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Abstract Modelling exchangeable relational data can be described appropriately
in graphon theory. Most Bayesian methods for modelling exchangeable relational
data can be attributed to this framework by exploiting different forms of graphons.
However, the graphons adopted by existing Bayesian methods are either piecewise-
constant functions, which are insufficiently flexible for accurate modelling of the
relational data, or are complicated continuous functions, which incur heavy compu-
tational costs for inference. In this work, we overcome these two shortcomings by
smoothing piecewise-constant graphons, which permits continuous intensity values
for describing relations, without impractically increasing computational costs. In par-
ticular, we focus on the Bayesian Stochastic Block Model (SBM) and demonstrate
how to adapt the piecewise-constant SBM graphon to the smoothed version. We first
propose the Integrated Smoothing Graphon (ISG) which introduces one smoothing
parameter to the SBM graphon to generate continuous relational intensity values.
Then, we further develop the Latent Feature Smoothing Graphon (LFSG), which im-
proves the ISG, by introducing auxiliary hidden labels to decompose the calculation
of the ISG intensity and enable efficient inference. Experimental results on real-world
data sets validate the advantages of applying smoothing strategies to the Stochastic
Block Model, demonstrating that smoothing graphons can greatly improve AUC and
precision for link prediction without increasing computational complexity.
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1 Introduction

Exchangeable relational data [18,27,38], such as tensor data [31,42] and collaborative
filtering data [22,24,41], are commonly observed in many real-world applications. In
general, exchangeable relational data describe the relationship between two or more
nodes (e.g. friendship linkages in social networks; user-item rating matrices in rec-
ommendation systems; and protein-to-protein interactions in computational biology),
where exchangeability refers to the phenomenon that the joint distribution over all
observed relations remains invariant under node permutations. Techniques for mod-
elling exchangeable relational data include node partitioning to form “homogeneous
blocks” [19,27,36], graph embedding methods to generate low-dimensional represen-
tations [8, 12, 30], and optimization strategies to minimize prediction errors [26, 39].

Graphon theory [23, 28, 29] has recently been proposed as a unified theoretical
framework for modelling exchangeable relational data. In graphon theory, each rela-
tion from a node i to another node j is represented by an intensity value generated by
a graphon function, which maps from the corresponding coordinates of the node pair
in a unit square, (u(1)i , u

(2)
j ), to an intensity value in a unit interval. Many existing

Bayesian methods for modelling exchangeable relational data can be described using
graphon theory with various graphon functions. Figure 1 illustrates several typical
graphon functions, including the Stochastic Block Model (SBM) [19, 27], the Mon-
drian Process Relational Model (MP-RM) [36], the Rectangular Tiling Process Rela-
tional Model (RTP-RM) [25], and the Gaussian Process Prior Relational Model (GP-
RM) [28].

The simplest of these graphon functions is the regular-grid piecewise-constant
graphon (Figure 1, left). Generally, it is constructed from two-independent partition
processes in a two-dimensional space. The resulting orthogonal crossover between
these dimensions produces a regular grid partition in the space. Typical regular-grid
partition models include the SBM [27] and its infinite states variant, the Infinite Rela-
tional Model (IRM) [19]. The SBM uses a Dirichlet distribution (or Dirichlet process
for the IRM) to independently generate a finite (or infinite for the IRM) number of
segments in each dimension.

The Mondrian process relational model (MP-RM; Figure 1, centre-left) [34–
36] is a representative model which generates k-d tree-structured piecewise-constant
graphons. In general, the Mondrian process recursively generates axis-aligned cuts in
the unit square and partitions the space in a hierarchical fashion known as a k-d tree.
The tree-structure is regulated by attaching an exponentially distributed cost to each
axis-aligned cut, so that the tree-generation process terminates when the accumulated
cost exceeds a budget value. The Binary Space Partitioning-Tree process relational
model (BSP-RM) [14,15] also generates tree-structured partitions. The difference be-
tween the BSP-RM and the MP-RM is that the BSP-RM uses two dimensions to form
oblique cuts and thus generate convex polyhedron-shaped blocks. These oblique cuts
concentrate more on describing the inter-dimensional dependency and can produce
more efficient space partitions.
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Smoothing graphons for modelling exchangeable relational data 3

The Rectangular Tiling process relational model (RTP-RM; Figure 1, centre-
right) [25] produces a flat partition structure on a two-dimensional array by assigning
each entry to an existing block or a new block in sequence, without violating the
rectangular restriction of the blocks. By relaxing the restrictions of the hierarchical
or regular-grid structure, the RTP-RM aims to provide more flexibility in block gen-
eration. However, the process of generating blocks is quite complicated for practical
use. As a result, while the hierarchical and regular-grid partition models can be used
for continuous space and multi-dimensional arrays (after trivial modifications), the
RTP-RM is restricted to (discrete) arrays only.

The Rectangular Bounding process relational model (RBP-RM) [13] uses a bound-
ing strategy to generate rectangular blocks in the space. In contrast to the previously
described cutting strategies, the RBP-RM concentrates more on the important regions
of the space and avoids over-modelling sparse and noisy regions. In the RBP-RM, the
number of possible intensities is equivalent to the number of blocks, which follows a
Poisson distribution and is almost certainly finite.

The Gaussian process relational model (GP-RM; Figure 1, right) [23] uses a prior
over a random function in the unit square to form a continuous graphon. In this way it
can potentially generate desired continuous intensity values via the graphon function.
However, the computational cost of the GP-RM is the same as that of the Gaussian
process, which scales to the cubic of the number of nodes (n).
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Fig. 1 Visualisation of Bayesian graphon-construction methods for modelling exchangeable relational
data. From left to right: the Stochastic Block Model (SBM); the Mondrian Process Relational Model (MP-
RM); the Rectangular Tiling Process Relational Model (RTP-RM) and the Gaussian Process Prior Rela-
tional Model (GP-RM). For any pair of node coordinates (u

(1)
i , u

(2)
j ) the relation intensity is mapped

from the unit square to a unit interval using a graphon function (denoted g1, . . . , g4), where a darker
colour observed in the unit square represents a higher mapped intensity in the unit interval.

These existing models can be broadly classified into two categories. The first
category, which includes the SBM, MP-RM, RTP-RM and RBP-RM models, uses
node-partitioning strategies to construct the relational model. By partitioning the set
of nodes into groups along node co-ordinate margins, blocks can be constructed from
these marginal groups that partition the full-dimensional co-ordinate space accord-
ing to a given construction method (Figure 1). These models then assume that the
relation intensity for node pairs is constant within each block. That is, the graphon
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4 Yaqiong Li et al.

function that generates intensity values over node co-ordinate space is constructed in
a piecewise-constant manner. However, such piecewise-constant graphons can only
provide limited modelling flexibility with a fixed and constant number of intensity
values (i.e. equivalent to the number of blocks). As a result, they are restricted in
their ability to model the ground-truth well. The second category of relational models,
which includes the GP-RM, aims to address this limitation as the graphon function
can provide continuous intensity values. However, the computational complexity for
estimating this graphon function is proportional to the cubic of the number of nodes,
which makes it practically non-viable for medium or large sized datasets.

In this paper, we propose to apply a smoothing procedure to piecewise-constant
graphons to form smoothing graphons, which will naturally permit continuous inten-
sity values for describing relations without impractically increasing computational
costs. As the Stochastic Block Model is one of the most popular Bayesian meth-
ods for modelling exchangeable relational data, we focus on developing smoothing
strategies within the piecewise-constant SBM graphon framework. In particular, we
develop two variant smoothing strategies for the SBM: the Integrated Smoothing
Graphon (ISG) and the Latent Feature Smoothing Graphon (LFSG).

– ISG: In contrast to existing piecewise-constant graphons, which determine the
intensity value based only on the block within which a node pair resides, the ISG
alternatively calculates a mixture intensity for each pair of nodes by taking into
account the intensities of all other blocks. The resulting mixture graphon function
is constructed so that its output values are continuous.

– LFSG: This strategy introduces auxiliary pairwise hidden labels to decompose the
calculation of the mixture intensity used in the ISG, in order to enable efficient
inference. In addition, the introduction of these labels allows each node to belong
to multiple groups in each dimension (e.g. a user might interact with different
people by playing different roles in a social network), which provides more mod-
elling flexibility compared with the ISG (and existing piecewise-graphons) where
each node is assigned to one group only.

Note that while we develop the ISG and LFSG for SBM-based graphons, our
smoothing approach can be applied easily to other piecewise-constant graphons. The
main contributions of our work are summarised as follows:

– We identify the key limitation of existing piecewise-constant graphons and de-
velop a smoothing strategy to flexibly generate continuous graphon intensity val-
ues, which might better reflect the reality of a process.

– We develop the ISG smoothing strategy for the SBM to demonstrate how piecewise-
constant graphons can be converted into smoothing graphons.

– We improve on the ISG by devising the LFSG, which achieves the same objective
of generating continuous intensity values but without sacrificing computation ef-
ficiency. Compared with the ISG where each node belongs to only one group, the
LFSG allows each node to belong to multiple groups (e.g. so that the node plays
different roles in different relations), and thereby also providing a probabilistic
interpretation of node groups.

– We evaluate the performance of our methods on the task of link prediction by
comparing with the SBM and other benchmark methods. The experimental results
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Smoothing graphons for modelling exchangeable relational data 5

clearly show that the smoothing graphons can achieve significant performance
improvement over piecewise-constant graphons.

2 Preliminaries

2.1 Graphon theory

The Aldous–Hoover theorem ( [2, 17]) provides the theoretical foundation for mod-
elling exchangeable multi-dimensional arrays (i.e. exchangeable relational data) con-
ditioned on a stochastic partition model. A random 2-dimensional array is called
separately exchangeable if its distribution is invariant under separate permutations of
rows and columns.

Theorem 1 [23, 29]: A random array (Rij) is separately exchangeable if and only
if it can be represented as follows: there exists a random measurable function F :

[0, 1]3 7→ {0, 1} such that (Rij)
d
=
(
F (u

(1)
i , u

(2)
j , νij)

)
, where {u(1)i }i, {u

(2)
j }j and

{νij}i,j are two sequences and an array of i.i.d. uniform random variables in [0, 1],
respectively.

Many existing Bayesian methods for modelling exchangeable relational data can
be represented as in Theorem 1, using specific forms of the mapping function F .
For instance, as illustrated in Figure 1, given the uniformly distributed node coordi-
nates (u(1)i , u

(2)
j ), the SBM corresponds to F being a regular-grid constant graphon,

in which the partitions along each dimension are crossed over to form the blocks; the
MP-RM characterizes an F being a k-d tree-structured constant graphon, in which
the blocks are hierarchically aligned; the RTP-RM assumes an F being an arbitrary
rectangle constant graphon, in which the blocks are floor-plan aligned; and the GP-
RM lets the F perform a continuous two-dimensional function. While taking dif-
ferent forms, these graphon functions commonly map from pairs of node coordi-
nates in a unit square to intensity values in a unit interval. For the above piecewise-
constant graphons, we can write the function F as F (u(1)i , u

(2)
j |{ωk,2k}) =

∑
k ωk ·

111((u
(1)
i , u

(2)
j ) ∈ 2k), where 2k is the kth block and ωk refers to the intensity vari-

able of 2k. As shown in Figure 1, the darker colour for the pair of node coordinates
indicates the higher intensity in the interval, which corresponds to a larger probability
of observing or generating the relationship between the pair of nodes.

2.2 Piecewise-constant graphons and their limitations

Many alternative piecewise-constant graphons can be implemented to model exchange-
able relational data R, where R is a binary adjacency matrix which can be either di-
rected (asymmetric) or undirected (symmetric). Here we consider the more compli-
cated situation where R is a n× n asymmetric matrix with Rji 6= Rij (the extension
of our method to the symmetric case is straightforward). For any two nodes in R, if
node i is related to node j then Rij = 1, otherwise Rij = 0.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Yaqiong Li et al.

We take the SBM as an illustrative example. In a two-dimensional SBM, there are
two distributions generating the groups, θθθ(1), θθθ(2) ∼ Dirichlet(ααα1×K), where K is
the number of groups and ααα1×K is the K-vector concentration parameter. Each node
i ∈ {1, . . . , n} is associated with two hidden labels z(1)i , z

(2)
i ∈ {1, . . . ,K}, and

{z(1)i }i ∼ Categorical(θθθ(1)), {z(2)i }i ∼ Categorical(θθθ(2)) for i = 1, . . . , n. Hence,
z
(1)
i and z(2)i denote the particular groups that node i belongs to in two dimensions,

respectively. (That is, z(1)i is the group of node i when i links to other nodes, and z(2)i

is the group of node i when other nodes link to it.) The relation Rij from node i to
node j is then generated based on the interaction between their respective groups z(1)i

and z(2)j .
Let BBB be a K × K matrix, where each entry Bk1,k2 ∈ [0, 1] denotes the prob-

ability of generating a relation from group k1 in the first dimension to group k2 in
the second dimension. For k1, k2 = 1, . . . ,K,Bk1,k2 ∼ Beta(α0, β0), where α0, β0

are hyper-parameters for {Bk1,k2}k1,k2 . That is, we have P (Rij = 1|z(1)i , z
(2)
j ,BBB) =

B
z
(1)
i ,z

(2)
j

.

Now, consider the SBM from the graphon perspective (Figure 1; left). Let θθθ(1), θθθ(2)

be group (or segment) distributions of the two dimensions in a unit square respec-
tively. The generation of hidden labels z(1)i for node i and z(2)j for node j proceeds

as follows: Uniform random variables u(1)i and u(2)j are respectively generated in the

first and second dimensions. Then, z(1)i and z(2)j can be determined by checking in

which particular segments of θθθ(1) and θθθ(2), u(1)i and u(2)j are located respectively.
Formally, we have:

θθθ(1), θθθ(2) ∼ Dirichlet(ααα1×K), u
(1)
i , u

(2)
j ∼ Unif[0, 1]

z
(1)
i = (θθθ(1))−1(u

(1)
i ), z

(2)
j = (θθθ(2))−1(u

(2)
j ), (1)

where (θθθ(1))−1(u(1)i ) and (θθθ(2))−1(u
(2)
j ) respectively map u(1)i and u(2)j to particular

segments of θθθ(1) and θθθ(2).
A regular-grid partition (�) can be formed in the unit square by combining the

segment distributions θθθ(1), θθθ(2) in two dimensions. Each block in this regular-grid
partition is presented in a rectangular shape. Let L(1)

k =
∑k
k′=1 θ

(1)
k′ and L(2)

k =∑k
k′=1 θ

(2)
k′ be the accumulated sum of the first k elements of θθθ(1) and θθθ(2) respec-

tively (w.l.o.g. L(1)
0 = L

(2)
0 = 0, L

(1)
K = L

(2)
K = 1). Use 2k1,k2 = [L

(1)
k1−1, L

(1)
k1

] ×
[L

(2)
k2−1, L

(2)
k2

] to represent the (k1, k2)th block in the unit square of [0, 1]2, such that⋃
k1,k2

2k1,k2 = [0, 1]2. Then, an intensity function defined on the pair (ui, uj) can
be obtained by the piecewise-constant graphon function

g
(
u
(1)
i , u

(2)
j

)
=
∑
k1,k2

111((u
(1)
i , u

(2)
j ) ∈ 2k1,k2) ·Bk1,k2 (2)

where111(A) = 1 ifA is true and 0 otherwise, and whereBk1,k2 ∈ [0, 1] is the intensity
of the (k1, k2)th block. We term (2) the SBM-graphon. Thus, the generative process
of the SBM-graphon can be described as:
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Smoothing graphons for modelling exchangeable relational data 7

1. For k1, k2 = 1, . . . ,K, generate Bk1,k2 ∼ Beta(α0, β0), where α0, β0 are hyper-
parameters;

2. Generate the segment distributions θθθ(1), θθθ(2) via Equation (1) and form the parti-
tion (�) according to combinations of θθθ(1), θθθ(2) in the unit square;

3. Uniformly generate the 1st dimension coordinates {u(1)i }ni=1 and the 2nd dimen-
sion coordinates {u(2)i }ni=1 for all nodes;

4. For i, j = 1, . . . , n

(a) Calculate the intensity g(u(1)i , u
(2)
j ) according to Equation (2) based on the

node coordinates (u(1)i , u
(2)
j );

(b) Generate Rij ∼ Bernoulli(g(u(1)i , u
(2)
j )).

Alternatively, if considering the latent labels (z(1)i , z
(2)
j ) for nodes i and j, then

from Equation (1) and the deterministic relations between z(1)i , z
(2)
j and θθθ(1)i , u

(1)
i , θθθ

(2)
i , u

(2)
i ,

the intensity value g(u(1)i , u
(2)
j ) in step 4.(a) is the same asB

z
(1)
i ,z

(2)
j

. As a result, step
4 in the above generative process can be equivalently written as

4. For i, j = 1, · · · , n,
(a) Generate the latent labels (z(1)i , z

(2)
j ) via Equation (1);

(b) Generate Rij ∼ Bernoulli
(
B
z
(1)
i ,z

(2)
j

)
.

The SBM-graphon has several limitations. To begin with, the SBM-graphon func-
tion (Equation (2)) is piecewise-constant. That is, the generated intensities for node
pairs are discrete and the number of different intensity values is limited to the number
of blocks in the partition (�). Consequently, this leads to an over-simplified descrip-
tion when modelling real relational data, which can result in at least two issues. On
the one hand, as long as two nodes belong to the same segment in one dimension,
their probability of generating relations with another node are the same even if the
distance between the two nodes in that dimension is quite large. Conversely, given
two nodes that are close in one dimension but belong to two adjacent segments, their
probability of generating relations with another node could be dramatically different,
depending on the respective block intensities (e.g., Bk1,k2 ).

The second limitation of the SBM-graphon is that it determines the intensity value
for a pair of nodes by considering only the block (2k1,k2 ) in which (ui, uj) resides.
However, the nodes relations with other nodes, especially neighbouring nodes in ad-
jacent blocks, might also be expected to have a certain influence on the generation of
the target relation, if one considers the relational data collectively. As a result, per-
haps it could be beneficial to consider the interactions that naturally exist among all
blocks when generating the relation Rij .

The third limitation of the SBM-graphon is that it provides latent information of
node clustering as a side-product through the hidden labels {z(1)i , z

(2)
i }ni=1. However,

the clustering information might not be ideal because each node is assigned to only
one cluster in each dimension. That is, when considering the outgoing relations from
node i, it is assumed that node i consistently plays one single role in any relation with
other nodes. In fact, in practice a node might play different roles by participating in
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8 Yaqiong Li et al.

different relations with different nodes. As a result, it would be more useful and
flexible to allow a node to belong to multiple clusters in each dimension.

To address the limitations of piecewise-constant graphons (and in particular, the
SBM-graphon), we propose a smoothing strategy to enable piecewise-constant graphons
to produce continuous intensity values. The proposed smoothing graphons naturally
consider interactions between the partitions and allow each node to play multiple
roles in different relations.

3 Main Models

3.1 The Integrated Smoothing Graphon (ISG)

In order to improve on the limitations of the piecewise-constant graphon we first
develop the Integrated Smoothing Graphon (ISG), based on the SBM-graphon con-
struction. The piecewise-constant nature of the SBM-graphon is created through the
use of an indicator function in (2) that selects only the particular block accommo-
dating the target node pair. Accordingly, we replace the indicator function with an
alternative that can produce continuous intensity values. Moreover, to capture the
interaction between all blocks, we construct the smoothing graphon function to gen-
erate the intensity value as a summation over all block intensities, weighted by the
importance of each block. Let F2k1,k2

(u
(1)
i , u

(2)
j ) be the weight of the block 2k1,k2

with respect to (u
(1)
i , u

(2)
j ) ∈ [0, 1]2. The mixture intensity g

(
u
(1)
i , u

(2)
j

)
, used to

determine the Rij , can then be represented as

g
(
u
(1)
i , u

(2)
j

)
=
∑
k1,k2

F2k1,k2
(u

(1)
i , u

(2)
j ) ·Bk1,k2 , (3)

where
∑
k1,k2

F2k1,k2
(u

(1)
i , u

(2)
j ) = 1.

The ISG generative process can be summarised as:
1)∼3) The block intensities (BBB), graphon partition (�) and two-dimensional co-

ordinates ({u(1)i , u
(2)
i }ni=1) are generated as for the SBM-graphon;

4. For i, j = 1, · · · , n,
(a) Calculate the mixture intensity g

(
u
(1)
i , u

(2)
j

)
according to (3) for the node

coordinates (u(1)i , u
(2)
j );

(b) Generate Rij ∼ Bernoulli
(
g
(
u
(1)
i , u

(2)
j

))
.

As a consequence, while the SBM-graphon determines the relation intensity based
only on the single block in which (u

(1)
i , u

(2)
j ) resides, the ISG computes a mixture

intensity as a weighted (and normalised) sum of all block intensities. That is, instead
of assigning a weight of 1 for one particular block and weights of 0 for all other
blocks, the ISG weights the importance of each block with respect to the pair of
node coordinates (u(1)i , u

(2)
j ). As long as the weighting function F2k1,k2

(u
(1)
i , u

(2)
j )
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Smoothing graphons for modelling exchangeable relational data 9

is continuous, it follows that the mixture intensity (3) is also continuous. The intensity
function (3) then becomes a smoothing graphon function.

The ISG allows the mixture intensity to take any value between the minimum
and maximum of all block intensities. As a result, the ISG provides more modelling
flexibility compared to the SBM-graphon, where only limited discrete intensity val-
ues (equivalent to the number of blocks) are available to describe relations.

3.2 Construction of the mixture intensity

To ensure that the graphon function (3) is continuous, we consider an integral-based
weighting function of the form

F2k1,k2
(u

(1)
i , u

(2)
j ) ∝

∫ L
(1)
k1

L
(1)
k1−1

f(x− u(1)i )dx ·
∫ L

(2)
k2

L
(2)
k2−1

f(x− u(2)j )dx (4)

where f(x − u) is a univariate derivative function. Beyond the continuity require-
ment, f(x−u) and F2k1,k2

(u
(1)
i , u

(2)
j ) should satisfy the following three conditions:

1. f(x− u) is non-negative;
2. f(x − u) increases with decreasing distance (i.e. |x − u|) between x and the

corresponding coordinate u. This condition means that the closer the block 2k1,k2

is to the pair of node coordinates (u
(1)
i , u

(2)
j ), the larger weight the block will

be assigned. The maximum weight value is achieved when |x − u(1)i | = 0 and
|x− u(2)j | = 0;

3. The total weight of all blocks remains invariant regardless of different parti-
tioning of the unit space. That is, F2k1,k2

(u
(1)
i , u

(2)
j ) = F2′k1,k2

(u
(1)
i , u

(2)
j ) +

F2′′k1,k2
(u

(1)
i , u

(2)
j ), where 2′k1,k2 ,2

′′
k1,k2

are sub-boxes of 2k1,k2 such that 2k1,k2 =

2′k1,k2 ∪2′′k1,k2 and 2′k1,k2 ∩2′′k1,k2 = ∅.

It is also expected that F2k1,k2
(u

(1)
i , u

(2)
j ) can be normalised over all the K2 com-

munity pairs as
∑
k1,k2

F2k1,k2
(u

(1)
i , u

(2)
j ) = 1.

There are many candidate functions satisfying these conditions, such as Gaus-
sian or Laplace probability density functions. For ease of computation and con-
venience of integration, we use the scaled Laplace density (with location parame-
ter µ = 0) as the derivative function fλ(x − u). We leave other function choices
for future work. In particular, we define fλ(x − u) = λ

2
e−λ|x−u|

Gλ(1−u)−Gλ(−u) , where

Gλ(x− u) =
{

1
2e
λ(x−u); (x− u) < 0

1− 1
2e
−λ(x−u); (x− u) ≥ 0

. We then have
∫ Lk1
Lk1−1

fλ(x− u)dx =

Gλ(Lk1−u)−Gλ(Lk1−1−u)
Gλ(1−u)−Gλ(−u) . As a result, for relation Rij and corresponding node coor-

dinates (u(1)i , u
(2)
j ), the normalised weight F2k1,k2

(u
(1)
i , u

(2)
j ) of the (k1, k2)th block
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10 Yaqiong Li et al.
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Fig. 2 Top row: the influence of the λ parameter on the Laplace probability density function with coor-
dinate located at u = 0.3 (left), and the corresponding mixture intensities for {ui}ni=1 (right). Different
colors represent different settings of λ. The gray dotted lines represent segment division in one dimension
with θθθ = (0.15, 0.27, 0.08, 0.5)> ∼ Dirichlet(1, 1, 1, 1). Bottom row: visualizations of the Integrated
Smoothing Graphon under the Stochastic Block Model for different values of λ. Darker shading represents
higher graphon intensity.

2k1,k2 contributing to the mixture intensity of Rij is given by

F2k1,k2
(u

(1)
i , u

(2)
j ) =

Gλ(L
(1)
k1
− u(1)i )−Gλ(L(1)

k1−1 − u
(1)
i )

Gλ(1− u(1)i )−Gλ(−u(1)i )

×
Gλ(L

(2)
k2
− u(2)j )−Gλ(L(2)

k2−1 − u
(2)
j )

Gλ(1− u(2)j )−Gλ(−u(2)j )
. (5)

Proposition 1
∑
k1,k2

F2k1,k2
(u

(1)
i , u

(2)
j ) = 1.

Proof ∑
k1,k2

F2k1,k2
(u

(1)
i , u

(2)
j )

=

∑
k1

Gλ(L
(1)
k1
− u(1)i )−Gλ(L

(1)
k1−1 − u

(1)
i )

Gλ(1− u
(1)
i )−Gλ(−u

(1)
i )


·

∑
k2

Gλ(L
(2)
k2
− u(2)j )−Gλ(L

(2)
k2−1 − u

(2)
j )

Gλ(1− u
(2)
j )−Gλ(−u

(2)
j )

 = 1. (6)
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Smoothing graphons for modelling exchangeable relational data 11

Figure 2 (left) illustrates the function curves of fλ(x−u) for u = 0.3 and Figure 2
(right) shows the resulting one-dimensional mixture of intensities under varying scale
parameter values λ = 0.25, 25 and 250. It is easily observed that, when λ is smaller,
both the curves of the derivative function and the mixture intensity become flatter
and smoother. Conversely, for larger λ, the mixture intensity values (generated for
the coordinate 0.3) become more discrete. Bottom row of Figure 2 visualizes the
mixture intensities obtained by applying the ISG to the SBM under the same three λ
values.

Proposition 2 λ controls the smoothness of the graphon, with λ → ∞ recovering
the piecewise-constant graphon, and λ→ 0 resulting in a globally constant graphon.

Proof Using L’hopital’s rule, when λ→ 0, we have

lim
λ→0

Gλ(L
(1)
k1
− u(1)i )−Gλ(L(1)

k1−1 − u
(1)
i )

Gλ(1− u(1)i )−Gλ(−u(1)i )

=
L
(1)
k1
− u(1)i − (L

(1)
k1−1 − u

(1)
i )

1− u(1)i + u
(1)
i

= L
(1)
k1
− L(1)

k1−1. (7)

Thus, we get F2k1,k2
(u

(1)
i , u

(2)
j ) = (L

(1)
k1
−L(1)

k1−1)(L
(2)
k2
−L(2)

k2−1), which is unrelated

to the coordinate of (u(1)i , u
(2)
j ). The graphon is a globally constants graphon.

We have three different cases when λ → ∞: case (1), L(1)
k1

> L
(1)
k1−1 > u

(1)
i , we

have

lim
λ→∞

Gλ(L
(1)
k1
− u(1)i )−Gλ(L(1)

k1−1 − u
(1)
i )

Gλ(1− u(1)i )−Gλ(−u(1)i )

= lim
λ→∞

1− 1
2e
−λ(L(1)

k1
−u(1)

i ) − (1− 1
2e
−λ(L(1)

k1−1−u
(1)
i ))

1− 1
2e
−λ(1−u(1)

i ) − 1
2e
−λ(u(1)

i )
= 0;

case (2), L(1)
k1−1 < L

(1)
k1−1 < u

(1)
i , we have

lim
λ→∞

Gλ(L
(1)
k1
− u(1)i )−Gλ(L(1)

k1−1 − u
(1)
i )

Gλ(1− u(1)i )−Gλ(−u(1)i )

= lim
λ→∞

1
2e
λ(L

(1)
k1
−u(1)

i ) − ( 12e
λ(L

(1)
k1−1−u

(1)
i ))

1− 1
2e
−λ(1−u(1)

i ) − 1
2e
−λ(u(1)

i )
= 0;

case (3), L(1)
k1−1 < u

(1)
i < L

(1)
k1−1, we have

lim
λ→∞

Gλ(L
(1)
k1
− u(1)i )−Gλ(L(1)

k1−1 − u
(1)
i )

Gλ(1− u(1)i )−Gλ(−u(1)i )

= lim
λ→∞

1− 1
2e
−λ(L(1)

k1
−u(1)

i ) − ( 12e
λ(L

(1)
k1−1−u

(1)
i ))

1− 1
2e
−λ(1−u(1)

i ) − 1
2e
−λ(u(1)

i )
= 1.
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12 Yaqiong Li et al.

That is, F2k1,k2
(u

(1)
i , u

(2)
j ) = 1 if and only if the coordinate (u

(1)
i , u

(2)
j ) locates in

the (k1, k2)th block. Thus, this smoothing graphon only becomes piecewise-constant
when λ→∞.

Accordingly, we refer to λ as the smoothing parameter.

3.3 Latent Feature Smoothing Graphon (LFSG) with probabilistic assignment

While the ISG addresses the limitations of the SBM-graphon by generating con-
tinuous intensity values, its graphon function (3) indicates that all blocks are in-
volved in calculating the mixture intensity for generating individual relations. Ac-
cordingly, the additive form for evaluating the mixture intensity makes it difficult to
form efficient inference schemes for all random variables. To improve inferential ef-
ficiency we introduce auxiliary pairwise latent labels {sij}nj=1 (associated with node
i) and {rij}ni=1 (associated with node j) for individual relations {Rij}ni,j=1, where
sij , rij ∈ {1, . . . ,K} are the sender and receiver effects respectively. The {sij}nj=1

and {rij}ni=1 are sampled from the respective node categorical distributions in their
corresponding dimensions using normalised weights as probabilities. In particular

{sij}nj=1 ∼ Categorical(F (1)
1 (u

(1)
i ), . . . , F

(1)
K (u

(1)
i ))

{rij}ni=1 ∼ Categorical(F (2)
1 (u

(2)
j ), . . . , F

(2)
K (u

(2)
j )), (8)

where Fk(u) = Gλ(Lk−u)−Gλ(Lk−1−u)
Gλ(1−u)−Gλ(−u) is the normalised weight of segment k in

the dimension of coordinate u. For each relation from node i to node j (Rij), the
hidden label sij denotes the group that node i belongs to (in the 1st dimension) and
rij denotes the group that node j belongs to (in the 2nd dimension). Through the
introduction of the two labels, the final intensity in determining Rij can be obtained
similarly to the Mixed Membership Stochastic Block Model (MMSB) [1]:

P (Rij = 1|sij , rij ,BBB) = Bsij ,rij . (9)

Note that since both {sij}nj=1 and {rij}nj=1 are n-element arrays, each node has the
potential to belong to multiple segments, rather than the single segment under the
SBM-graphon. When participating in different relations, each outgoing node i (in-
coming node j) can fall into different segments, which means that each node can
play different roles when taking part in different relations. Note that assuming expec-
tations over the hidden labels sij and rij , results in the same intensity as for the ISG,
so that

Esij ,rij [P (Rij = 1|sij , rij ,BBB)] = g
(
u
(1)
i , u

(2)
j

)
. (10)

We term this approach the Latent Feature Smoothing Graphon (LFSG). Its generative
process is described as follows:

1)∼3) The block intensities (BBB), graphon partition (�) and 2-dimensional coor-
dinates ({u(1)i , u

(2)
i }ni=1) are generated as for the SBM-graphon;
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Smoothing graphons for modelling exchangeable relational data 13

4. For i = 1, · · · , n, calculate the hidden label distributions in each dimension,
FFF (1)(u

(1)
i ) and FFF (2)(u

(2)
i ), where FFF (1)(u

(1)
i ) = (F

(1)
1 (u

(1)
i ), . . . , F

(1)
K (u

(1)
i ));

5. For i, j = 1, · · · , n,
(a) Generate the hidden labels sij ∼ FFF (1)(u

(1)
i ), rij ∼ FFF (2)(u

(2)
j ) following (8)

(b) Generate Rij ∼ Bernoulli
(
Bsij ,rij

)
.

Within the LFSG, λ can provide additional insight into the latent structures, in that it
indicates the extent to which nodes belong to multiple communities. Larger (smaller)
values of λ indicate that nodes are likely to belong to fewer (more) communities.

The number of communities for the LFSG models can be determined using simi-
lar strategies as for the SBM and ISG model.
Comparing the LFSG and the MMSB: The MMSB model is another notable Bayesian
method for modelling exchangeable relational data. In contrast to other graphon
methods, the MMSB model allows each node i to have a group distribution FFF i,
which follows a Dirichlet distribution. To form the relation between any two nodes
i, j, a latent label pair consisting of a sender and a receiver (sij , rij) is first gener-
ated via sij ∼ Categorical(FFF i), and rij ∼ Categorical(FFF j). The relation Rij can
then be generated based on the intensity of the block BBB formed by group sij and
group rij : Rij ∼ Bernoulli(Bsij ,rij ). Our proposed LFSG model shares similarities
with the MMSB model, since both of them use group distributions to represent indi-
vidual nodes and the likelihood generation method is the same. However, there are
key differences. These are: (1) The priors for the group distributions are different. In
the MMSB model, the group distributions of all nodes are generated independently
from a Dirichlet distribution, whereas in the LFSG model, the group distributions are
highly dependent, since all are determined by the same partition structure and nodes
coordinates (see Eq. 5); (2) The MMSB model requires nK parameters to form the
group distributions, while the LFSG model requires only 2(n+K) parameters.

The LFSG model naturally fits within the graphon framework. The MMSB model
can also be made to fit within the graphon framework in two ways. Firstly, by consid-
ering the group distributions πππi ∈ [0, 1]D in the K-dimensional hypercube instead of
the unit interval. Secondly, noting that the minimal condition on the function F under
general graphon theory is that F is measurable, applying a transformation from [0, 1]
to [0, 1]K means that the MMSB model can also fit within the graphon framework on
the unit square.

The graphical models for implementing the ISG within the SBM (referred to as
the ISG-SBM), as well as for implementing the LFSG within the SBM (referred to
as the LFSG-SBM) are illustrated in Figure 3. The main difference between the two
models – the introduction of the pairwise hidden labels sij and rij for generating
each relation Rij – allows the LFSG-SBM to enjoy the following advantages over
the ISG-SBM:

– The aggregated counting information of the hidden labels enables efficient Gibbs
sampling of the block intensitiesBBB. In the ISG (or SBM), the block intensityBBB is
inferred through each node’s latent label, whileBBB is inferred through the senders
and receivers for each relation in the LFSG (or MMSB). Since the numbers of
senders and receivers are larger than the number of latent labels for nodes, i.e.
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14 Yaqiong Li et al.

N2 > N , the inference on BBB under the LFSG (or MMSB) is likely better than
under the ISG (or SBM).

– Calculation involvingF2 is instead reduced to calculation involvingFk(u), avoid-
ing the inclusion of all blocks when calculating the mixture intensity.

– Because each node is allowed to belong to different groups when linking to other
nodes, permitting differences in the natures of those links, the group distribution
F (u) is then easily interpretable as the group membership distribution for that
node. For example, a higher membership degree in group k indicates the node is
more important or active in group k.

Model identifiability: In a similar manner to the MMSB model, the LFSG model
also mitigates issues of identifiability by relating the number of blocks to the low-
rank property of the edge probability matrix. In this respect, the LFSG model can be
regarded as a “restricted” version of the MMSB model (see above), in that while the
group distributions in the LFSG are highly dependent, those in the MMSB model are
independently generated. In our simulations we did not encounter any parameter non-
identifiability. However, we note that the number of parameters in the LFSG model
is smaller than that of the MMSB model (i.e. 2(n + K) < nK for K ≥ 3 and a
moderate value of n), and so the LFSG model may perform better than the MMSB
model in overcoming issues of non-identifiability.

R

B

F s, r

U

RF

U

B

(b)(a)
Fig. 3 The graphical model for (a) the ISG-SBM and (b) the LFSG-SBM. (a) The weights of the blocksF2

are first calculated by using the partition �, node coordinates U and smoothing parameter λ. Then the F2

and block intensities BBB are integrated together to generate the exchangeable relations R. (b) The weight
F for each node is individually generated using the partition �, node coordinates U and the smoothing
parameter λ, based on the auxiliary hidden labels s, r for the node pair relationship. Then s, r are used to
generate the exchangeable relational, R, together with the block intensitiesBBB.

3.4 Extensions to other piecewise-constant graphons

The major difference between the construction of the existing piecewise-constant
graphons is the generation process of partitions (�; Figure 1). As a result, our smooth-
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Smoothing graphons for modelling exchangeable relational data 15

Algorithm 1 MCMC for the ISG
Input: Exchangeable relational data R ∈ {0, 1}n×n, hyperparameters α0, β0,ααα1×K , iteration time T
Output: {u(1)i , u

(2)
i }

n
i=1, θθθ

(1), θθθ(2),BBB, λ
for t = 1, · · · , T do

for i = 1, . . . , n do
Sample u(1)i , u

(2)
i ; // according to (12)

end for
Sample θθθ(1), θθθ(2); // according to (13)
for k1, k2 = 1, . . . ,K do

Sample Bk1,k2 ; // according to (14)
end for
Sample λ; // according to (16)

end for

ing approach, while described for the SBM-graphon, can be straight-forwardly ap-
plied to other piecewise-constant graphons. For example, to apply the ISG to other
piecewise-constant graphons, we can similarly calculate a mixture intensity as a
weighted sum of the intensities of all existing blocks. When the partitioned blocks
are rectangular-shaped (as for e.g. the MP-RM, RTP-RM and RBP-RM), the inten-
sity for each can be computed by independently integrating the derivative function
over two dimensions. If the partitioned blocks are shaped as convex-polygons (as for
e.g. the Binary Space Partitioning-Relational Model (BSP-RM) [14]), the intensity
can be generated via integrating the derivative function over the polygon.

Nonparametric methods for Stochastic Block Models: In addition to the above
Bayesian models, there are a number of nonparametric approaches for implement-
ing stochastic block models. These approaches differ in terms of statistical accuracy
and computational complexity, and include likelihood-based methods [3,7,9,11,44],
moment-based methods [4], convex optimization methods [10], and spectral cluster-
ing methods [6, 16, 33, 37]. These approaches typically aim to produce consistent
parameter point estimators, rather than full posterior distributions on the model pa-
rameters as considered here.

4 Inference

We present a Markov Chain Monte Carlo (MCMC) algorithm for posterior model
inference, with detailed steps for the ISG and the LFSG models as illustrated in Al-
gorithms 1 and 2 respectively. In general, the joint distribution over the hidden la-
bels {sij , rij}ni,j=1, pairwise node coordinates {u(1)i , u

(2)
i }ni=1, group distributions
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16 Yaqiong Li et al.

Algorithm 2 MCMC for the LFSG
Input: Exchangeable relational data R ∈ {0, 1}n×n, hyperparameters α0, β0,ααα1×K , iteration time T
Output: {u(1)i , u

(2)
i }

n
i=1, θθθ

(1), θθθ(2),BBB, {sij , rij}ni,j=1, λ
for t = 1, · · · , T do

for i = 1, . . . , n do
Sample u(1)i , u

(2)
i ; // according to (12)

end for
Sample θθθ(1), θθθ(2); // according to (13)
for k1, k2 = 1, . . . ,K do

Sample Bk1,k2 ; // according to (14)
end for
for i, j = 1, . . . , n do

Sample sij , rij ; // according to (15)
end for
Sample λ; // according to (16)

end for

θθθ(1), θθθ(2), the block intensitiesBBB and the smoothing parameter λ is:

P ({sij , rij , Rij}ni,j=1, {u
(1)
i , u

(2)
i }

n
i=1, θθθ

(1), θθθ(2),BBB, λ|α0, β0)

∝
∏
i,k

[
F

(1)
k (u

(1)
i |θθθ

(1), λ)m
(1)
ik F

(2)
k (u

(2)
i |θθθ

(2), λ)m
(2)
ik

]
·
∏
k1,k2

[
B
N

(1)
k1,k2

+α0−1
k1,k2

(1−Bk1,k2)
N

(0)
k1,k2

+β0−1
]

·
∏
k

[
(θ

(1)
k )αk−1(θ

(2)
k )αk−1

]
· P (λ), (11)

wherem(1)
ik =

∑n
j=1 111(sij = k),m

(2)
ik =

∑n
j=1 111(rji = k), N

(1)
k1,k2

=
∑

(i,j):sij=k1,rij=k2
111(Rij =

1), N
(0)
k1,k2

=
∑

(i,j):sij=k1,rij=k2
111(Rij = 0). In this joint distribution, we have set

the following prior distributions for the variables: sij ∼ Categorical(FFF (u(1)i |θθθ(1), λ)),
Bk1,k2 ∼ Beta(α0, β0), θθθ(1) ∼ Dirichlet(ααα1×K). We let λ ∼ Gamma(0.1, 0.1) fol-
low a vague Gamma distribution, where Gamma(a, b) is a Gamma distribution with
mean a/b and variance a/b2

The details for updating each parameter in the ISG and LFSG MCMC algorithms
are listed below.

Updating {u(1)i , u
(2)
i }ni=1: Independent Metropolis-Hastings steps can be used to up-

date the variables u(1)i , u
(2)
i . We propose a new sample for u(1)i from u∗ ∼ Beta[αu, βu],

and accept this proposal with probability min(1, α
u
(1)
i
) where

α
u
(1)
i

=
Be(u(1)i |αu, βu)
Be(u∗|αu, βu)

∏
k

F
(1)
k (u∗|θθθ(1), λ)m

(1)
ik

F
(1)
k (u

(1)
i |θθθ(1), λ)m

(1)
ik

, (12)

where Be(u|α, β) denotes the Beta density with parameters α and β evaluated at u.
The update for u(2)i proceeds likewise. Note that each of the 2n parameters {u(1)i , u

(2)
i }ni=1
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can be updated in parallel. In our simulations we found that αu = βu = 1 gave good
sampler performance.

Updating θθθ(1), θθθ(2): A random-walk Metropolis-Hastings step can be used to update
θθθ(1), and θθθ(2). For θθθ(1) or θθθ(2) we draw a proposed sample θθθ∗ ∼ Dirichlet(ααα1×K)
from a Dirichlet distribution with concentration parameters ααα1×K . We accept the
proposal θθθ∗ for w.l.o.g. θθθ(1) with probability min(1, αθθθ(1)), where

αθθθ(1) =
Diri(θθθ∗|ααα)

Diri(θθθ(1)|ααα)
·
∏
i,k

F
(1)
k (u

(1)
i |θθθ∗, λ)m

(1)
ik

F
(1)
k (u

(1)
i |θθθ(1), λ)m

(1)
ik

, (13)

where Diri(θθθ|ααα) denotes the Dirichlet density with concentration parameter ααα eval-
uated at θθθ. A similar update can be implemented for θθθ(2). Both θθθ(1) and θθθ(2) can be
updated in parallel.

Updating BBB: The conjugacy between the prior and the conditional likelihood for
BBB means that we can update BBB via a Gibbs sampling step. Specifically, each entry
Bk1,k2 can be updated in parallel via

Bk1,k2 ∼ Beta(α0 +N
(1)
k1,k2

, β0 +N
(0)
k1,k2

),∀k1, k2. (14)

Updating {sij , rij}ni,j=1: The posterior distribution of sij is a categorical distribu-
tion, where the probability of sij = k is

P (sij = k|θ(i)k , Rij , Bk,rij ) ∝ F
(1)
k (u

(1)
i |θθθ

(1), λ)×BRijk,rij
(1−Bk,rij )

1−Rij , (15)

and from which sij can be straightforwardly updated (rij can be updated in a similar
way). Each of the 2n parameters can be updated in parallel.

Updating λ: A Metropolis-Hastings step can be used to update λ. We use the random
walk Metropolis-Hastings algorithm to propose a new value of λ∗ and accept it with
probability min(1, αλ), where

αλ =

∏
i,k

F
(1)
k (u

(1)
i |θθθ(1), λ∗)m

(1)
ik F

(2)
k (u

(2)
i |θθθ(2), λ∗)m

(2)
ik

F
(1)
k (u

(1)
i |θθθ(1), λ)m

(1)
ik F

(2)
k (u

(2)
i |θθθ(2), λ)m

(2)
ik

 · [λ∗]−0.9e−0.1λ∗
[λ]−0.9e−0.1λ

.

(16)
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Table 1 Per-iteration model complexity comparison (n is the number of nodes, K is the number of com-
munities and L is the number of positive links.)

Model Intensity computation Label sampling
SBM O(K2L) O(nK)
ISG O(K2n2) –
LFSG O(K2L) O(n2K)
MMSB O(K2L) O(n2K)
GP-RM O(n3) –

4.1 Computational complexities

Table 1 compares the per-iteration computational complexities of sampling from the
ISG and the LFSG models against representative existing models, including the SBM,
the MMSB and the GP-RM. The ISG algorithm requires a computational complexity
ofO(K) to sample each coordinate u(1)i (u(2)i ) (Eq.12), resulting in a total ofO(NK)
for all the coordinates; it needs a complexity ofO(NK) to sample θθθ(1) (θθθ(2)) (Eq.13);
it needs a complexity of O(n2K2) to sample all the block intensities BBB (Eq.14) and
a complexity of O(NK) to sample λ (Eq.16). In particular, it requires a computa-
tional complexity of O(n2K2) to calculate the intensity for generating the relations
{Rij}ni,j=1, since the calculation of the mixture intensity for each relation involves
a pair of coordinates (giving a total of n2) and all of the block intensities (which is
K2).

The computational complexity for the LFSG is similar to that of the ISG, as it
needs a complexity of O(NK) to sample all coordinates, O(NK) to sample all par-
titions and O(NK) to sample λ. The LFSG has a complexity of O(n2K) to sample
all the latent labels (Eq.15) and K2L to sample all the block intensities.

However, the uncoupling strategy applied in the LFSG lowers this cost dramat-
ically to O(K2L), where L is the number of positive links (i.e. Rij = 1) observed
in the data (Table 2 enumerates L for each data set analysed below). Note that the
mixture intensity computation cost of the LFSG is the same as that of both the SBM
and the MMSB. As a result, the continuous intensities of the LFSG compared to the
discrete intensities of the SBM are achieved without sacrificing computation com-
plexity. In contrast, the computational cost of computing the mixture intensity for the
GP-RM isO(n3) [32], which is the highest among these methods, even though it can
also provide continuous intensities. Regarding the complexity of sampling the labels,
both the LFSG and the MMSB provide multiple labels for each node and incur the
same cost of O(n2K). However, while the SBM requires a smaller cost of O(nK)
for label sampling, it only allows a single label for each node.

5 Experiments

We now evaluate the performance of the ISG-SBM and the LFSG-SBM on real-world
data sets, comparing them with four state-of-the-art methods: the SBM, the MP-RM,
the MMSB and GP-RM. We implement posterior simulation for the SBM and the
MMSB using Gibbs sampling and a conditional Sequential Monte Carlo algorithm
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Fig. 4 Average area under the curve receiver operating characteristic (AUC) and the precision re-
call (Precision) under the Stochastic Block Model (SBM, blue line), Mixed-membership Stochastic
Block Model (MMSB, orange line), Mondrian Process-Relational Model (MP-RM, green line), Gaussian
Process-Relational Model (GP-RM, red line), Latent Feature Smoothing Graphon on the SBM (LFSG,
purple line) and Integrated Smoothing Graphon on the SBM (ISG, brown line) for each of the Delicious,
Digg, Facebook, Flickr, Gplus and Twitter datasets, under different proportions of training data (x-axis).

Table 2 Dataset summary information (S(%) is the sparsity of the positive links.)

Dataset L S(%) Dataset L S(%)
Delicious 10, 775 4.31 Gplus 76, 575 30.63

Digg 25, 943 10.38 Facebook 54, 476 21.79
Flickr 49, 524 19.81 Twitter 24, 378 9.75

[5, 15, 20] for the MP-RM. We used 10 000 iterations for each sampling algorithm,
retaining the final 5 000 iterations as post-burn-in draws from the posterior. Inspection
of AUC and precision-value trace-plots indicated that 5 000 iterations were more than
enough to ensure sampler convergence.
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Fig. 5 AUC performance of the LFSG-SBM and the MMSB under different numbers (K2) of blocks (in
each dimension) for the Delicious, Digg, Facebook, Flickr, Gplus and Twitter datasets.

Table 3 Performance of neighborhood smoothing method of [43] with 90%/10% training/testing data, for
each real world dataset.

Dataset Delicious Digg Facebook Flickr Gplus Twitter
AUC 0.853 0.833 0.941 0.912 0.893 0.907

Precision 0.129 0.373 0.752 0.769 0.863 0.473

5.1 Data sets

We examine six real-world exchangeable relational data sets: Delicious [40], Digg [40],
Flickr [40], Gplus [21], Facebook [21], and Twitter [21]. To construct the exchange-
able relational data matrix we extract the top 1 000 active nodes based on node inter-
action frequencies, and then randomly sample 500 nodes from these top 1 000 nodes
to form the 500 × 500 interaction binary matrix. Table 2 summarizes the number of
positive links (L) and the corresponding sparsity (S%), which is defined as the ratio
of the number of positive links to the total number of links, for each dataset.

5.2 Experimental setting

The hyper-parameters for each method are set as follows: for the SBM, LFSG-SBM,
ISG-SBM, MMSB and MP-RM, the hyper-parameters α0, β0 used in generating the
block intensities are set as α0 = S%, β0 = 1− S%, where S% refers to the sparsity
shown in Table 2, such that the block intensity has an expectation equivalent to the
sparsity of the exchangeable relational data; for the SBM, LFSG-SBM, ISG-SBM
and MMSB, we set the group distribution of θθθ as Dirichlet(1111×4). Hence, the number
of groups in each dimension in these models is set as 4, with a total of 16 blocks
generated in the unit square; for the MP-RM, the budget parameter is set to 3, which
suggests that approximately (3+1)× (3+1) blocks would be generated. We use the
generative processes of the corresponding models to initialize their random variables,
as independent and random initialisation of these random variables would make the
MCMC algorithm take a longer sequence of iterations to converge.
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Fig. 6 Visualisation of mixture intensity from one posterior draw, the posterior mean of smoothing pa-
rameter λ and pairwise hidden labels on the Delicious, Digg, Flickr, Gplus, Facebook and Twitter datasets
when implementing the Latent Feature Smoothing Graphon within the Stochastic Block Model. There
are three figures for each dataset. Left: the grey level in the unit square illustrates the predicted mix-
ture intensity for each relation (darker = higher intensity), the dotted lines indicate the related parti-
tion (� = θθθ(1) × θθθ(2)). Right: the different colours represent the different values of the latent labels
sij (right top) and rij (right bottom), with the y-axis indicating different nodes (sorted by the ratio of the
labels) and the x-axis showing the proportion of different labels for each node.

5.3 Link prediction performance

The performance of each model in the task of link prediction is shown in Figure 4,
which reports both the average area under the curve of the receiver operating charac-
teristic (AUC) and the precision-recall (Precision). The AUC denotes the probability
that the model will rank a randomly chosen positive link higher than a randomly cho-
sen zero-valued link. The precision is the average ratio of correctly predicted positive
links to the total number of predicted positive links. Higher values of AUC and preci-
sion indicate better model performance. For each dataset, we vary the ratio of training
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Delicious(coordinate visualization): = 14.5 Digg(coordinate visualization): = 23.8 Flickr(coordinate visualization): = 39.1

Gplus(coordinate visualization): = 23.1 Facebook(coordinate visualization): = 158.0 Twitter(coordinate visualization): = 250.0

Fig. 7 Partition structure visualisations on the Delicious, Digg, Flickr, Gplus, Facebook and Twitter
datasets when implementing the Latent Feature Smoothing Graphon within the Stochastic Block Model.
Black dots refers to the observed linkages. We re-arrange the row and column indexes based on the
nodes’ coordinates and these visualisations reflect the observed relational data matrix after the index re-
arrangements.

Delicious(matrix visualization): = 14.5 Digg(matrix visualization): = 23.8 Flickr(matrix visualization): = 39.1

Gplus(matrix visualization): = 23.1 Facebook(matrix visualization): = 158.0 Twitter(matrix visualization): = 250.0

Fig. 8 The coordinates of all the nodes visualisations on the Delicious, Digg, Flickr, Gplus, Facebook and
Twitter datasets when implementing the Latent Feature Smoothing Graphon within the Stochastic Block
Model. Black dots refers to the observed linkages. We re-arrange the row and column indexes based on
the nodes’ coordinates and these visualisations reflect the observed relational data matrix after the index
re-arrangements.

data from 10% to 90% and use the remainder for testing. The training/test data split
is created in rows. In particular, we take the same ratio of training data from each row
of the relational matrix, so that each node shares the same amount of training data. It
is noted that the heterogeneity of the nodes’ degrees might make this choice sample
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more 1-valued links from higher degree nodes and might thus produce a systematic
bias in the results.

From Figure 4, both the AUC and precision of all models improves as the amount
of training data increases. The trend generally becomes steady when the proportion is
larger than 0.3, indicating the amount of data required to fit a model with a∼16-block
complexity.

Except for the Facebook data, we can see that the AUC and precision of both the
ISG-SBM and the LFSG-SBM are better than for the piecewise-constant graphon
models (i.e. the SBM and MP-RM) and the continuous graphon model (i.e. GP-
RM). The proposed smoothing graphons typically achieve similar performance to
the MMSB, demonstrating that the smoothing graphon strategy is useful for improv-
ing model performance. For the Facebook dataset, the SBM seems to perform better
than the smoothing graphon-based models. This is examined in greater detail in the
next section.

Figure 5 shows the relationships between the AUC performance and the number
of blocks for the LFSG-SBM and the MMSB. In general, there are two stages for
the behaviour of AUC values. Initially, the AUC values increase as the number of
blocks becomes larger, possibly due to the enlarged model representation capability;
then, the AUC values start to decline, even when the number of blocks continues to
increase, possibly due to overfitting. We can see that the AUC values of the LFSG-
SBM are usually better than those of the MMSB when the number of blocks is larger.
That is, the LFSG-SBM is performs better than the MMSB on with respect to over-
fitting.

We additionally compare model performance with the neighborhood smooth-
ing nonparametric method of [43], which uses a neighborhood smoothing to avoid
the concept of blocks in the model. We implement this model using the R package
grahon, using 90%/10% of the data as training/testing data. The resulting link pre-
diction performance is shown in Table 3. When compared with the results in Figure 4,
it is easy to see that the LFSG and ISG models have stronger performance.

5.4 Graphon and hidden label visualisation

In addition to the quantitative analysis, we visualise the generated graphons and hid-
den labels under the LFSG-SBM on all six data sets in Figure 6 and Figure 7. It is
noted all these visualizations are based on single draws from the posterior distribu-
tion. In particular, these figures are created by re-ordering the nodes based on their
estimated latent coordinates which depend on a particular posterior draw. For each
dataset, we visualise the resulting mixture intensities for one posterior sample, with
the learned posterior mean of the smoothing parameter λ, based on using 90% train-
ing data. We observe that the displayed graphon intensities exhibit smooth transitions
between blocks for each dataset, highlighting that continuous, rather than discrete,
mixture intensity values are generated under the smoothing graphon. The transition
speed of the intensity between blocks is influenced by the smoothing parameter λ
– a larger value of λ leads to a less smooth graphon, and a smaller value of λ to a
smoother graphon – similar to that observed in Figure 2.
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In Figure 6, for each dataset, we also display the posterior proportions of the
pairwise hidden labels sij (top right) and rij (bottom right) for each node. Here the
x-axis indicates different nodes (sorted by the label probabilities) and the y-axis dis-
plays the posterior mean of label probabilities (each label represented by a different
colour). For each node i on the x-axis, more colours observed on the y-axis indi-
cates a greater diversity of groups associated with that node, which in turn represents
a higher potential for that node to belong to different groups when interacting with
other nodes. In other words, the larger the tendency away from vertical line transitions
between groups in these plots, the larger the number of nodes belonging to multiple
groups.

Compared with the value of the smoothing parameter λ learned on the other four
data sets, the values of λ estimated from the Facebook and Twitter datasets are larger.
Further, the visualisations of the hidden labels for these two data sets are partitioned
by almost straight horizontal lines, which suggests that only one label is a realistic
possibility for most of the nodes. This could explain why both the AUC and pre-
cision values of the ISG-SBM and the LFSG-SBM are less competitive compared
with those of the SBM on these two datasets (Figure 4). Here, the SBM assigns each
node to exactly one group only, which aligns well with the ground-truth for these two
datasets.

Another explanation for the performance on the Facebook and Twitter datasets
is that we can recover the SBM if and only if λ = ∞. For any finite value of the
smoothing parameter λ, it is impossible to have any posterior mass on the SBM.
To this end, we might reparameterise by mapping λ to (0,∞) → (0, 1) (e.g. via
λ → 1 − e−λ) such that we are able to place substantial posterior mass close to
1. Since this mapping would permit model fitting arbitrarily close to the SMB, we
would then expect the ISG-SBM and LFSG-SBM models to perform similar to or
better than the SBM, even for the Facebook and Twitter datasets.

Figure 8 illustrates one sample partition drawn from their posterior distribution.
As the black dots represent observed linkages, we can clearly see the pattern where
they merge to form dense blocks. Furthermore, the dense regions in the partitions on
the Facebook and Twitter datasets show clearer rectangular box shapes than those
for the other datasets. This phenomenon is consistent with Figure 6, in which the
smoothing parameter λ is larger for these two datasets. For other datasets, the dense
regions are not confined to regular shapes, and accordingly may be better modelled
by our method.

6 Conclusion

In this paper, we have introduced a smoothing strategy to modify conventional piecewise-
constant graphons in order to increase their continuity. Through the introduction
of a single smoothing parameter λ, we first developed the Integrated Smoothing
Graphon (ISG) that addressed the key limitation of existing piecewise-constant graphons
which only generate a limited number of discrete intensity values. To improve the
computational efficiency of the ISG and to allow for the possibility of each node’s
belonging to multiple groups, we further developed the Latent Feature Smoothing
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Graphon (LFSG) by the introduction of auxiliary hidden labels. Our experimental re-
sults verify the effectiveness of this smoothing strategy in terms of greatly improved
AUC and precision scores in the task of link prediction. The visualisations of the gen-
erated graphons and the posterior hidden label summaries further provide an intuitive
understanding of the nature of the smoothing mechanism for the given dataset.
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Minor Revision Statement for “Smoothing Graphons for Modelling Exchangeable 
Relational Data” 

MACH-D-20-00306R1 

 
A Letter to the Action Editor, 
 
Dear Action Editor Prof. Cussens,  
 
We appreciate the time you and your reviewers have taken to arrange a second review of this paper. The 
valuable comments from the reviewer have helped significantly improve the quality of our work.  
 
In this modified version, we have made thorough and substantial improvements, addressing the review 
comments carefully, as reflected in Section B below. Our revisions have concentrated on the following 
features: 
 

• Adding references about the nonparametric algorithms for the stochastic block models (on Page 15) 
• Discussing the identifiability issue in our smooth graphon model (on Page 14) 
• Adding one nonparametric method comparison to the existing Bayesian approaches (Table 3) 
• General tightening of the presentation and text. 

 

More detailed explanations follow in the next section. For reading convenience, we have highlighted our 
main revision points in red in the manuscript. Please let us know if any further amendments are required. 

 

Sincerely, 

Yaqiong Li, Xuhui Fan, Ling Chen, Bin Li, and Scott A. Sisson 

 

 

 

B Answers to comments from Reviewer 1 

 

B.1 Is the model identifiable? I can imagine that once you consider adding the smoothing on top of the 
block constant model, there may be more than one way to partition the blocks and fit the intensities such 
that the final distribution over the data is exactly the same under the two models? Given a smoothed model, 
it becomes a bit unclear whether the blocks still have the same meaning as before, as the averaged out 
model of edge probabilities could now be smooth across boundaries of blocks. In some ways that is the 
whole point of the smoothing process, and yet it generates new questions with respect to the algorithm and 
the interpretation of the model. One practical concern is that this unidentifiability could cause the posterior 
distribution to be very strangely shaped such that it would be hard to optimize over (as many different 
models would result in the same data distribution). In addition, there may not be a unique stationary 
distribution anymore, as the algorithm could converges to any mixture of two models producing the same 
data distribution. So I wonder how this would impact the behavior of the algorithm/output. In terms of the 
mixed membership SBM, this unidentifiability is one of the challenges for inference, and one suggested fix 
has been to impose a condition on the mixture probabilities. The number of blocks in the mixed membership 
SBM also has a meaningful interpretation as relating to the low rank property of the edge probability matrix. 
 

Answer: Thank you for this question. In a similar manner to the mixed-membership SBM, the LFSG model 
also mitigates issues of identifiability by relating the number of blocks to the low-rank property of the edge 
probability matrix. In this respect, the LFSG model can be regarded as a “restricted” version of the mixed-

Revision Statement Click here to access/download;Manuscript;Statement of the
Second Revision.pdf
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membership SBM (page 13), in that while the group distributions in the LFSG are highly dependent, those 
in the mixed-membership SBM are independently generated. In our simulations we did not encounter any 
non-identifiability. However, we note that the number of parameters in the LFSG is smaller than that of the 
mixed-membership SBM (i.e. 2(n+K)<nK for K>=3 and a moderate value of n), and so the LFSG model 
may perform better than the mixed-membership SBM in overcoming issues of non-identifiability.  

We have included this discussion on model identifiability at the end of Section 3.3. 

The blocks in the smooth graphon model have the same meaning as before. The smooth graphon model 
allows each point to have a probabilistic membership of each block -- this should not affect the meaning or 
definition of the blocks themselves.    

 

B.2 There are some nonparametric algorithms that have simple computational complexity and yet can 
extend beyond block models. In particular "Estimating network edge probabilities by neighborhood 
smoothing" by Yuan Zhang, Elizaveta Levina, Ji Zhu is one such example that assumes Lipschitzness of 
the underlying graphon. It would be helpful to compare and contrast your approach with their algorithm 
and to include this algorithm in the empirical comparisons as well. Another nonparametric property that 
has been considered is monotonicity, and there is also a computationally simple estimator as proposed in 
"A Consistent Histogram Estimator for Exchangeable Graph Models" by Stanley Chan and Edo Airoldi. 
 
 
Answer: Thank you for bringing these references and models to our attention. We have now implemented 
the Zhang et al. (2017) method in our simulations via the est.ndbsmooth function in the R package 
graphon, and compared its empirical performance on our datasets. The detailed results are reported in 
Table 3 (page 19) and discussed at the end of Section 5.3. The developed smoothing graphon models 
outperform the Zhang et al. (2017) method, in this case. 
 
We have also included a discussion of non-parametric methods on page 15, and emphasis our focus on 
Bayesian model implementations. 
 
 
B.3 I somewhat disagree with the statement that MMSBM cannot be modeled by graphon theory. I 
imagine that you are imagining graphons being limited to the domain of a unit square and smooth 
functions F? There are extensions of graphons to domains beyond the unit square, e.g. consider the 
latent variable u_i \in [0,1]^d being in the d-dimensional hypercube instead of the unit interval. Then the 
MMSBM would fit within the graphon framework easily. Furthermore, for general graphon theory, the 
minimal condition on the function F is simply that it is measurable, such that by applying a transformation 
that would map from [0,1] to [0,1]^d, the MMSBM would even be representable with the unit square 
domain. 
 
 
Answer: Thank you for sharing this interesting idea. We agree, have amended this statement, and have 
incorporated this explanation in the manuscript (page 13).  
 
 
B.4 Can you discuss the efficiency of the MCMC approach on this model? Did you observe it to take long 
to converge? Did you compare the Bayesian approach with spectral based algorithms that don't depend 
on a prior (at least for the SBM and MMSBM there are spectral algorithms in the literature). This 
discussion would be helpful in the computational complexity section, as the stated complexity in Table 1 
should be multiplied by the time it takes to converge, as opposed to a spectral algorithm that would 
compute directly. 
 
 
Answer: We found that the MCMC sampler was fairly quick to converge. As stated in lines 47-49 on page 
18, we used 10,000 iterations for each sampling algorithm, retaining the last 5,000 iterations as post-burn-
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in draws from the posterior. Inspection of AUC and precision-value trace-plots indicated that 5,000 iterations 
were enough to ensure convergence.  

As our focus here was on Bayesian implementations, we did not consider other (e.g. non-Bayesian) 
algorithms. This also helped to ensure that the complexity calculations compared like with like on a per-
iteration basis. (We now clarify that the complexities are per-iteration in Section 4.1.) 

 

 

B.5 After estimating the posterior distribution, how did you go from the posterior to predictions that were 
used to calculate the precision/recall curve? Was the curve resulting from setting different thresholds 
mapping form the probability of an edge in the model to the prediction of an edge? I imagine that you 
computed probability of an edge wrt the posterior distribution over the model? So that you didn't need to 
compute the maximum a posteriori model parameters which might have involved a complicated 
optimization. 
 
 
Answer: This is correct – we computed the probability of an edge under the model with respect to the 
posterior distribution. (We are unsure of the value of MAP estimators in this case given that a full posterior 
is available.)  

That is, we used draws from the posterior to compute the expected AUC and precision values using the 
functions metrics.roc_auc_score and metrics.average_precision_score in Python’s scikit-learn 
package (detailed values are obtained through setting different thresholds mapping from the probability of 
an edge to the prediction of an edge).  
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• What is the main claim of the paper? Why is this an important contribution 

to the machine learning literature?  

In machine learning, modelling exchangeable relational data can be described 

by graphon theory. Most Bayesian methods for modelling exchangeable 

relational data can be attributed to this framework by exploiting different 

forms of graphons. However, the graphons adopted by existing Bayesian 

methods are either piecewise-constant functions, which are insufficiently 

flexible for accurate modelling of the relational data, or are complicated 

continuous functions, which incur heavy computational costs for inference. 

In this work, we overcome these two shortcomings by smoothing piecewise-

constant graphons, which permit continuous intensity values for describing 

relations, but without impractically increasing computational costs.  

• What is the evidence you provide to support your claim? Be precise.  

In this work, we focus on the Bayesian Stochastic Block Model (SBM) and 

demonstrate how to adapt the piecewise-constant SBM graphon to the 

smoothed version. We initially propose the Integrated Smoothing Graphon 

(ISG) which introduces one smoothing parameter to the SBM graphon to 

generate continuous relational intensity values. We then develop the Latent 

Feature Smoothing Graphon (LFSG), which improves on the ISG by 

introducing auxiliary hidden labels to decompose the calculation of the ISG 

intensity and enable efficient inference.  Experimental results on real-world 

data sets validate the advantages of applying smoothing strategies to the 

Stochastic Block Model, demonstrating that smoothing graphons can greatly 

improve AUC and precision for link prediction without increasing 

computational complexity. 
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When papers 1-4 proposes piecewise-constant graphons for modeling 
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works and overcomes the above shortcomings.  
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