect to a Kullback--Leibler divergence (in an
analogous fashion to the Wasserstein barycenter) [58]. A Monte Carlo approximation
of the consensus algorithm from [55] was studied in [57]. The log linear opinion pool
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for distributed information fusion was extended in [59, 60] to the general barycenter
of a Bregman divergence (of which the Kullback--Leibler-based barycenter is a special
case). Monte Carlo approximations were also considered in [59, 60]. While Breg-
man and Kullback--Leibler divergences have Bayesian-type interpretations, it is also
possible to consider information fusion and distributed estimation in the context of
Wasserstein barycenters as in [41, 49, 50]. As shown herein, and in [50], information
fusion with the Wasserstein barycenter has advantageous computability properties in
the space of empirical distributions. Further study of the Wasserstein barycenter in
the context of information fusion and estimation is an ongoing topic.

We finally highlight that the ``consensus"" terminology throughout this article is
used in the sense of network consensus and agreement as in [1, 2, 3, 4, 5, 6, 7].
This differs from the topic of consensus (or ensemble) clustering or consensus aggre-
gation [61, 62] which may also make use of the Wasserstein barycenter [63, 64] for
distributional clustering, etc. The latter topic may be an application of networked-
type consensus as considered herein.

5. Concluding remarks. Distributed consensus in theWasserstein metric space
of probability measures was introduced in this paper. It is shown that convergence
of the individual agents' measures to a common measure value is guaranteed if a
relatively weak network connectivity condition is satisfied. The measure that is
achieved asymptotically at each agent is the measure that minimizes a weighted sum
of its Wasserstein distances to these initial measures and is known as the Wasserstein
barycenter in the literature.

Finally, we note that following [5], it would be straightforward to consider an
extension to the case in which the network topology is directed and one expects anal-
ogous results (concerning connectivity) to apply in the Wasserstein space considered
herein. For brevity, and notational simplicity, we do not explore this scenario further.
Moreover, one may seek analogous results in the Wasserstein metric space of mea-
sures defined on the Borel sets of (\BbbR m, d) for some m \geq 2. We conjecture that similar
results hold in this case. However, while many of the lemmas used herein carry over
immediately, this generalization is not immediate. Indeed, the Wasserstein metric
space in such cases is positively curved, so it does not resemble Euclidean space and
it is not CAT(0).
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