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Abstract. Graph neural networks (GNNs) have achieved state-of-the-
art performance for node classification on graphs. The vast majority of
existing works assume that genuine node labels are always provided for
training. However, there has been very little research effort on how to
improve the robustness of GNNs in the presence of label noise. Learn-
ing with label noise has been primarily studied in the context of image
classification, but these techniques cannot be directly applied to graph-
structured data, due to two major challenges—label sparsity and label
dependency—faced by learning on graphs. In this paper, we propose a
new framework, UnionNET, for learning with noisy labels on graphs un-
der a semi-supervised setting. Our approach provides a unified solution
for robustly training GNNs and performing label correction simultane-
ously. The key idea is to perform label aggregation to estimate node-level
class probability distributions, which are used to guide sample reweight-
ing and label correction. Compared with existing works, UnionNET has
two appealing advantages. First, it requires no extra clean supervision,
or explicit estimation of the noise transition matrix. Second, a unified
learning framework is proposed to robustly train GNNs in an end-to-end
manner. Experimental results show that our proposed approach: (1) is
effective in improving model robustness against different types and lev-
els of label noise; (2) yields significant improvements over state-of-the-art
baselines.

Keywords: Graph Neural Networks · Label Noise · Label Correction.

1 Introduction

Nowadays, graph-structured data is being generated across many high-impact
applications, ranging from financial fraud detection in transaction networks to
gene interaction analysis, from cyber security in computer networks to social
network analysis. To ingest rich information on graph data, it is of paramount
importance to learn effective node representations that encode both node at-
tributes and graph topology. To this end, graph neural networks (GNNs) have
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been proposed, built upon the success of deep neural networks (DNNs) on grid-
structured data (e.g., images, etc.). GNNs have abilities to integrate both node
attributes and graph topology by recursively aggregating node features across
the graph. GNNs have achieved state-of-the-art performance on many graph
related tasks, such as node classification or link prediction.

The core of GNNs is to learn neural network primitives that generate node
representations by passing, transforming, and aggregating node features from
local neighborhoods [3]. As such, nearby nodes would have similar node rep-
resentations [20]. By generalizing convolutional neural networks to graph data,
graph convolutional networks (GCNs) [10] define the convolution operation via
a neighborhood aggregation function in the Fourier domain. The convolution of
GCNs is a special form of Laplacian smoothing on graphs [11], which mixes the
features of a node and its nearby neighbors. However, this smoothing operation
can be disrupted when the training data is corrupted with label noise. As the
training proceeds, GCNs would completely fit noisy labels, resulting in degraded
performance and poor generalization. Hence, one key challenge is how to improve
the robustness of GNNs against label noise.

Learning with noisy labels has been extensively studied on image classifi-
cation. Label noise naturally stems from inter-observer variability, human an-
notator’s error, and errors in crowdsourced annotations [9]. Existing methods
attempt to correct the loss function by directly estimating a noise transition
matrix [15,19], or by adding extra layers to model the noise transition ma-
trix [17,4]. However, it is difficult to accurately estimate the noise transition
matrix particularly with a large number of classes. Alternative methods such
as MentorNet [8] and Co-teaching [6] seek to separate clean samples from noisy
samples, and use only the most likely clean samples to update model training.
Other methods [2,16] reweight each sample in the gradient update of the loss
function, according to model’s predicted probabilities. However, they require a
large number of labeled samples or an extra clean set for training. Otherwise,
reweighting would be unreliable and result in poor performance.

The aforementioned learning techniques, however, cannot be directly applied
to tackle label noise on graphs. This is attributed to two significant challenges. (1)
Label sparsity: graphs with inter-connected nodes are arguably harder to label
than individual images. Very often, graphs are sparsely labeled, with only a small
set of labeled nodes provided for training. Hence, we cannot simply drop “bad
nodes” with corrupted labels like previous methods using “small-loss trick” [6,8].
(2) Label dependency: graph nodes exhibit strong label dependency, so nodes
with high structural proximity (directly or indirectly connected) tend to have
a similar label. This presses a strong need to fully exploit graph topology and
sparse node labels when training a robust model against label noise.

To tackle these challenges, we propose a novel approach for robustly learning
GNN models against noisy labels under semi-supervised settings. Our approach
provides a unified robust training framework for graph neural networks (Union-
NET) that performs sample reweighting and label correction simulatenously.
The core idea is twofold: (1) leverage random walks to perform label aggregation
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among nodes with structural proximity. (2) estimate node-level class distribu-
tion to guide sample reweighting and label correction. Intuitively, noisy labels
could cause disordered predictions around context nodes, thus its derived node
class distribution could in turn reflect the reliability of given labels. This pro-
vides an effective way to assess the reliability of given labels, guided by which
sample reweighting and label correction are expected to weaken unreliable su-
pervision and encourage label smoothing around context nodes. We verify the
effectiveness of our proposed approach through experiments and ablation studies
on real-world networks, demonstrating its superiority over competitive baselines.

2 Related Work

2.1 Learning with Noisy Labels

Learning with noisy labels has been widely studied in the context of image clas-
sification. The first line of research focuses on correcting the loss function, by
directly estimating the noise transition matrix between noisy labels and ground
true labels [15,19], or adding an extra softmax layer to estimate the noise tran-
sition matrix [17,4]. However, it is non-trivial to estimate the noise transition
matrix accurately. [22] used the negative Box-Cox transformation to improve
the robustness of standard cross entropy loss but with worse converging capac-
ity. The second line of approaches seek to separate clean samples from noisy
ones, and use only the most likely clean samples to guide network training.
MentorNet [8] pre-trains an extra network on a clean set to select clean samples.
Co-teaching [6] trains two peer networks to select small-loss samples to train each
other. Decoupling [13] updates two networks using only samples with which they
disagree. In our setting with very few labeled nodes, we cannot simply drop “bad
nodes” as they are still useful to infer the labels of nearby nodes. The third cat-
egory takes a reweighting approach. [2] utilized a two-component Beta Mixture
Model to estimate the probability of a sample being mislabeled, which is used
to reweight the sample in the gradient update. It was further improved by com-
bining with mixup augmentation [21]. [16] proposed a meta-learning algorithm
that allowed the network to put more weights on the samples with the closest
gradient directions with the clean data. Unlike these reweighting methods that
rely on the predicted probabilities, our method assigns weights to each node by
leveraging topology structure, which is less prone to label noise. Several other
methods are concerned with the problem of label correction. [7] chose class pro-
totypes based on sample distance density to correct labels, incurring significant
computational overhead. [18] proposed a self-training approach to correct the la-
bels. However, this method discards the original given labels, leading to degraded
performance with high noise rates. Our work integrates sample reweighting with
label correction, yielding remarkable gains with high noise rates.

2.2 Graph Neural Networks

GNNs have emerged as a new class of deep learning models on graphs. Various
types of GNNs, such as GCN [10], graph attention network (GAT) [20], Graph-
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SAGE [5], are proposed in recent years. These models have shown competitive
results on node classification, assuming that genuine node labels are provided
for training purposes. To date, there has been little research work on robustly
training a GNN against label noise. [14] studied the problem of learning GNNs
with symmetric label noise. This method adopts a backward loss correction [15]
for graph classification. [1] analyzed the robustness of traditional collective node
classification methods on graphs (such as label propagation) towards random la-
bel noise, but it did not propose new solutions to tackle this problem. To the best
of our knowledge, our work is the first to study the problem of learning robust
GNNs for semi-supervised node classification on graphs with both symmetric
and asymmetric label noise. Our method provides a unified learning framework
and does not require explicit estimation of the noise transition matrix.

3 Problem Definition

Given an undirected graph G = {V, E ,X}, where V denotes a set of n nodes,
and E denotes a set of edges connecting nodes. X = [x1,x2, . . . ,xn]T ∈ Rn×d

denotes the node feature matrix, where xi ∈ Rd is d-dimensional feature vector
of node vi. Let A ∈ Rn×n denote the adjacent matrix.

We consider semi-supervised node classification, where only a small fraction

of nodes are labeled. Let L = {(xi,yi)}|L|i=1 denote the set of labeled nodes,
where xi is feature vector of node vi, and yi = {yi1, yi2, . . . , yim} is the one-hot
encoding of node vi’s class label, with yij ∈ {0, 1} and m being the number of
classes. The rest of nodes belong to the unlabeled set U . Under the GNN learning
framework, the aim is to learn a representation hxi for each node vi such that
its class label can be correctly predicted by f(hxi

). For node classification, the
standard cross entropy loss is used as the objective function:

J (f(hx),y) = −
∑
i∈|L|

∑
j∈m

yij log(f(hxi
)j). (1)

However, when class labels in L are corrupted with label noise, the standard
cross entropy would cause the GNN training to overfit incorrect labels, and in
turn lead to degraded classification performance. Therefore, in our work, we aim
to train a robust GNN model that is less sensitive to label noise.

Formally, given a small set of noisy labeled nodes L, we aim to: (1) learn
node representations h for all nodes V, and (2) learn a model f(h) to predict
the labels of unlabeled nodes in U with maximum classification performance.

4 The UnionNET Learning Framework

To effectively tackle label noise on graphs, one desirable solution should con-
sider the following key aspects. First, since only a small set of labeled nodes
are available for training, we cannot simply drop “bad nodes” using “small-loss



Unified Robust Training for Graph Neural Networks against Label Noise 5

×

GNN
Anchor node 𝒙"

Support set 𝑆
Representation

Representations

Input graph

Graph representation learning Label aggregation

Sample Reweighting 

Label correction
Labels in S

𝐽% = 𝑝%×𝐽(𝑓 𝒉𝒙" ,𝒚")

𝐽/ = 𝑝/×𝐽(𝑓 𝒉𝒙" , 𝒚/)

1− 𝛼 𝐽% +𝛼𝐽/

1− 𝛼

𝛼

Given label 𝒚"

Corrected label 𝒚/

𝑝(𝒚|𝒙", 𝑆)

Fig. 1: Overview of the UnionNET Framework. The key idea is to infer the
reliability of the given labels through estimating node-level class probability dis-
tributions via label aggregation. Based on this, the corresponding label weights
and corrected labels are obtained to update model parameters during training.

trick” [6,8]. Second, graph nodes that share similar structural context exhibit la-
bel dependency. Thus, we propose a unified framework, UnionNET, for robustly
training a GNN and performing label correction, as shown in Fig 1.

Taking a given graph as input, a GNN is first applied to learn node represen-
tations and generate the predicted label for each node. Then, label information
is aggregated to estimate a class probability distribution per node. This aggre-
gation is operated on a support set constructed by collecting context nodes with
high structural proximity. According to node-level class probability distributions,
our algorithm generates label weights and corrected labels for each labeled node.
Those corrected labels generated from the support set could potentially provide
extra “correct” supervision. Taken together, both given labels reweighted by
label weights and corrected labels are used to update model parameters.

4.1 Label Aggregation

On graphs, it is well studied that nodes with high structural proximity tend to
have the same labels [12,23]. The supervision from noisy labels however disrupt
such label smoothness around context nodes. Nevertheless, their smoothness
degree could provide a reference to assess the reliability of given labels. Hence, we
design a label aggregator that aggregates label information for each labeled node
from its context nodes to estimate its class probability distribution. Specifically,
we perform random walks to collect context nodes with higher-order proximity.
For each labeled node x̂ ∈ L, called anchor node, we construct a support set of
size k, denoted as S = {(xi,yi)|x̂}k, where xi is the supportive node in S and
yi is one-hot encoding of xi’s class label. During a random walk, if node xi ∈ L,
the given label yi is collected in S. Otherwise, the predicted label is used.

Given anchor node x̂ and its support set S, we derive a node-level class prob-
ability distribution P (y|x̂, S) over m classes. It signifies the probabilities of the
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anchor node belonging to m classes in reference of its support set. Particularly,
we specify a non-parametric attention mechanism given by,

P (y|x̂, S) =
∑
xi∈S

A(x̂,xi)yi =
∑
xi∈S

exp(hT
xi

hx̂)∑
xj∈S exp(hT

xj
hx̂)

yi. (2)

Here, the probability of the anchor node belonging to each class is calculated
according to its proximity with nearby nodes in the support set. We define the
proximity as the inner product in the embedding space, and apply softmax to
measure the contribution made by each label in the support set to estimating
the anchor node’ class probability distribution. In the support set, if a node has
a higher similarity with the anchor node (i.e., higher inner product), its label
would contribute more to P (y|x̂, S), and vice verse. This simple yet effective
mechanism estimates a class probability distribution for each node, which is
used to guide sample reweighting and label correction.

4.2 Sample Reweighting

For GNNs, the standard cross entropy loss implicitly puts more emphasis on the
samples for which the predicted labels disagree with the provided labels during
gradient update. This mechanism enables faster convergence and better fitting
to the training data. However, if there exist corrupted labels in the training
set, this implicit weighting scheme would conversely push the model to overfit
noisy labels, leading to degraded performance [22]. To mitigate this, we devise a
reweighting scheme for each node according to the reliability of its given label,
so that the loss of reliable labels could contribute more during gradient update.

Specifically, we define the reweighting score of anchor node x̂ as:

pr(ŷ|x̂, S) =
∑

xi∈S,yi=ŷ

exp(hT
xi

hx̂)∑
xj∈S exp(hT

xj
hx̂)

yi. (3)

The loss function for the labeled nodes is thus defined as:

Jr = −
∑
x̂∈L

pr(ŷ|x̂, S)× ŷ log(f(hx̂)), (4)

where pr(ŷ|x̂, S) is the weight imposed on each labeled node x̂ according to
the aggregated label information. If the given label ŷ is highly consistent with
nearby labels, its gradient would be back-propagated as it is. Otherwise, it would
be penalized by the weight during back-propagation.

4.3 Label Correction

The reweighting method reduces the sensitivity of the standard cross entropy
to noisy labels, and boosts the robustness of the model. As labeled nodes are
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limited for training, we also augment the set of labeled nodes by correcting noisy
labels. Accordingly, we define the label correction loss as

Jc = −
∑
x̂∈L

pc(y
c|x̂, S)× yc log(f(hx̂)), (5)

pc(y
c|x̂, S) = max

yi

P (yi|x̂, S) = max
yi

∑
xi∈S

exp(hT
xi

hx̂)∑
xj∈S exp(hT

xj
hx̂)

yi. (6)

This provides additional supervision for x̂ with the corrected label yc, encourag-
ing it to have the same label with the most consistent one in its support set. This
approach aggregates labels from context nodes via a linear combination based
on their similarity in the embedding space. It thus helps diminish the gradient
update of corrupted labels, and boosts the supervision from consistent labels.

However, in the presence of extreme label noise, this approach would produce
biased correction that deviates far away from its original prior distribution over
the training data. This bias could exacerbate the overfitting problem caused by
noisy labels. To overcome this, we employ a KL-divergence loss between the prior
and predicted distributions to push them as close as possible [18]. It is given by:

Jp =

m∑
j=1

pj log
pj

f(hX)j
, (7)

Where pj is the prior probability of class j in L, and f(hX)j = 1
|L|

∑
x∈L f(hx)j

is the mean value of predicted probability distribution on the training set.

4.4 Model Training

The training of UnionNET is given in Algorithm 1, which consists of the pre-
training phase (Step 1-4) and the training phase (Step 6-11). The pre-training is
employed to obtain a parameterized GNN. The pre-trained GNN then generates
node representations h, which are used to compute sample weights and corrected
labels. After that, model parameters are updated according to the loss function:

Jf = (1− α)Jr + αJc + βJp. (8)

Compared with GNNs with the standard cross entropy loss, the training of
UnionNET incurs an extra computational complexity of O(|L|ml) to estimate
node-level class distributions, where |L| is number of labeled nodes, m is number
of classes, and l is number of nodes including context nodes in the support set.

5 Experiments

Datasets and Baselines. Three benchmark datasets are used in our experi-
ments: Cora, Citeseer, and Pubmed3. We use the same data split as in [10], with

3 https://linqs.soe.ucsc.edu/data
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Algorithm 1: Robust training for GNNs against label noise

Input: Graph G = {V, E ,X}, node sets L,U , α, β
Output: label predictions

1 Initialize network parameters;
2 for t = 0; t < epoches; t = t+ 1 do
3 if t < start epoch then
4 pre-train the network according to Eq.(1);

5 else
6 Generate node representations hx;
7 Construct support set S for each node x̂ ∈ L;
8 Aggregate labels to produce node-level class distribution P (y|x̂, S);
9 Compute weight pr(ŷ|x̂, S) using Eq.(3);

10 Generate corrected label yc and its weight pc(y
c|x̂, S) using Eq.(6);

11 Update parameters by descending gradient of Eq.(8)

12 return Label predictions

500 nodes for validation, 1000 nodes for testing, and the remaining for train-
ing. Of these training sets, only a small fraction of nodes are labeled (3.6% on
Citeseer, 5.2% on Cora, 0.3% on Pubmed) and the rest of nodes are unlabeled.
Details about the datasets can be found in [10].

As far as we are concerned, there has not yet been any method exclusively
proposed to deal with the label noise problem on GNNs for semi-supervised node
classification. We select three strong competing methods from image classifica-
tion, and adapt them to work with GCN [10] under our setting as baselines.

– Co-teaching [6] trains two peer networks and each network selects the
samples with small losses to update the other network.

– Decoupling [13] also trains two networks, but updates model parameters
using only the samples with which two networks disagree.

– GCE [22] utilizes a negative Box-Cox transformation as the loss function.

As a general robust training framework, UnionNET can be applied to any
semi-supervised GNNs for node classification. Hereby, we instantiate Union-
NET with two state-of-the-art GNNs, GCN [10] and GAT [20], denoted as
UnionNET-GCN and UnionNET-GAT, respectively.

Experimental Setup. Due to the fact that there are not yet benchmark graph
datasets corrupted with noisy labels, we manually generate noisy labels on pub-
lic datasets to evaluate our algorithm. We follow commonly used label noise
generation methods in the domain of images [6,8]. Given a noise rate r, we gen-
erate noisy labels over all classes according to a noise transition matrix Qm×m,
where Qij = p(ỹ = j|y = i) is the probability of clean label y being flipped to
noisy label ỹ. We consider two types of noise: 1). Symmetric noise: label i is
corrupted to other labels with a uniform random probability, s.t. Qij = Qji; 2).
Pairflip noise: mislabeling only occurs between similar classes. For instance,
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Table 1: Performance comparison (Micro-F1 score) on node classification
Symmetric label noise Asymmetric label noise

Dataset Methods noise rate (%)
10 20 40 60 10 20 30 40

Cora

GCN 0.778 0.732 0.576 0.420 0.768 0.696 0.636 0.517
Co-teaching 0.775 0.665 0.486 0.249 0.773 0.630 0.542 0.393
Decoupling 0.738 0.708 0.564 0.436 0.743 0.683 0.574 0.518

GCE 0.794 0.741 0.621 0.402 0.773 0.714 0.652 0.509
UnionNET-GCN 0.812 0.795 0.707 0.491 0.801 0.771 0.710 0.584

GAT 0.755 0.709 0.566 0.389 0.764 0.683 0.616 0.534
UnionNET-GAT 0.797 0.784 0.692 0.546 0.774 0.745 0.660 0.540

Citeseer

GCN 0.670 0.634 0.480 0.360 0.667 0.624 0.531 0.501
Co-teaching 0.673 0.541 0.379 0.273 0.677 0.583 0.472 0.418
Decoupling 0.588 0.584 0.402 0.348 0.615 0.548 0.537 0.468

GCE 0.690 0.649 0.542 0.358 0.701 0.633 0.552 0.498
UnionNET-GCN 0.701 0.673 0.567 0.401 0.706 0.667 0.587 0.521

GAT 0.649 0.604 0.475 0.338 0.651 0.599 0.551 0.480
UnionNET-GAT 0.695 0.667 0.585 0.424 0.697 0.654 0.604 0.512

Pubmed

GCN 0.748 0.672 0.508 0.367 0.739 0.686 0.618 0.528
Co-teaching 0.769 0.660 0.478 0.345 0.761 0.634 0.576 0.472
Decoupling 0.650 0.625 0.422 0.334 0.641 0.592 0.428 0.396

GCE 0.750 0.699 0.561 0.393 0.753 0.696 0.609 0.567
UnionNET-GCN 0.769 0.725 0.588 0.409 0.776 0.719 0.649 0.556

GAT 0.736 0.670 0.525 0.381 0.737 0.657 0.594 0.536
UnionNET-GAT 0.751 0.726 0.570 0.361 0.758 0.702 0.626 0.552

given r = 0.4 and m = 3, the two types of noise transition matrices are given by

Qsymmetric =

0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 ; Qpairflip =

0.6 0.4 0.
0. 0.6 0.4
0.4 0. 0.6


Our experiments follow a transductive setting, where the noise transition

matrix is only applied to L, while both validation and test sets are kept clean.
For UnionNET-GCN, we apply a two-layer GCN, which has 16 units of hidden
layer. The hyper-parameters are set as L2 regularization of 5∗10−4, learning rate
of 0.01, dropout rate of 0.5. For UnionNET-GAT, we apply a two-layer GAT,
with the first layer consisting of 8 attention heads, each computing 8 features.
The learning rate is 0.005, dropout rate is 0.6, L2 regularization is 5 ∗ 10−4.

We set the random walk length as 10 on Cora and Citeseer, and 4 on Pubmed,
and the random walk is repeated for 10 times for each node to create the support
set. We first pre-train the network, during which only the standard cross entropy
are used, i.e. Jpre = J (f(hx),y). After that, it proceeds to the formal training,
which uses Jf in Eq.(8) as the loss function. And α and β are set as 0.5 and 1.0.

5.1 Comparison with State-of-the-art Methods

Table 1 compares the node classification performance of all methods w.r.t. both
the symmetric and asymmetric noise types under various noise rates. The best
performer is highlighted by bold on each setting. For GCN-based baselines,
UnionNET-GCN generally outperforms all baselines by a large margin. Com-
pared with GCN in case of symmetric noise type, UnionNET-GCN achieves an
accuracy improvement of 3.4%, 6.3%, 13.1% and 7.1% under the noise rate of
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10%, 20%, 40% and 60% on Cora, respectively. Similar improvements can be seen
on Citeseer and Pubmed, where the smallest improvement is 2.1% on Pubmed
with a noise rate of 10%, and the largest improvement is 8.7% on Citeseer with
a noise rate of 40%. In case of asymmetric noise type, UnionNET-GCN has the
similar performance. Quantitatively, UnionNET-GCN outperforms GCN by an
average of 3.6%, 5.0%, 5.4%, 3.8% on the four noise rates on three datasets.

In most cases, GCE is the second best performer, but its advantage comes
at the cost of worse converging capability, leading to sub-optimal performance.
Co-teaching and Decoupling do not exhibit robustness towards noisy labels as
reported in fully supervised image classification. Their performance drops are
expected, as labeled data is further reduced when they prune the training data.
This exacerbates the label scarcity problem in our semi-supervised setting.

On three datasets, UnionNET-GAT also surpasses GAT w.r.t. most noise
rates. Similar to UnionNET-GCN, UnionNET-GAT generally exhibits greater
superiority on higher noise rates. For example, in case of symmetric noise type,
UnionNET-GAT outperforms GAT by an average of 3.4%, 6.4%, 9.4% and 7.4%
at the four noise rates. Such performance gains validate the generality of Union-
NET on improving robustness of different GNN models against noisy labels.

5.2 Ablation Study

We conduct ablation studies to test the effectiveness of different components in
UnionNET. Our ablation study is based on GCN, with two ablation versions: 1)
UnionNET-R with only sample reweighting; 2) UnionNET-RC with sample
reweighting and label correction. The ablation results are summarized in Table 2.
When only reweighting is applied, UnionNET-R consistently exhibits advantages
over GCN, though the advantageous margins vary over different noise rates and
noise types. When it comes to UnionNET-RC, both smaple reweighting and
label correction are applied, but, surprisingly, the performance becomes worse
than UnionNET-R in some extreme cases with higher noise rates. Therefore,
label correction does not guarantee performance gains, whose utility is exerted
only with the regularization of the prior distribution loss.

5.3 Hyper-parameter Sensitivity

We further test the sensitivity of UnionNET-GCN w.r.t. the hyper-parameters
(α, β) in Eq.(8) and the random walk length for the support set construction. We
report the results on the three datasets at 40% symmetric noise rate in Fig. 2. α
controls the trade-off between sample reweighting and label correction. When α
is zero, our method is only a reweighting method. When α reaches 1, our method
evolves as a self-learning based label correction method, where given labels are
replaced with predicted labels after the initial epoches. On Cora and Citeseer,
our method achieves the best results at a medium α value. But on Pubmed, its
performance improves as α increases, and reaches its best when α = 1.0. This
is possibly because Pubmed has stronger clustering property with only three
classes, enabling the predicted labels to be more reliable for correction. The
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Table 2: Performance comparison of ablation experiments based on GCN
Symmetric label noise Asymmetric label noise

Dataset Methods noise rate (%)
10 20 40 60 10 20 30 40

Cora

GCN 0.778 0.732 0.576 0.420 0.768 0.696 0.636 0.517
UnionNET-R 0.785 0.770 0.659 0.480 0.796 0.709 0.646 0.521

UnionNET-RC 0.788 0.759 0.626 0.339 0.783 0.703 0.601 0.516
UnionNET-GCN 0.812 0.795 0.707 0.491 0.801 0.771 0.710 0.584

Citeseer

GCN 0.670 0.634 0.480 0.360 0.667 0.624 0.531 0.501
UnionNET-R 0.692 0.643 0.507 0.363 0.699 0.627 0.547 0.484

UnionNET-RC 0.657 0.645 0.495 0.330 0.660 0.642 0.511 0.431
UnionNET-GCN 0.701 0.673 0.567 0.401 0.706 0.667 0.587 0.521

Pubmed

GCN 0.748 0.672 0.508 0.367 0.739 0.686 0.618 0.528
UnionNET-R 0.766 0.710 0.573 0.417 0.759 0.705 0.624 0.560

UnionNET-RC 0.770 0.695 0.573 0.362 0.757 0.650 0.608 0.497
UnionNET-GCN 0.769 0.725 0.588 0.409 0.776 0.719 0.649 0.556

performance changes w.r.t. β exhibits similar trends on the three datasets, where
our method gradually improves its performance as β increases. The random walk
length determines the order of proximity the support set could cover. Either too
small or too large of the random walk length would impair the reliability of the
supportive nodes, and thus undermine performance improvements. Empirically,
our method achieves its best at a medium range of random walk lengths.

(a) α (b) β (c) Walk Length

Fig. 2: Hyper-parameter sensitivity analysis on α, β, and the random walk length

6 Conclusion

We proposed a novel semi-supervised framework, UnionNET, for learning with
noisy labels on graphs. We argued that, existing methods on image classifica-
tion fail to work on graphs, as they often take a fully supervised approach, and
requires extra clean supervision or explicit estimation of the noise transition ma-
trix. Our approach provides a unified solution to robustly training a GNN model
and performing label correction simultaneously. UnionNET is a general frame-
work that can be instantiated with any state-of-the-art semi-supervised GNNs
to improve model robustness, and it can be trained in an end-to-end manner.
Experiments on three real-world datasets demonstrated that our method is ef-
fective in improving model robustness w.r.t. different label noise types and rates,
and outperform competitive baselines.
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