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Abstract: One of the important aspects of realizing smart cities is developing smart homes/buildings
and, from the energy perspective, designing and implementing an efficient smart home area energy
management system (HAEMS) is vital. To be effective, the HAEMS should include various electrical
appliances as well as local distributed/renewable energy resources and energy storage systems, with
the whole system as a microgrid. However, the collecting and processing of the data associated
with these appliances/resources are challenging in terms of the required sensors/communication
infrastructure and computational burden. Thanks to the internet-of-things and cloud computing
technologies, the physical requirements for handling the data have been provided; however, they
demand suitable optimization/management schemes. In this article, a HAEMS is developed using
cloud services to increase the accuracy and speed of the data processing. A management protocol is
proposed that provides an optimal schedule for a day-ahead operation of the electrical equipment of
smart residential homes under welfare indicators. The proposed system comprises three layers: (1)
sensors associated with the home appliances and generation/storage units, (2) local fog nodes, and (3)
a cloud where the information is processed bilaterally with HAEMS and the hourly optimal operation
of appliances/generation/storage units is planned. The neural network and genetic algorithm (GA)
are used as part of the HAEMS program. The neural network is used to predict the amount of
workload corresponding to users’ requests. Improving the load factor and the economic efficiency
are considered as the objective function that is optimized using GA. Numerical studies are performed
in the MATLAB platform and the results are compared with a conventional method.

Keywords: energy storage; electrical appliance; home area energy management system (HAEMS);
neural network; renewable energy resources; smart cities

1. Introduction

Electricity/energy management systems involve a series of related programs used by
the operator of the electric grid and its customers to improve the efficiency and performance
of the power/energy systems [1,2]. In this way, both the electricity supplier and the
consumer will benefit more [3]. The energy management helps to obviate the requirement
of constructing new/costly power stations on the production side, and reduces the energy
price and related penalties for consumers on the consumption side.

A significant portion of the energy produced by distributed and renewable energy
resources is consumed locally, which improves the efficiency of electric grids. However,
the control/management of the local inverter-interfaced energy resources and consumers
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is a matter of concern that can be intelligently managed in the context of smart grids
and micro-grids [4,5]. Current and future smart grids play important roles in delivering
electricity from suppliers to industrial, commercial, and residential areas efficiently, reliably,
and securely [6–8]. With the help of such smart grids on a micro/macro scale, the use of
energy is reduced for families and business owners, and more renewable energy resources
are integrated into grids.

Residential loads, as the major portion of electric power demand, have been consid-
ered in energy management programs [9,10]. Home energy consumption depends on the
physical characteristics of the building, such as its geographical location, design, and con-
struction [11]. Also, it is affected by the efficiency of the electrical appliance, the behavioral
pattern, and the cultural background of its occupants [12]. About 10–30% in electricity
consumption can be reduced just by changing the behavior pattern of residents [13].

The home area energy management system (HAEMS) is an emerging technology
for the realization of future smart homes, benefiting from several areas of computa-
tion/communication, including amplitude measurement intelligence (AMI), internet do-
main, and home area networking (HAN) [14]. HAEMS receives network signals and
sends control actions to smart devices. This system monitors/modifies the residents’ con-
sumption habits until control decisions become independent of HAEMS. It uses different
solutions for different users, such as energy-saving and a comfortable lifestyle. HAEMS
aims to produce an optimal solution for combining the weight of goals in a time horizon
based on a series of user inputs and control actions [15].

Digital two-way communication between power companies and conventional home
appliances facilitates the joint operation of intelligent energy management systems. Ad-
vanced smart grid components enable users to improve their energy efficiency and to take
part in different programs such as {time-of-day} pricing to reduce their energy costs [16,17].
Many electricity scheduling schemes have been proposed in both indoor and residential
areas [18]. An optimization algorithm has been proposed to minimize the cost of users’
electricity bills by considering their convenience level as problem constraints [19]. How-
ever, the authors have scaled the waiting time limits as per the user’s convenience. Some
methods are proposed based on game theory for optimal energy management in residential
buildings and that justify their general suitability by giving several reasons [20]. Similarly,
a home appliance sharing algorithm for home load scheduling is introduced in [21] to
minimize power consumption costs. Several aspects of smart homes, including creating
local access to energy and smartening the components of the house, improving the energy
efficiency of the house, actively monitoring and strengthening the home environment, and
the social welfare of the residents in the smart home have been considered [22]. According
to studies, in recent decades, researchers have considered optimizing energy consumption
in the presence of different loads and using different technologies to reduce common costs
or to improve the quality of the delivered electric power/energy [23]. The methods used to
design an intelligent energy management program can be divided into artificial intelligence
and classical mathematical methods:

• Artificial intelligence and heuristic methods may reach a local sub-optimal point due
to the local search for problem-solving or the use of expert experiences [24]. Fuzzy
control methods, [25,26], genetic algorithm (GA) [27], and particle swarm optimiza-
tion (PSO) [28,29] are examples of this category. The performance of these methods
depends on the user experience and is weak against system changes and probability.

• Classical methods, on the other hand, are more complex but offer optimal and reliable
solutions. For example, the linear integer linear programming method [30] has been
used to optimize distributed generation sources’ energy production and consumption
to reduce common costs.

Further, smart apartments equipped with wind and solar-type generation units, stor-
age batteries, and electric cars can be connected to the network; however, the important
factor of common welfare and comfort has not been considered [31]. Also, a general
model is used for building energy management that can optimize and compromise user
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convenience and the minimizing of energy costs. In this paper, the increasing use of
grid-connected hybrid vehicles and their positive effects, such as not needing to consume
fossil fuels and the use of energy stored in the vehicle to meet home consumption loads,
have been considered. It is noteworthy that charging the battery of a significant number
of vehicles is a big risk for the smart grid [32]. Simultaneous charging of batteries may
cause a sudden overload of the distribution grid [32]. Especially if it coincides with the
peak consumption time. This concurrence can cause congestion of the distribution grid.
Thus, with proper planning, the destructive effects of electric vehicles can be reduced con-
siderably [33]. In the optimal operation of home loads with electric vehicles and devices,
energy storage has been done in response to the prices and the time of use. Energy storage
and electric vehicles can interact and exchange energy between the smart home and the
distribution network. However, the study was conducted without considering the sources
of distributed production [34].

The primary purpose of this research is to provide an intelligent service for control-
ling the working schedule of home appliances in cloud computing to minimize the cost
of electricity. Although this seems obvious and valuable even without using advanced
technologies such as the cloud platform, the internet-of-things, and wireless sensor net-
works, implementing such a service would be efficient only with the provision of modern
technologies. The main reason for this is that the timing of the activity of electrical devices
will not be possible without the possibility of their automatic operation due to the urgent
need for humans to control electrical devices. Today, however, due to introducing smart
washing machines, smart dishwashers, and automatic vacuum cleaners, many tasks can be
performed automatically with no human intervention. Second, with the internet-of-things,
remote access to the home appliance is possible, and its control is also provided by central
applications. Service in the cloud can implement this central control and management [35].
Monitoring the environment and specific tasks that will need to be more visible will re-
quire using environmental sensors as wireless sensor networks. Applications of wireless
sensor networks in this regard, including technologies related to control and monitoring
of children, sick people at home, aged care, and home temperature control, etc., require
the use of networks of sensors. According to the source, the dynamic resource allocation
mechanism in the supercomputer has been implemented [36].

In this work, an intelligent mechanism for dynamic allocation and management in the
cloud is proposed to manage/allocate cloud services for the energy management system.
The amount of daily demand for allocation of the virtual machines to each customer
for the source’s valid data is provided. Thus, implementation of the proposed service,
given that it is implemented in a wireless manner using sensor networks and internet-of-
things platforms as the essential technologies, depends on the specialized allocation of
resources in the supercomputer and scheduling algorithms. Further, the following factors
are considered in the program for optimal operation of the electrical equipment of smart
residential homes under welfare indicators:

• Actual load profiles are used, whereas, in most articles, the average consumption
of appliances has been used. Cloud service provides the computational/storage
requirements to deal with large data;

• Local renewable energy resources, such as solar–wind hybrid systems, with their
generation profiles, are considered in the management program as part of the smart
home network;

• The battery energy storage systems are involved in the program and their optimal op-
eration is determined including optimal charging and discharging at different tariffs;

• Economics and load factor improvement are considered as the objective functions of
the problem.
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2. The System Description and Materials

The system under study, consisting of a smart home with electric appliances, is shown
in Figure 1a. The proposed method, based on a three-layer HAEMS, as shown in Figure 1b,
includes

(1) The access layer or the layer in which the sensors and actuators are located. The
terminals are responsible for collecting data from the sensors of the intelligent building
system and appliances. The collected data are sent to the next layer (fog layer) via
Wi-Fi. Then, any equipment that is a part of the building can manage the smart
terminal (socket) in the same part.

(2) The fog layer, in which all kinds of servers are located for computing and data storage;
this sorter can easily manage the same batch layer of fog and avoid malfunctioning,
and any input data can be stored in the data centre instantly. Then, using the received
general data, a package of data is created to quickly issue the necessary decisions and
commands based on the stored data to respond to the target equipment.

(3) The cloud layer of the data centres that are controlled and monitored by HAEMS. To
achieve the goal of optimizing the HAEMS process of the building system, the data
packet is sent from the top layer. Therefore, it provides more data for decision-making.
In the third layer, the haze dots have an important feature of data processing capability
compared to the second layer data, therefore it requires more data and connection
to the cloud layer in our proposed model. Therefore, we can treat a point in the
third layer as an independent unit from an intelligent building. The third layer is the
cloud where the data received from fog layers are analyzed through the HAEMS and
scheduled by GA and embedded neural networks. After planning, a smart insight
into the first layer will emerge to optimize the status of the monitored points.
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2.1. Mean Squared Normalized Error (MSNE)

The normalized value of the mean squared error is the normalized amount of squared
error, which is usually used to evaluate the predicted continuous values. The squared
value of the error makes it possible to consider a penalty for a more significant error so that
the difference between the simulated value and the actual value, considering a power of
two, reflects the magnitude of the error. Hence, the performance is evaluated accurately by
considering the magnitude of the error and not its direction. Also, by normalizing the mean
squares of the error, the evaluation is generalized, and the performance of the algorithm is
generally evaluated based on the accuracy of the proposed method and not the data used.
Calculating the normalized value of the mean squares of the error yields:

MSNE =
∑N

i=1 (Yi − Ti)
2

∑N
i=1 (Yi − Y)2 . (1)

where Ti is, the actual output value and Yi is the simulated input value for the i member.

2.2. Linear Regression Matches the Predicted Value and the Actual Value of the Variable Value

The complementary measure for the accuracy or MSNE is a measure called the
linear regression of the simulated value and the actual output value of the approximating
algorithm. In fact, in addition to accuracy, another measure of reliability is needed to
approximate a constant value. Reliability is calculated by a criterion called regression of
correlation coefficients. The degree of reliability is numerical in the range (1 and −1). It
is, in fact, an indicator for evaluating the degree of linear correlation between the actual
value and the estimated value of a parameter. If R = 0, there is no linear relationship
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between the two values, but if R = 1 or R = −1, there is a stable positive or negative
linear relationship. The optimum value for R is one, which indicates excellent reliability
in the model. Calculating the reliability criterion through linear regression of correlation
coefficients is:

R =
1
N ∑N

i=1(Yi − T)(Ti − Y)√
1
N ∑N

I=1 (Yi − T)2 ×
√

1
N ∑N

i=i (Ti − T)2
(2)

where R is a linear regression to measure the performance of the algorithm, Ti is the
actual output value, and Yi is the simulated input value for the ith member. Also, T is the
actual output value and Y is the simulated input value of one step before step i. MSNE
and R regression accuracy criteria can jointly demonstrate the performance of supervisor
learning algorithms, and each alone may be flawed. Hence, if each is used independently to
describe the version of the machine learning tool (here is the predictive neural network), it
is incomplete and not sufficient to ensure the proper implementation of the method. Thus,
both criteria are used together and as a compliment, and the neural network performance
indicator will predict the workload. According to the source [24], the performance of
dynamic resource allocation can be examined in terms of the request rate rejection and the
number of resources wasted.

2.3. The Cloud Rejection Rate

The number of rejected requests is the primary measure of the efficiency of the dynamic
resource allocation mechanism in the cloud. Thus, the number of rejected requests relative
to the total number of proposals submitted to the cloud calculates the amount of this
performance criterion. The following equation calculates this:

Rjt =
Rt

Ut
(3)

where Rt represents the number of rejected requests and Ut represents all requests received
at time t.

2.4. The Number of Wasted Resources in the Cloud

The number of resources wasted is the ratio of the remaining empty capacity in the
servers to the total capacity of the cloud servers:

WR =
∑N

i=1(Capi − Ldi)

∑N
i=1 Capi

(4)

where N is the total number of servers, Ldi is the current load on the physical server i, and
Capi is the total capacity of the physical server i.

The neural network to predict workload needs to be trained first, and then its per-
formance is measured by running on a test data set. However, the data set is based on
the descriptions in the previous section of this paper; it has a percentage of noise to make
the simulated data more realistic. It seems that averaging several times results in better
neural network performance. The complete execution of the neural network on the Moore
database should be evaluated so that the randomness of the noise can be more effective in
accurately representing the overall performance neural network [33]. Thus, in this study,
the neural network is run 20 times for different amounts of noise. Its efficiency is considered
in terms of best performance and average efficiency shown in Table 1.
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Table 1. CPU workload predictor neural network performance.

The Amount of Noise Average Efficiency Best Performance

R R MSNE MSNE R
9879/0 9864/0 0077/0 0064/0 without noise
9801/0 9721/0 0083/0 0079/0 5%
9639/0 9513/0 0109/0 0094/0 10%
9398/0 9241/0 0174/0 0123/0 15%

3. Objective Function and Constrains

I: Objective function

All intelligent electrical appliances are controlled and programmed by the central
control of the smart home network. The objective function is presented as:

Objective Function Min =
SP
LF

(5)

where SP represents the cost of operating a smart home and LF represents the load factor.
SP is defined as the difference between the cost of purchasing energy from the upstream
grid CEP with the profit from the sale of energy to the upstream grid CBS and the profit
from participation in the valley filling program CDM.

SP = CEP − CBS − CDM (6)

LF =
average of load

Peak of load
(7)

Increasing the load factor can reduce the peak consumption or increase the average
consumption by filling the valleys of the total load profile.

Charging and Discharging the Battery

Charging and discharging is optimal when charging happens during off-peak hours
and discharging at rather expensive/peak hours; for the battery from the time of charge or
discharge and charge level is defined as:

Soc(h) =

{
ηch × Pch(h) + Soc(h − 1) ; Pch(h) ≥ 0

Pch(h)
ηdisch

+ Soc(h − 1) ; Pch(h) < 0
(8)

Soc(h): Battery charge level per hour h. (KWH);
ηch: Battery charge efficiency;
Pch(h): Battery charge or discharge rate per hour h. (KWH);
ηdisch: Battery discharge efficiency:
where Pch with positive (negative) sign indicates the charge (discharge) mode for the battery.

II: Problem constrain:

â Load clipping constrain: This upper and lower boundary limit in load clipping must

be observed at any time. In the below equation, ∆Pclip
t,n is the amount of load from n

that is curtailed at the moment t. Uclip
n is also a variable that determines whether or

not the load participates in the load clipping strategy, which is one if it participates
and zero otherwise. rclip

up Is also the upper bound of the load clipping strategy specified
by the user.

0 ≤ ∆Pclip
t,n ≤ Uclip

n rclip
up Pt,n (9)

â Complete load transfer constraints: this means the complete transfer of load from
one time to another in order to avoid the activity of electrical appliances in the peak
load. In this strategy, it is assumed that the shape of the load does not change, it is
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only transferred from time to time. Load participation in the load transfer strategy is
shown in Equations (10) and (11). In the equation below, the parameter ∆Ptrans

t,n shows
the difference between the load n, before and after the transfer at moment t. Utrans

n .
also indicates the load participation in the transfer strategy, the value of which is
zero or one. It can be one when the load can be turned off and transferred to another
hour, and, vice versa, when the load is not transferable (for example for Central air
conditioning), this index is zero. Also, in the following equations, the parameter yn,∆t
indicates whether the load n has been transferred by ∆t or not. The range of this index
is zero or one.

∆Ptrans
t,n = Utrans

n

(
Pt,n − ∑

∆t
yn,∆tPt+∆t

)
(10)

∑
∆t

yn,∆t = utrans
n 1 ≤ ∆t ≤ 23 (11)

â Charging and discharging constrain: this constraint for the ESS system according to
the minimum and maximum charge rate expresses a relationship as follows that, in
the following relationships, Pch,max is the maximum battery charge rate in kW and
Pdisch,max is the maximum battery discharge rate in kW. Also, EVBC battery capacity
in kW. Finally, the EVSOC min is the minimum amount allowed to charge the battery
in kWh.

Pdisch,max ≤ Pch(h) ≤ Pch,max (12)

[Soc(h − 1)− EVSoc min]× ηdisch ≤ Pch(h) ≤
EVBC − Soc(H − 1)

ηch
(13)

4. Problem Solving Algorithm

In formulating the electrical task scheduling by the genetic algorithm, each sub-
solution (the moment the electrical task starts) is defined as an individual within a set of sub-
solutions called a chromosome. The main idea behind the genetic algorithm is that these
chromosomes must include the subroutines that provide the most overall optimization
during several stages of change. In fact, after a few steps of the algorithm, the algorithm’s
output should be the moments of performing electrical tasks so that the cost of power
consumption is minimized. Each time the algorithm is implemented, each chromosome
introduces a new generation of sub-solutions. In each generation, chromosomes are
evaluated and allowed to survive and reproduce in proportion to their value. Generation
is done in the discussion of the genetic algorithm with intersection three and mutation four
operators. Top parents are selected based on a fitness function.

In the genetic algorithm, a group of points is randomly selected in the search space.
A sequence of sub-solutions is assigned to each point in this process, to which genetic
operators are applied. The resulting sequences are then decoded to find new issues in the
search space. Finally, based on the objective function value in each, the probability of their
participation in the next step is determined. Here, the objective function is the amount of
empty capacity together relative to the total capacity.

The proposed protocol is implemented through the following steps (Figure 2):

1. The data of each device are collected based on their characteristics, i.e., the type of
load and their basic operating hours;

2. All the types of equipment are classified and the values of the desired level of opera-
tion for each appliance are entered from the customer or residents’ point of view;

3. All the 24-h data of the renewable hybrid system are called, and the amount of stored
power is collected;

4. The amount of power requested from the network is determined;
5. In the next part of the formulation, the optimization problem is solved using the

genetic algorithm, and optimal energy management and optimal timing for optimal
operation of smart home equipment are achieved;
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6. The HAEMS protocol is performed and, in the next step, according to the parameters
trained in the artificial neural network, the values of MSNE, Rjt, R, WR are checked to
be in the acceptable range. If the values are in the unauthorized range, the determined
power of the main grid and the amount of power requested are increased by 5%, and
this process continues until the evaluation parameters of the proposed protocol are
converged and minimized;

7. The data of each device are layered by cloud computing taken bilaterally from the
HAEMS protocol. The second is sent from the second layer to the first layer, and,
in this part, which is the physical level of equipment in the smart home, they are
controlled and operated optimally;

8. The 24-h time limit is checked, and the program is terminated.
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5. Classification of Household Electrical Appliances

Household appliances are divided into responsive and non-responsive loads according
to their capabilities in the load response program. Responsive loads such as washing
machines and water heaters can transfer their consumption from time to time in response
to the received tariff. Devices such as televisions and personal computers, which are
usually used based on the customer’s wishes and without considering tariffs, are called
non-responsive devices. Although the time and amount of consumption of these devices
cannot be controlled, several time intervals can be suggested as operating times to the
owners of these devices. Here, it is assumed that the subscriber turns on his device at
one of the recommended times. Responsive appliances are of two types: (1) appliances
that only have their on/off status determined by the program provided, such as washing
machines. These devices consume their energy consumption at each interval when they
are on. The subscriber selects the allowable operating time for these devices. For some, the
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operating intervals of these devices should be consecutive and, for some, can be incoherent.
For example, a washing machine must have a working clock to wash clothes properly.
However, the clothes dryer can do its job at non-consecutive intervals. (2) Another category
of responsive devices is devices whose consumption level in each allowable performance
interval is determined by implementing the program. These devices have an acceptable
range of energy consumption in each interval. The customer can also select the desired
level of consumption of the device in each interval. To ensure the well-being of the joint, the
total deviation from this desired joint amount can be limited to a certain amount. Among
the devices in this category is the electric cooling/heating system.

6. Energy Storage Systems

It is expected that a modern family in an SMG is equipped with some storage/production
devices; for example, energy storage systems such as batteries or plug-in hybrid electric
vehicles (PHEVs). To keep returns high, battery, charge/discharge, and charge mode (SOC)
should be limited to a specific range as follows:

PBatt,ch ≤ Pch,max, ηchuBatt(h) (14)

PBatt,dch(h) ≤
(

Pdch,max

ηdch

)
(1 − uBatt(h)) (15)

Socmin ≤ Soc(h) ≤ Socmax (16)

where Pdch and Pdh are the maximum charge and discharge power of the battery and Socmin
and Socmax are the upper and lower limits of the battery SOC. Similarly, ηch and ηcdh are
battery charge and discharge efficiencies. uBatt Is a binary variable that shows the battery
status at h (“1” charge and “0” = discharge). Due to the above limitations, the SOC update
function is equal to:

Soc(h + 1) = Soc(h) +
PBatt,ch(h)− PBatt,ch(h)∆hsetp

EBatt
(17)

where, EBatt is the battery capacity in kWh. Although a PHEV is essentially the same as
the battery, a few additional limitations (such as a cut-off signal) indicate that the PHEV
battery can only be charged/discharged when it is at home, and Socmin hourly indicates
the minimum PHEV battery power must also be satisfied.

F is scheduling tasks and residential load model.
Residential loads are generally divided into two categories:
(1) Schedulable loads (removable and interruptible tasks);
(2) Fixed loads.
While loads such as refrigerators and stoves are considered fixed loads, space heating

and cooling, vacuum cleaners, washing machines, and clothes dryers are examples of
timed tasks that provide the most electricity in a household. They consume and behave
differently in response to changes in electricity prices over time [24].

7. Numerical and Simulation Results
7.1. Modeling the Production Capacity of the Wind-Solar Hybrid System

The power generation regime of the wind-solar hybrid system separately for each
wind turbine and solar system is given in Figure 3, respectively. In this section, the first
interval shows 00:00 to 00:15 in the morning.



Smart Cities 2021, 4 1183

Smart Cities 2021, 4, FOR PEER REVIEW  11 
 

While loads such as refrigerators and stoves are considered fixed loads, space heating 
and cooling, vacuum cleaners, washing machines, and clothes dryers are examples of 
timed tasks that provide the most electricity in a household. They consume and behave 
differently in response to changes in electricity prices over time [24]. 

7. Numerical and Simulation Results 
7.1. Modeling the Production Capacity of the Wind-Solar Hybrid System 

The power generation regime of the wind-solar hybrid system separately for each 
wind turbine and solar system is given in Figure 3, respectively. In this section, the first 
interval shows 00:00 to 00:15 in the morning. 

 

 

Figure 3. Solar power generation regime and wind turbine power generation regime. 

7.2. Functional Range 
One day will turn into 96 lot 15-min intervals. The interval starts at 6:00 a.m., and the 

last interval is at 5:00 a.m. 
  

0

0.2

0.4

0.6

0.8

1

1.2

1 3 6 13 20 25 30 36 38 42 46 50 53 55 57 60 63 65 67 71 75 80 83 89 92 96

po
w

er
(p

.u
)

time(each-slots)=15min

wind Regime

0

0.2

0.4

0.6

0.8

1

1.2

1 4 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 64 76 82 91 96

PO
W

ER
(P

.U
)

TIME(EACH-SLOTS=15MIN)

solar Regime

Figure 3. Solar power generation regime and wind turbine power generation regime.

7.2. Functional Range

One day will turn into 96 lot 15-min intervals. The interval starts at 6:00 a.m., and the
last interval is at 5:00 a.m.

7.3. Bars and Their Profiles

Dishwasher: has three primary performance cycles. This time is considered a transfer-
able load (Figure 4).
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Washing machine: which works for washing, rinsing, and then drying, this time is
also portable (Figure 5).
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Refrigerator (cuft-6.15) with freezer: the refrigerator is a non-transferable and clipping
appliance, and operates 24 h a day (Figure 6).
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Figure 6. Load profile of refrigerator.

Central air conditioning: The use of this device depends on the weather and ambient
temperature and is non-transferable (Figures 7 and 8).
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7.4. Hybrid Micro-Grid

The proposed objective function, and the constraints considered for the HAEMS,
including the wind/solar micro-grid, such as taking the energy storage by the genetic
algorithm for the discussed input loads, have been solved. The price of electricity at
different tariffs is shown in Figure 9.
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The parameters and numerical values for solving the problem are shown in Table 2.

Table 2. The parameters and numerical values for solving the problem.

Wind turbine capacity installed 1 kW
The capacity of an installed photovoltaic

system 1 kW

Minimum battery charge 0.2 kWh
Charging rate every 15 min 0.5 kW

Charging tool efficiency 0.9 Per Unit
Battery capacity 2 kWh

The cost of discharging or selling energy to the
grid 1.03*daily-price

Profits from participation in consumption
reduction 0.04*daily-price

All loads in the HAEMS and peak, medium, and low load times in the network base
state and the initial assumption are shown in Figure 10.

Optimization, charging, and discharging of storage and load shift and load clipping
operations on different loads according to the information given in the table below have
been done.

According to Table 3, the central air conditioning is on at 96 time slots of 15 min, i.e.,
the whole day and night, and it is not possible to shift. Still, by adjusting the temperature,
its consumption can be reduced, or its consumption can be increased by applying a lower
temperature. Therefore, it is possible to reduce the load. The refrigerator is on all day,
and it is not possible to shift or cut part of the load. The dishwasher can have both load
shift and load clipping according to its settings. This equipment can shift and transfer
loads from 67 to 96, and up to 2.0 saws for load reduction and clipping are considered. For
washing machines and dryers from range 17 to 96, load transfer capacity and function are
considered. It is assumed that the maximum load reduction is regarded as 30% according to
the settings of this car. In the following, we will deal with the results obtained by applying
the proposed simulation conditions, and the obtained results will be discussed:
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Figure 10. Total HAEMS load in the ground state.

Table 3. Starting and ending times for mixed time range schedule.

Main Profile Max Shift Max Reduction Profile Length Range

AC 0 0.3 96 [1 96]
Refrigerator 0 0 96 [1 96]
Dishwasher 29 0.2 7 [67 96]

Clothes washer 79 0.3 8 [17 96]
Oven Morning 0 0 2 [3 7]
Oven evening 3 0 6 [53 61]

7.5. Central Air Conditioning (AC)

After optimization, the AC power consumption profile was obtained as follows
(Figure 11).
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Dishwasher: The profiles before and after optimization are compared; the result is
shown in Figure 12.
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7.6. Electric Oven

Total load, i.e., the sum of HAEMS loads is shown in Figures 14 and 15, and for com-
parison with profiles such as simulation and proof of the efficiency of the Figures 16 and 17
method, the load profile is more linear and the peak load is reduced.
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Figure 17. Total HAEMS load after and before optimization.

ESS is in charging mode during off-peak hours and is scheduled in discharge mode
during peak hours. The maximum and minimum charge limits are 2 and 0.2 kW. Figure 18
clearly shows that, at the end of the day and low load rates, the charging mode strategy is
planned by HAEMS.
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Figure 19. Difference between power generation and consumption in HAEMS in a 24 h day.

Figure 20 also shows the amount of power received from the main network to the
smart home network. As has been made clear, the proposed method with optimal timing
for the day ahead, in addition to high speed and accuracy, has been able to minimize the
amount of power required from the main network. This has resulted in a 45% reduction in
the purchasing power of the network from the main network. Figure 21 shows the total cost
per day with and without considering the proposed HAEMS-based optimization method.
As it turns out, this significantly reduced the cost of electricity. With this idea, customers
save about $2 and 86 cents a day in payment.
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8. Conclusions

In this paper, the HAEMS protocol was presented using cloud computing. The data
of home appliances were analyzed by using cloud computing, which was exchanged
bilaterally from the HAEMS protocol. An optimal schedule was made for a day ahead
for the optimal operation of the electrical equipment of smart residential houses under
welfare indicators. The efficiency of the neural network was evaluated in the form of
averaging, several times, the complete implementation of the neural network on the Moore
dataset, and, finally, welfare indicators such as MSNE, Rjt, R, and WR were evaluated. In
addition to welfare indicators, the proposed protocol with high accuracy, speed, and proper
convergence at the level of welfare indicators was able to minimize the amount of power
requested from the main network, which has resulted in a 45% reduction in the purchasing
power from the grid. On the other hand, the total cost per day, regardless of the proposed
HAEMS-based optimization method, has shown that the electricity costs were significantly
reduced. With this method, customers save about $2 and 86 cents a day in payment. The
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proposed method was implemented by GA algorithm and artificial neural network in
MATLAB software and the results proved the efficiency of the proposed method.
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