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Abstract—Service-oriented computing (SOC) is a paradigm for
developing applications by reusing existing services. Through
a standardized publishing, discovery, and composition process,
SOC enables the orchestration of multiple (including third-party)
services to constitute new applications. Hereby the quality of a
composite service is fundamentally determined by its constituent
services. To satisfy users’ non-functional requirements, it is
important to identify the optimal set of constituent services
to participate in the composition. Practical applications usually
require the optimal set to be identified with high efficiency and
accuracy. This poses challenges to existing service composition
methods as they either provide no accuracy guarantee or are
inapplicable to large-scale problems. The challenges become more
evident when considering service graphs, which contain multiple
execution paths that could multiply the computational overhead.
In this paper, we propose a hierarchical skyline-based approach
for highly efficient service composition, which maintains and
reuses varying levels of service skylines to accelerate service
composition. We discuss how the skylines can be selectively
computed, lazily updated, and efficiently retrieved for reuse.
Experiments demonstrate the effectiveness of our approach.

Index Terms—service composition, quality of service, hierar-
chical skyline, on-demand Updating

I. INTRODUCTION

The prevalence of Service Oriented Architecture (SOA) and

the increasing adoption of web service related technologies as

the de facto standard have encouraged the exposure, discov-

ery, and consumption of wrapped-functionalities of business

applications for heterogeneous systems integration and inter-

organizational interoperability [1]. As the ability of individual

services is limited, the horizontal coupling of services via

formal service process implementations (such as BPEL) is

regarded as a promising means of satisfying complex appli-

cation requirements [2]. The potential value-added (such as

reduced engineering cost and fast customization ability) of

such coarse-grained services, in turn, arouses the need for

the efficient design and implementation of such services. The

need becomes more urgent as the number of available services

grows drastically on the Web. With the recent advances in

cloud computing, Web of Things, and RESTful technologies,

various applications can now be easily made available to

the Web at low costs, with their functionalities exposed as

APIs and consumable via simple URL strings. Until now,

service composition has been a key research problem in

various dynamic and configurable environments, such as cloud

services, edge computing, and ad-hoc networks [3].
Generally, two approaches exist for service composition: the

planning approach and the selection approach. The planning

approach is a functional matching process that examines the

functional compatibility between services to determine the

feasible execution paths. The selection approach selects an

appropriate set of services from categories of functionally-

equivalent services to bind with a service process. In this study,

we assume that a service process has been produced with

different execution paths of it identified1 based on a unified,

consistent service ontology; so we focus on improving the

efficiency and optimality of service composition. In particular,

we aim at deciding on which execution path to select and

which services to bind with the execution path to optimize the

composite service’s QoS. This problem is non-trivial for two

reasons. First, service composition inherently suffers from low

efficiency due to its geometrically expanding problem-scale.

Second, it is more challenging to determine the optimal service

composition solution on service graphs as the two issues,

namely the selection of the optimal execution path and the
selection of the optimal constituent services, are correlated. In

particular, the former defines how the services are orchestrated

and confines the scope of services that can be selected; the

latter determines how well an execution path can meet the

application requirements and makes it possible to differentiate

the execution paths in terms of QoS.

1Since most service processes can be represented as graphs (typically the
directed acyclic graphs or DAGs), we will hereafter call the service processes
that contain multiple execution paths service graphs, for short.
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In this paper, we propose to selectively precompute and

cache hierarchical skylines to accelerate QoS-driven service

composition over service graphs. In a nutshell, we make the

following contributions:

• We propose a hierarchical skyline-based approach, which

recomputes, maintains, and reuses varying levels of sky-

lines to accelerate QoS-driven service composition over

service graphs.

• We present the system architecture, models, and related

algorithms to implement the approach. In particular, we

employ dynamic programming and heuristic methods to

cache only the most efficiency-effective skylines and use

a lazy updating strategy to revalidate and update the

cached skylines on-demand.

• We conduct comprehensive experiments to evaluate the

proposed approach. Results show the approach signifi-

cantly reduces the repetitive computation in the same do-

mains at affordable costs and therefore greatly improves

the efficiency of existing service composition methods.

The rest of the paper is organized as follows. Section II

motivates our work with a running example. Section III

introduces the architecture and components of our approach.

As the further details, the methods for preparing skylines

and making caching decisions are presented in Section IV,

with the detection and updating methods of reusable skylines

introduced in Section V. We report our experimental studies

in Section VI, overview the related work in Section VII, and

finally, give some concluding remarks in Section VIII.

II. A MOTIVATING EXAMPLE

We describe the motivation of our approach through a

product information retrieval scenario in a mobile environment

(based on [4]). In this scenario, users can retrieve the spec-

ification, reviews, or aggregated information of a product by

providing a picture (e.g., captured by a phone) of the product’s

barcode and/or product-type. Table I lists the different types of

functionalities that support this process, where each function-

ality corresponds to a group of functionally equivalent services

with varied QoS. Fig. 1 shows the service graph formed by

matching these functionalities. Note that, the functionalities

with initial inputs (i.e., JPG) and final outputs (e.g., Integrated
Info.) represent the entries and exits of the service graph,

respectively. In particular, this example contains three exists.

Apparently, there are several execution paths for retrieving

different types of product information in this service graph.

The following shows some examples2:

(1) Sandy wants to retrieve reviews on a product through his

phone. Two execution paths can individually serve this goal,

i.e., CR1 → PR1 → RR and CR2 → PR2 → RR.

(2) Bob wants to retrieve the specification of a product

through his phone. Two execution paths can individually serve

this goal, i.e., CR1 → PR1 → SR and CR2 → PR2 → SR.

2For the sake of simplicity, we denote by F1 → F2 the sequential execution
of the two functionalities (i.e., F1 precedes F2) in a composite process.

CR2 PR2

PR1CR1

IMJPG

Review

SR

RR

Integrated

info

Specification

Fig. 1: The product information retrieval process

(3) Michael wants to retrieve aggregated information about

the specification and reviews of a product. Here comes four

execution paths that can individually serve this goal, i.e.,

CR1 → PR1 → RR → IM, CR2 → PR2 → RR → IM, CR1 →
PR1 → SR → IM, and CR2 → PR2 → SR → IM.

(4) Johnny is a regular user who frequently makes the above

three types of requests. His friends often do the same.

Each execution path in the above examples contains only

some of the functionalities of the service graph, representing a

subgraph. Given each subgraph, the optimal service set should

be identified and evaluated for each execution path before

the optimal execution path can be determined. Traditional

service selection methods independently compute for each

execution path, with little information shared between the

different computations. This incurs multiplied computation

load when compared with the computation regarding a single

execution path. In fact, given a specific application domain,

some functionalities are frequently requested by users and

some users may raise similar or identical requests, like what

Johnny and his friends do in example (4). This provides a clue

of reusing the shared computation regarding different requests

to accelerate the QoS optimization of service composition.

Moreover, consider a system that has numerous active users.

Requests regarding the same or similar service subgraphs may

occur frequently. Such situation makes the shared computing

even more meaningful.

III. APPROACH

Our approach aims at computing and reusing hierarchical

skylines to accelerate the QoS optimization of service com-

position within the same application domain. While skyline

services represent the Pareto-optimal subset of services, their

superiority is independent of users’ constraints and preference

on QoS. This makes skylines3 generic enough to serve requests

with varying constraints and optimization objectives of service

composition.

A. Architecture

Fig. 2 shows the system architecture of our approach, which

comprises components in a three-phase service composition

procedure. The first phase prepares the skyline services for

fast retrieval and reuse in future compositions. Promising

functionalities and subprocesses are identified from historical

composition and indexed as nodes in a cache model, named

CSTR, with their corresponding skylines precomputed and

3A service skyline (or skyline for short) is a set of skyline services on a
specific task, where a task refers to either a functionality or a subprocess.
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TABLE I: Specifications of the functionalities involved in the retrieval process

Functionality Function Type Input Output
CR1 Code recognition Picture Barcode
CR2 Code recognition Picture Typecode
PR1 Product ID retrieval Barcode Product ID
PR2 Product ID retrieval Typecode Product ID
RR Review retrieval Product ID Product review
SR Specification retrieval Product ID Product specification
IM Information aggregation cReviews, Specification cAggregated information

retrieve

Reusable skyline

detection

New Process &

QoS requirements
Historical

Processes

Caching decision

making

Service

repository

CSTR

Log of changes

On-demand

skyline updating
Precomputed

skylines

Skyline-based

service selection

Add into

query

index

Hierarchical

skyline computation

trigger

update

record

reset

Composition

solution

read

reset

retrieve

read

Phase 2

Phase 1

Common subprocess

identification

Phase 3

Fig. 2: Architecture for hierarchical skyline-based service

composition

stored as records in the main memory. The CSTR is a DAG,

which serves as a dictionary where each node has access to

its corresponding skylines for reusable skyline detection and

updating. The second phase deals with new requests regarding

a specific service graph. The service graph is matched with

CSTR to detect a set of reusable skylines. These skylines

are then checked against the log of changes (which records

the changes of available services of each functionality) in

the service registry. Whenever a skyline is detected as non-

optimal, it is updated according to the log to ensure accuracy.

Finally, the third phase selects the optimal execution path

and services to fulfill the composition, without having to

recompute the detected skylines from scratch. The first phase

is performed offline on a periodical basis while the other

two phases are triggered at real-time by service composition

requests.

B. Cache Model

The precomputed skylines should be well-organized to facil-

itate future retrieval and reuse. In this approach, we establish a

topological indexing structure called CSTR, where each node

represents a functionality or subprocess and contains access

to the corresponding skylines. In CSTR, a node pointing to

another indicates the former is a functionality or subprocess

of the latter. Suppose P1 and P2 are two subprocesses with

their skylines, say SL1 and SL2, both cached. By referring

to the inclusion relationship between processes, we define the

supporting relationship between P1 and P2 as follows: If P1 is

a functionality or subprocess of P2, we say SL1 supports SL2

or there exists a supporting relation from SL1 to SL2. Appar-

ently, it is a transitive relationship—we can infer from “SL1

supports SL2” and “SL2 supports SL3” that “SL1 supports

SL3”. Since the subprocesses are of different granularities, the

nodes and their relations in CSTR form a layered structure,

where lower-level skylines can be used to compute upper-level

ones; so besides id and the functionality/subprocess it stands

for, each node records the last update time, usage frequency,

and entry to the corresponding skylines. As an example, Fig 3a

shows the CSTR structure for indexing all levels of skylines

of the product info. retrieval process (Fig. 1), where CSTR
follows the same hierarchical structural patterns of the service

process.

C. Algorithm

Traditional service composition methods only reuse skylines

at the functionality level. In this paper, we propose to reuse

varying levels of skylines (indexed by CSTR) to accelerate

service composition. Algorithm 1 shows the procedure for

hierarchical skyline-based service selection (HSBS). It first

initializes three sets to hold the functionalities, logs, and

reusable skylines, respectively, relevant to the service graph

G. Given the service graph G, the reusable skylines (repre-

sented by the common functionalities and subprocesses of G
and the indexing structure CSTR) are first detected (line 2).

Since the log only records changes regarding single services,

Algorithm 1 continues to find the log related to the detected

skylines, i.e., all the log related to functionalities covered by

the identified skylines (lines 3-8), and update these skylines

layer by layer according to the log (lines 9), when necessary,

to make them accurate. Then, service selection is performed

regarding each execution path (denoted by p) of the service

graph (lines 10-13), and finally, the optimal solution is the best

solution among the optimal solutions of all execution paths

(line 14).

In above description, Algorithm 1 employs three external

algorithms to detect (i.e., RSDA) and update (i.e., ISUA)

the reusable skylines, and to perform service selection on

each execution path (i.e., ESSA). We introduce the first two

algorithms in the following sections but omit the introduction

of ESSA, as it can be easily fulfilled by existing QoS-based

service selection methods.

Let F (SLi) be the set of functionalities covered by the i-th
reusable skyline in MR, i.e., SLi. By introducing hierarchical

skylines, the number of tasks involved in service selection is

reduced from the original number, say N , to N − | ∪SLi∈MR

F (SLi)|+ |MR|, and the number of candidate services may

3
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CR1 PR1

Sequence1 Sequence2

CR2 PR2

Branch1

Parallel1

RR SR IM

Sequence3

(a) A sample CSTR structure (b) Sample skyline service reduction

Fig. 3: Indexing structure and skyline reduction for the motivating example

Algorithm 1 Hierarchical Skyline-Based Service Selection

(HSBS)

Input: a service graph G, the indexing structure CSTR, and

the log of changes Log.

Output: the optimal service composition solution.

1: FS ← ∅, Logset← ∅, RS ← ∅
2: MR← RSDA(G, CSTR)
3: for e ∈ MR do
4: FS← FS ∪ the functionalities covered by e in CSTR
5: end for
6: for t ∈ FS do
7: Logset← Logset ∪ records related to t in Log
8: end for
9: ISUA(CSTR, Logset)

10: for p in G do
11: RSp ←ESSA(CSTR, p)

12: RS ← RS ∪ {RSp}
13: end for
14: return (p∗, RSP∗), where RSP∗ is the best of

{RSp}p=1,2,··· ,PG
(suppose PG is the number of execution

paths in G).

also decrease. As an example, Fig. 3b shows the bottom-

up skyline computation process for the subprocess encircled

by the dashed rectangle in Fig. 3a, where each functionality

has originally two skyline services. Each s(v1, v2) represents

a service’s quality values on two QoS attributes. For either

of the two attributes, a higher value indicates better quality.

By computing the hierarchical skylines, the total number of

candidate services is reduced from 8 to 4. Since execution

paths in the same service graph often overlap, given a skyline

shared by different execution paths, even if it requires updat-

ing, it is updated only once but reused immediately by different

computations regarding these execution paths. This indicates

it is economical to cache and reuse the shared skylines.

IV. SKYLINE PREPARATION

In this section, we describe methods for identifying promis-

ing subprocesses from historical service graphs and set up

criteria for determining which corresponding skylines to index

and precompute for future reuse.

A. Identifying Common Subprocesses
Intuitively, the more frequent a subprocess occurs in histor-

ical service graphs, the more likely the corresponding skylines

are to be reused in the future. Given a set of historical service

graphs, we identify and organize the frequently occurring sub-

processes in two steps: (1) construct a topological structure of

all subprocesses and functionalities, i.e., CSTR∗ by comparing

and merging the historical service graphs and obtain their

usage frequency, and (2) refine the structure to keep only the

nodes that have the potential to be effective in improving the

efficiency. The skylines corresponding to these nodes can then

be precomputed, stored into records, and indexed for reuse by

a caching decision-making process (Section IV-B).
In particular, step (1) constructs CSTR∗ by repeatedly merg-

ing it with the historical service graphs, one at a time. The

hierarchical structural patterns of service graphs (as shown

in Fig. 3a) provide the rationale of identifying the common

functionalities and subprocesses of CSTR∗ and a service graph

in a bottom-up manner to reduce repetitive computation. The

time complexity of this step is O(M2), where M is the

number of nodes in the final CSTR∗. Step (2) directly removes

the non-recurring functionalities and subprocesses, which are

apparently efficiency-ineffective, from CSTR∗. During this

process, the nodes in CSTR∗ are checked one by one with

respect to their occurrence frequency in a top-down manner,

where a node is removed from CSTR∗ by the following rules:

• Both the top-layer (with zero outdegree) and the bottom-

layer nodes (with zero indegree) are removed directly,

with all their related edges also removed from CSTR∗ .

• A middle-layer node is removed with all its direct chil-

dren handed over to each of its parents, meaning all its

children nodes turn to directly support each of its parent

nodes.

The time complexity of step (2) is also O(M2).

B. Making Caching Decisions
Caching decisions are subject to both effectiveness and size

constraints. The cached skylines should effectively reduce the

computation load and meanwhile be kept at a reasonable

size. Usage frequency, granularity, and costs of retrieving

and updating together define the effectiveness of a skyline.

Generally, skylines of finer-granularities are more likely to

be reused and incur less cost, but their ability to reduce the

number of tasks and candidate services is also limited.

4
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To predicting the impact of caching a skyline is a chal-

lenging task as the impact of the cached skylines is usually

interdependent. It becomes more complicated when varying

levels of skylines and their maintenance costs are concerned.

For this reason, the cached skylines are better measured

as a group. We define the optimal caching strategy as the

problem of maximizing the overall impact of computation load

reduction under constraints on the total cache size, i.e.,

maximize
i

I(∪|CSTR∗|
i=1 {ti · xi})

s.t.

|CSTR∗|∑

i=1

size(ti) · xi < sizemax and xi ∈ {0, 1}
(1)

where |CSTR∗| is the number of nodes in CSTR∗, ti is the

i-th node in |CSTR∗|, which corresponds to the i-th skyline

to be cached, sizemax is the maximum size of skylines, I(·)
is the function that evaluates the overall impact of caching a

group of skylines, and xi is an indicator, which equals 1 if the

skyline of ti is cached and 0 otherwise.

This problem is a variant of the 0/1 knapsack problem

and can be solved directly using dynamic programming. The

general time complexity of a dynamic programming solution

is O(|CSTR∗| ·sizemax ·C(I)), where C(I) is the complexity

of calculating I(·). Note that, in Eq. (1), we do not define con-

straints to ensure each cached skyline is efficiency-effective, as

dynamic programming automatically attends to this issue. Due

to the difficulty of defining an accurate evaluation function,

I(·), and due to the severe time complexity of dynamic

programming, we define a heuristic method to bypass the

above complication. In particular, we define the heuristics as

follows:

hi = |F (ti)| · fus
ti (2)

where F (ti) is the set of functionalities covered by the node ti
and fus

ti is the usage frequency of ti in historical compositions.

Note that, although both the reduction effect and the mainte-

nance cost are related to F (ti), a larger |F (ti)| has a positive

effect on the performance as long as fus
ti > fud

ti , where fud
ti is

the update frequency of the corresponding skyline of ti. For

this reason, we cache only the skylines that satisfy the above

inequation. Since both factors in Eq. (2) positively affect the

caching probability of a skyline, a high hi value indicates a

better skyline.

To implement the heuristic method, we simply add the sky-

lines with higher hi values in priority to the cache. Intuitively,

a skyline is worth caching only if the benefits outweigh the

costs. However, since hi is a relative measure, it can only be

used to prioritize the skylines without being able to predict

whether it is worthwhile to cache a specific skyline. Although

we can limit the skylines to cache by restricting their total size,

the size we define may not always be optimal. In this paper,

we address this issue empirically by periodically attempting to

remove or add a skyline from/to the cache. If the performance

improves after the removal (resp., addition) of a skyline, we

continue trying removing (resp., adding) a new skyline from

(resp., to) the cache; otherwise, the newly removed (resp.,

added) skyline would be recovered (resp., removed) and the

next-round trial would be about adding (resp. removing) a

skyline instead. The trials continue until neither adding or

removing a new skyline could improve the performance of

service composition.

After solving the optimization problem, every functionality

or subprocess whose skyline is not to be cached is removed

from CSTR∗. The remaining functionalities and subprocesses

and their relations together form CSTR. We compute the

skylines following the structural relations of their correspond-

ing nodes in CSTR, i.e., higher-level skylines are computed

from lower-level ones. This bottom-up computing procedure

is analogical to that of dynamic programming. We will not

introduce in detail the computing methods due to the limited

space.

V. SKYLINE REUSE

Given a new request regarding a service graph G, our

approach first matches G with CSTR to detect the reusable

skylines, and then updates the detected skylines according

to the log of changes since their last updates in the service

registry.

A. Reusable Skyline detection

To detect the reusable skylines is a simpler case of CSTR
construction (Section IV-A). The former matches a service

graph with CSTR to detect their common subprocesses, so

as to enable the reuse of their corresponding skylines. The

latter iteratively merges the historical service graphs one by

one into CSTR by adding new nodes and their relations

to form a structured collection of all process patterns in a

specific domain. Identifying the common subprocesses is the

fundamental technique that enables this merge.

Algorithm 2 illustrates the procedure for reusable skyline

detection It first initializes a set to hold the final results (line

1) and then identifies the common functionalities (lines 2-

5), where CommonSet contains the common functionalities

between the two node sets and is gradually added to the

result. Following that, the common subprocesses are detected

iteratively in a bottom-up manner and added to the final result

(lines 6-11).

The time complexity of Algorithm 2 is O(V 2 log V ), where

V is the bigger number of nodes in CSTR and in G. Specially,

among the detected reusable skylines, only those of the largest

granularities are reused. For example, given a sequential

process CR1 → PR1 → SR and the CSTR shown in Fig. 3a,

only two skylines that correspond to sequence(CR1, PR1)
and SR would be reused, where sequence(CR1, PR1) is a

common subprocess and SR is a common functionality. In

contrast, the skylines of CR1 and CR2 would not be reused as

they are both covered by the skyline of sequence(CR1, PR1).

B. Updating Reusable Skylines

We consider a dynamic environment where the available

services may change over time. In particular, a service may

be registered, deactivated or modified in terms of its declared

5
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Algorithm 2 Detecting Reusable Skylines (RSDA)

Input: CSTR and a service graph G, both represented as

DAGs.

Output: a set of common subprocess of CSTR and G.

1: Initialize CSP ← ∅
2: Cset ← nodes with the indegree of zero in CSTR
3: Nset ← nodes with the indegree of zero in G
4: CommonSet ← Cset ∩ Nset
5: CSP ← CSP ∪ CommonSet
6: while CommonSet �= ∅ do
7: Cset ← nodes supported only by element of commonSet

in CSTR
8: Nset ← nodes supported only by commonSet in NP
9: CommonSet ← Cset ∩ Nset

10: CSP ← CSP ∪ CommonSet
11: end while
12: return CSP

QoS. The log of changes records such changes in terms of log

records, where each log record describes the time, operation

(i.e., register, deactivate, or modify), and the target service.

When a change happens, the related skylines are revalidated

against this log and updated if they turn inaccurate—this

happens when some skyline service becomes invalid or new

skyline services emerge.

We adopt a lazy updating strategy, which selectively and

reactively updates the affected skylines and automatically

adapts its behavior according to the frequency and distribution

of requests—the more frequently a functionality/subprocess is

used by recent requests, the more frequently its corresponding

skyline is revalidated and updated (if necessary), and the

higher possibility this skyline can be reused directly by future

requests.

Algorithm 3 shows the skyline updating procedure (ISUA),

which iteratively updates the affected skylines in a bottom-

up manner, following the structural relations of their corre-

sponding nodes in CSTR. Given the log records regarding

functionalities related to the skylines to be used for a service

graph, it updates a hierarchy of skylines affected by every

record one by one. Regarding each record, it first updates

the skyline for the relevant functionality and then update the

higher-level skylines (i.e., nodes in CSTR) supported by the

functionality layer by layer.

Suppose U is the complexity of updating each skyline, the

time complexity of Algorithm 3 is O(|Log|H ·U), where H is

the length of the longest path in CSTR. The upper bound of the

time complexity of updating a skyline equals the complexity

of computing the skyline from scratch, i.e., O(N2R) for

functionality-level skylines and O(nMR) for subprocess-level

skylines, where N is the service number per functionality, R is

the QoS dimensionality, M is the number of skylines or tasks

from which the skyline is computed, and n is the number of

(skyline) services per skyline or task.

Algorithm 3 Iterative Skyline Updating (ISUA)

Input: the indexing structure CSTR, and the log of changes

related to the skylines to be reused, Log.

Output: updated skylines

1: for r ∈ Log do
2: c← the functionality described by r in CSTR
3: update c’s corresponding skyline

4: E ← the nodes directly supported by c in CSTR
5: for e ∈ E do
6: update e’s corresponding skylines

7: E ← the nodes directly supported by e
8: end for
9: end for

VI. EVALUATION

Our experimental studies attempt to answer two research

questions: i) How is the performance of our approach com-

pared with the state-of-the-art? ii) How do different problem

scenarios influence the performance of our approach?

A. Experimental Setup

1) Dataset: We evaluate our approach using the QWS

dataset4, which is a public dataset crawled from the Web. The

dataset contains 2,507 Web services, each described by nine

QoS attributes measured using commercial benchmark tools.

2) Test Case: We use the service graph in Fig. 1 for our

experiments, which includes seven functionalities. For each

experiment, we randomly choose the concrete services from

the QWS dataset to form the set of candidate services of

each functionality and consider four QoS attributes, namely

response time, availability, throughput, and reliability. We

simply adopt the same utility function and constraints as [5]

to define the optimization problem. For each request, we

randomly designate one type of information from product

specification, product review, and aggregated information, for

it to retrieve. Therefore, there are totally eight execution paths

for the three types of requests (shown by the examples in

Section II).

3) Compared Methods: We compare the following meth-

ods:

• BS: basic skyline-based method that uses only

functionality-level skylines.

• DP: our method described by Algorithm 1, using dy-

namic programming to determine which skylines to

cache. The objective function in Eq. (1) is specifically

defined as
∑|CSTR∗|

i=1 hixi.

• HA: our method described by Algorithm 1, using heuris-

tic method (described in Section IV-B) to cache skylines

and adjusting skylines during usage.

We implemented all algorithms in Python and used the

Gurobi solver5 to solve the mixed integer programming model.

All experiments were conducted on an Intel Core i7-5600 CPU

4http://www.uoguelph.ca/∼qmahmoud/qws/
5http://www.gurobi.com/
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with 32GB RAM, running on windows 10. Each experiment

is run 100 times with the average values reported.

B. Experiments

Experiments 1-3 compare algorithms’ online performance,

while experiment 4 investigate both the online and offline

performance.

1) Experiment 1: We compare the methods’ performance

on the same problem-scales under uniform request distribution,

where the three types of requests are raised at equal frequency.

We vary the number of candidate services of each functionality

from 1,000 to 5,000, with the step-size of 1,000. Since BS

always precompute seven skylines, although there are at most

12 skylines for the experimental process (Fig. 3a), we define

sizemax=7 to make a fair comparison. The algorithms are

evaluated for every 500 requests. The experimental results are

shown in the third column of Table II, where optimlaity is

normalized to the interval of (0,1).

Results. DP and HA consistently achieve better optimality

and require less computation time than BS. This conforms to

our intuition that using skylines of larger granularities not only

reduces the number of tasks but also decreases the number of

candidate services. Reduction of search space leads to higher

efficiency; since the reduction does not sacrifice accuracy,

within a smaller search space, the solver has a higher chance

of finding a better solution. Since DP and HA use the same

heuristic, DP only slightly outperforms HA.

2) Experiment 2: We set the proportion of the three types

of requests as follows, with all the other configurations same

as Experiment 1: i) requests for product specification: 60%,

ii) requests for aggregated info.: 30%, and iii) requests for

product review: 10%. The experimental results are shown in

the fourth column of Table II.

Results. DP and HA achieve significantly better perfor-

mance in both optimality and efficiency than BS. It is easy to

explain: while BS always follows the same routine regardless

of the problem scenarios, DP and HA cache different skylines

under different request distributions to utilize the limited cache

size effectively. That means our methods can customize their

caching solutions to fit the specific problem scenarios. The

performance difference of DP and HA is not evident.

3) Experiment 3: Instead of varying the number of can-

didate services, we fix this number at 1,000 and vary the

percentage of the services that have changes in their QoS. In

particular, we randomly select a certain percentage of services

and change their QoS values on a random attribute within the

scope of ±30% of its original values after every 50 requests.

With all the other configurations same as Experiment 1, we

obtain the experimental results shown in Fig. 4a.

Results. The efficiency of both DP and HA tends to decrease

as more changes happen due to the higher cost of updating

the subprocess-level skylines. The benefits keep outweighing

the costs until the percentage of changed services becomes

unrealistically large, i.e., 60%. The promising results can be

attributed to the massively reduced repetitive computation

regarding the recurring subprocesses. We omit the experiments

on optimality, which is unaffected by the change in Qos.

4) Experiment 4: We study the influence of cache size on

DP and HA by varying the cache size from 2 to 12, with the

step-size of 2. We fix the number of candidate services at 1,000

and the percentage of changed services at 10%. Specially, we

make sure the services’ QoS changes after every 10 requests,

so as to obtain an optimal cache size smaller than 12. The

experimental results are shown in Fig. 4b.

Results. The efficiency of both DP and HA increases as the

cache size grows, peaks at 8, and then decreases. That means

over some point, the updating costs will outweigh the benefits.

The optimality, in contrast, tends to monotonously increase.

This is because, more cached skylines lead to a smaller search

space, and in turn, a higher chance of the solver to find a

better solution. The results indicate empirical adjustments to

the cached skylines (like what we proposed in Section IV-B)

is important, as the predefined cache size may not always be

optimal.

VII. RELATED WORK

The skyline methods are used in service composition as

a means of excluding redundant services from service selec-

tion [5]. For example, Yu et al. [6] introduce probabilistic

dominant relationships to evaluate providers’ performance

and elicit users’ preference. Since skylines are dependent

on the QoS attributes concerned, Yang et al. [7] propose to

accelerate skyline computation on a group of QoS attributes

by leveraging the skylines on other combinations of QoS

attributes. Berge et al. [8] propose a Block Nested Loop (BNL)

algorithm for determining the dominance relation between

candidate services to accelerate skyline computation. More

recently, Wu et al [9] initially filter candidate services and then

use so-called “abstraction refinement” technology to complete

services selection, and Benouaret et al [10], further, propose

the concept of regret constrained skyline, which is a relax-

ation of the constrained skyline, to avoid returning an empty

result or miss interesting services. To reduce the number of

skyline services, Alrifai et al. [5] propose to use representative

skylines instead of skylines for service composition. Another

direction in this field is to accelerate skyline computing by

applying parallel computing infrastructure [11]. Until now,

few works have focused on the multiple execution paths issue.

Existing service composition methods commonly focus on

the conditional branches in a service workflow, where the

path to be executed can only be determined at runtime by

some predefined conditions (e.g., in [12]). In contrast, the

branches in service graphs are unconditional, meaning the

optimal execution path need to be selected at design time.

Our approach is based on two observations: first, applica-

tions of the same domain often have lots of similar work-

flows [13], [14]; second, different execution paths of the same

service graph often share subprocesses (as shown by our

motivating example). While traditional skyline-based methods

always compute and reuse skylines at finest granularity—even

when some subprocesses are repeatedly executed—their effect
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TABLE II: Comparison under varying problem scales and request distributions

Metric Method
Uniform distribution Unbalanced distribution

1,000 2,000 3,000 4,000 5,000 1,000 2,000 3,000 4,000 5,000

Optimality
BS 0.81 0.82 0.78 0.82 0.83 0.87 0.84 0.80 0.78 0.79
DP 0.89 0.87 0.88 0.85 0.90 0.89 0.88 0.81 0.78 0.81
HA 0.85 0.84 0.82 0.85 0.89 0.89 0.87 0.80 0.78 0.81

Time(ms)
BS 528 924 1,238 1,338 1,654 429 795 1,095 1,142 1,312
DP 385 753 943 1,189 1,286 198 431 652 689 719
HA 393 752 951 1,210 1,292 202 428 653 692 723
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Fig. 4: Comparison of algorithms under varying rates of QoS change

are limited. According to Yu et al. [15], skylines over sets of

services are smaller in size and can be computed efficiently

and provided optimally as a package. In a similar way,

we precompute, cache, and maintain the promising skylines

following their structural relations in service graphs for their

effective and efficient reuse in future compositions.

To our best knowledge, we are the first to consider varying

levels of skylines for service composition. Du et al. [16] also

compute subprocess-level skylines, but they focus on handling

QoS correlations among candidate services. Other works sim-

ilar to our study include: Hassan et al. [17] propose to cache

the retrieved data to reduce data transmission of new mashups.

Differing from that, we cache and reuse skylines instead of

data. Tang et al. [18] discover patterns (i.e. set of services

that are frequently used together along with their control

flows) from previous composition records. Our approach also

discovers patterns from historical compositions, but our pat-

terns are merely abstract functionalities and subprocesses that

serve as indexes for retrieving, updating, and reusing skylines.

Although some efficient algorithms (e.g., [8]) are proposed

for fast identification of skyline services for a fundamental

functionality. Our work mainly concerns the update of skylines

while the initial computation is less relevant. In addition, we

develop formal procedures and algorithms to enable the reuse.

VIII. CONCLUSIONS

In this paper, we have proposed an approach of precomput-

ing, caching, and reusing hierarchical skylines to reduce the

computation load of determining the optimal service compo-

sition solution on service graphs. The problem is challenging

as given multiple execution paths of a service graph, the two

issues, i.e., the selection of the optimal execution path and the

selection of the optimal constituent services, are correlated and

should be addressed at the same time. We present the architec-

ture, models, and algorithms to prepare, maintain, and reuse

the cached skylines efficiently and economically. In particular,

we selectively cache skylines using dynamic programming and

heuristic methods and adjust them dynamically during usage to

achieve the optimal effect. The lazy updating strategy ensures

the updates are adaptive to the frequency and distribution of

requests. Extensive experiments demonstrate the effectiveness

of our approach. The encouraging results stimulate us to

continue this study in the following aspects: i) incorporating

request prediction techniques to increase reuse probability, ii)
extending our approach to cope with more process structures

like loop, and iii) exploring evolutionary caching strategies to

enable real-time adaptation of our approach.
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