
Decoupling Sparsity and Smoothness in Dirichlet Belief
Networks

Yaqiong Li1, Xuhui Fan2�, Ling Chen1, Bin Li3, and Scott A. Sisson2

1 Australian Artificial Intelligence Institute, University of Technology, Sydney
yaqiong.li@student.uts.edu.au,ling.chen@uts.edu.au

2 UNSW Data Science Hub, and School of Mathematics and Statistics,
University of New South Wales

{xuhui.fan,scott.sisson}@unsw.edu.au
3 Shanghai Key Laboratory of IIP, School of Computer Science, Fudan University

libin@fudan.edu.cn

Abstract. The Dirichlet Belief Network (DirBN) has been proposed as a promis-
ing deep generative model that uses Dirichlet distributions to form layer-wise
connections and thereby construct a multi-stochastic layered deep architecture.
However, the DirBN cannot simultaneously achieve both sparsity, whereby the
generated latent distributions place weights on a subset of components, and smooth-
ness, which requires that the posterior distribution should not be dominated by
the data. To address this limitation we introduce the sparse and smooth Dirichlet
Belief Network (ssDirBN) which can achieve both sparsity and smoothness si-
multaneously, thereby increasing modelling flexibility over the DirBN. This gain
is achieved by introducing binary variables to indicate whether each entity’s la-
tent distribution at each layer uses a particular component. As a result, each latent
distribution may use only a subset of components in each layer, and smoothness
is enforced on this subset. Extra efforts on modifying the models are also made
to fix the issues which is caused by introducing these binary variables. Extensive
experimental results on real-world data show significant performance improve-
ments of ssDirBN over state-of-the-art models in terms of both enhanced model
predictions and reduced model complexity.

Keywords: Dirichlet Belief Networks · Markov chain Monte Carlo · Sparsity.

1 Introduction

The Dirichlet Belief Network (DirBN) [20] was recently proposed as a promising deep
probabilistic framework for learning interpretable hierarchical latent distributions for
entities (or objects). To date, DirBN has been successfully implemented in two applica-
tion areas: (1) topic structure learning [20], where the entities represent topics and the
entities’ latent distributions describe the topic’s vocabulary distributions; and (2) rela-
tional modelling [4, 12, 5], where the entities represent individuals and the latent dis-
tributions characterise an individual’s membership distribution over community struc-
tures. By constructing a deep architecture for the latent distributions, the DirBN can
effectively model high-order dependency between topic-vocabulary distributions (for
topic models) and individual’s membership distributions (for relational models).

2 Y. Li et al.

 = (0.1, 0.1, 0.1) = (0.1, 0.1, 1.0) = (1, 1, 10)

Fig. 1: Small Dirichlet concentration parameters generate sparse latent distributions. 1 500 sam-
ples (red dots) generated from a 3-dimensional Dirichlet distribution are shown on the 2-
dimensional unit simplex, x1+x2+x3 = 1, with different concentration parametersααα. Whenααα
is small (left and middle panels), most samples reside on vertices or edges, placing most mass on
one or two dimensions. When ααα is not small (right panel), most samples lie inside the triangle,
placing mass on all three dimensions.

While promising, DirBN currently has some structural limitations which reduce
their modelling flexibility. One limitation is that the length of each entity’s latent dis-
tribution is restricted to be the same over all entities and all layers. As constructed, this
restriction can reveal inadequate modelling flexibility in the DirBN when entities are
related to different subsets of components in different layers (e.g. when individuals be-
long to different communities for different layers in the relational modelling setting).
Since the latent distributions are linearly scaled (by Gamma-distributed variables) when
being propagated into each subsequent layer, the resulting changes in the latent distri-
butions can be too slow to adequately model the rapid changes inherent in the data.

A second limitation of DirBN is that it is unable to achieve the desirable properties
of sparsity and smoothness simultaneously. Sparsity is achieved when the generated
latent distributions place large weight on a subset of components – for the Dirichlet dis-
tribution, this occurs when the concentration parameters approach zero (see Fig. 1). In
this case, however, the resulting posterior distribution over the latent distributions would
be less smooth across layers as the empirical counts will then dominate the posterior
distribution. Typically (though not exclusively) the posterior distribution is expected to
be smooth, so as to reduce sensitivity to rarely-occurring latent distribution components.

In order to resolve these issues, we propose a sparse and smooth Dirichlet Belief
Network (ssDirBN), which introduces binary variables into the layer-wise connections
of the DirBN. In particular, each binary variable b(l)ik , which is generated by a Bernoulli
distribution with entity-specific parameter, determines whether entity i’s latent distribu-
tion at layer l uses component k (b(l)ik = 1) or not (b(l)ik = 0). Under this representation,
sparsity is achieved through the Bernoulli distribution that generates the binary vari-
able b(l)ik , flexibly permitting the latent distributions of different layers to solely focus on
different subsets of components. Smoothness can then be enforced over those compo-
nents with non-zero b(l)ik through the Dirichlet concentration parameters. In this manner
sparsity and smoothness are decoupled, and the benefits of both may be simultaneously
obtained.

To ensure latent distributions to be defined appropriately and enable efficient pos-
terior inference, we make two further modifications on the model: (1) fixing b(l)iK = 1,
so that the last component K is certain to be propagated into the next layer, which can

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 3

guarantee latent distributions be defined on at least one component; (2) letting those
components with b(l)ik = 0 be propagated into component K, which can satisfy the spe-
cific condition (specified in the last paragraph of Section 2) for efficient Gibbs sampling
algorithms on the membership distributions.

We explore the effectiveness of the ssDirBN in context of relational models, which
use multi-stochastic layered latent distributions to model individual’s membership dis-
tributions over communities. In this setting, the ssDirBN permits individuals to belong
to different subsets of communities within different layers, and can thereby obviate
placing unnecessary small probability masses on unrelated communities. Our experi-
mental results on real-world data show significant performance improvements of ss-
DirBN over DirBN and other state-of-the-art models, in terms of reduced model com-
plexity and improved link prediction performance. Similar to DirBN that can be con-
sidered as a self-contained module [20], the ssDirBN can be flexibly combined with
alternative emission models and be implemented in these applications such as topic
data, collaborative filtering data, etc.

2 Preliminary Knowledge

We first give a brief review on the DirBN model, where we use N to denote the number
of entities (or number of topics in topic modeling) in each layer,K to denote the number
of components in the entity’s latent distributions and L to denote the number of layers.
In general, DirBN assumes each entity has latent distributions πππ(l−1)

i at layer l − 1 and
uses Dirichlet distributions to generate entities’ latent distribution at layer l, with the
concentration parameters being the linear sum of entities’ latent distributions at layer
l− 1. Within the relational modelling setting, {πππ(l)

i }
L
l=1 represent entity i’s membership

distributions over K communities at L layers. The generative process of propagating
the membership distributions {πππ(l−1)

j }j to πππ(l)
i at layer l can be briefed as follows:

1. β(l)
ji ∼ Gam(cj , d), ∀i, j = 1, . . . , N

2. πππ(l)
i ∼ Dir(

∑
j β

(l)
ji πππ

(l−1)
j), ∀i = 1, . . . , N, l = 1, . . . , L

where Gam(c, d) is the Gamma distribution with mean c/d and variance c/d2. β(l)
ji rep-

resents the information propagation coefficient from entity j at layer l− 1 to entity i in
at layer l, cj , d are the hyper-parameters. After generating entity i’s membership distri-
bution at layer L, [4] uses counting vectors mmm(L)

i , which is sampled from Multinomial
distribution with πππ(L)

i as event probabilities, and community compatibility matrix to
form probability function for generating the entity-wise relations.

DirBN is mostly inferred through Markov chain Monte Carlo (MCMC) methods.
To enable efficient Gibbs sampling algorithm for DirBN, we note that the probability
density function of πππ(l)

i is written as:

P (πππ
(l)
i |−) =

Γ (
∑
k

∑
j β

(l)
ji π

(l−1)
jk)∏

k Γ (
∑
j β

(l)
ji π

(l−1)
jk)

∏
k

(π
(l)
ik)

∑
j β

(l)
ji π

(l−1)
jk

−1 (1)

4 Y. Li et al.

where (−) refers to the set of conditional variables related to πππ(l)
i and Γ (·) is the

Gamma function. As {π(l−1)
jk }j appear in the Gamma function, the prior and poste-

rior distributions of πππ(l−1)
i are not conjugate and it is difficult to implement efficient

Gibbs sampling for πππ(l−1)
i . A strategy of first upward propagating latent counts and

then downward sampling variables has been developed in [20] to address this issue,
which is detailed below.
Upward propagating latent counts W.l.o.g., we assume the observation at layer l is
the counts mmm(l)

i , which is obtained through Multinomial distribution with πππ(l)
i as event

probabilities. We may first integrate πππ(l)
i out and obtain the likelihood term of the latent

countsmmm(l)
i as:

P ({m(l)
ik }k|{π

(l−1)
jk }j,k) ∝

∏
k

Γ (
∑
j β

(l)
ji π

(l−1)
jk +m

(l)
ik)

Γ (
∑
j β

(l)
ji π

(l)
jk)

(2)

The r.h.s. in Equation (2) can be augmented through a random counts y(l)ik from the
Chinese Restaurant Table (CRT) distribution (i.e. y(l)ik ∼ CRT(m(l)

ik ,
∑
j β

(l)
ji π

(l)
jk)) as:

P ({y(l)ik }k, {m
(l)
ik }k|{π

(l−1)
ik }k) ∝

∏
k

[(
∑
j

β
(l)
ji π

(l−1)
jk)y

(l)
ik (m

(l)
ik − y

(l)
ik)!]

By further distributing the ‘derived’ count y(l)ik into the entities at layer l−1 through a

Multinomial distribution as: (h(l)
1ik, . . . , h

(l)
Nik) ∼ Multi(y(l)ik ;

{π(l−1)
jk

B
(l−1)
ji }j∑

j β
(l)
ji π

(l)
jk

) and the terms

associated with {πππ(l−1)
i }i are abstracted as:

P ({h(l−1)
jik }j,k|{π

(l−1)
jk }k) ∝

∏
k

(π
(l−1)
jk)

∑
j h

(l−1)
jik

The latent counts mmm(l−1)
i = (

∑
j h

(l−1)
ji1 , . . . ,

∑
j h

(l−1)
jiK) can be regarded as a random

draw from a Multinomial distribution, with πππ(l−1)
i as event probabilities.

Downward sampling variables After the counts are propagated to entity i at each layer
l as m(l)

ik , the posterior distribution of πππ(l)
i follows as:

πππ
(l)
i ∼ Dir(

∑
j

β
(l)
ji πππ

(l−1)
j +mmm

(l−1)
i)

3 Sparse and Smooth Dirichlet Belief Networks

3.1 Generative Process

ssDirBN aims at enabling each entity’s latent distribution at each layer to be defined on
individual subsets of components and thus simultaneously obtain the benefits of spar-
sity and smoothness of the Dirichlet distribution. Given N entities’ latent distributions
{πππ(l−1)

i }Ni=1 at layer l − 1, we use the following method to generate entity i’s latent
distribution πππ(l)

i at layer l:

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 5

(a) DirBN (b) ssDirBN

β
(1)
ji

π
(1)
j

π
(2)
i

π
(1)
j

π
(2)
i

π
(1)
j5

b
(2)
i5

π
(2)
i5

π
(1)
j4

b
(2)
i4

π
(2)
i4

π
(1)
j3

b
(2)
i3

π
(2)
i3

π
(1)
j2

b
(2)
i2

π
(2)
i2

π
(1)
j1

b
(2)
i1

π
(2)
i1

β
(1)
ji

π
(1)
j5

π
(2)
i5

π
(1)
j4

π
(2)
i4

π
(1)
j3

π
(2)
i3

π
(1)
j2

π
(2)
i2

π
(1)
j1

π
(2)
i1

Fig. 2: Example visualisations on propagating latent distributions of πππ(1)
j at layer 1 to πππ(2)

i at

layer 2. In DirBN (left panel), all the components in πππ(1)
j are one-to-one propagated to their cor-

responding components in πππ(2)
i . In ssDirBN (right panel), binary variables are inserted between

πππ
(1)
j and πππ(2)

i . Red entities of b(2)ik represent “b(2)ik = 0” and in this case, π(1)
jk will be propagated

to π(2)
i5 , which is the last component of πππ(2)

i . Green b(2)ik entities represent that b(2)ik = 1 and in
this case, π(1)

jk will be propagated to π(2)
ik . Grey dotted entities represent non-existing compo-

nents. Since π(1)
j3 is not existing, πππ(1)

j can not propagate component 3 to πππ(2)
i (other entities with

existing component 3 will propagate to it.).

1. β(l)
ji ∼ Gam(cj , d), ∀i, j = 1, . . . , N

2. ω(l)
i ∼ Beta(γ, s), b(l)iK = 1, {b(l)ik }

K−1
k=1 ∼ Bernoulli(ω(l)

i)

3. πππ(l)
i ∼ Dir

(∑
j β

(l)
ji (bbb

(l)
i · πππ

(l−1)
j + eeeK · (

∑
k π

(l−1)
jk δ

b
(l)
ik

=0
))
)
, ∀i = 1, . . . , N

where eeeK = [0, . . . , 0, 1] is a K-length vector with the last element 1 and 0 else-
where; the two multiplication operations · in step 3 represents element-wise vector
multiplication and scalar and vector multiplication respectively; cj , d, γ, s are the hyper-
parameters and we set Gamma priors on them as: cj ∼ Gam(c0/K, d0),d ∼ Gam(e0, f0),
γ, s ∼ Gam(g0, h0).

In this generative process, step 1 generates layer l’s entity-wise information propa-
gation coefficient β(l)

ji , which is same as in DirBN and represents the information prop-
agation coefficient from entity j’s latent distribution at layer l − 1 to that of entity i at
layer l.

Step 2 generates a component including variable ω(l)
i and a subsequent K-length

binary vector bbb(l)i ∈ {0, 1}1×K for entity i at layer l. When larger values of ω(l)
i en-

courage more “1” entries in bbb(l)i , the case of b(l)ik = 1 denotes that entity i’s latent
distribution at layer l includes component k and vice versa. That is, bbbi specifies a small
simplex through its “1” entries. An exception is the componentK, for which we fix b(l)iK
as b(l)iK = 1 to make sure πππ(l)

i is well defined (πππ(l)
i will be problematic if b(l)i,k = 0 for

k = 1, . . . ,K). bbb(l)i determines the subset of components for entity i’s latent distribution
at layer l, i.e., |πππ(l)

i | =
∑
k b

(l)
ik .

Step 3 also uses Dirichlet distribution to generate πππ(l)
i at layer l. The related concen-

tration parameter is a linear sum of the entities’ components weight at layer l − 1. For
component k, its weight propagation would be proceeded differently based on the value

6 Y. Li et al.

of b(l)ik : (1) when b(l)ik = 1, π(l−1)
jk will be added to component k of the concentration pa-

rameters; (2) when b(l)ik = 0, π(l−1)
jk will be added to component K of the concentration

parameters. Fig. 2 shows an example to visualise the propagation of latent distributions
in DirBN and ssDirBN respectively.

Our ssDirBN has the following advantages when compared to DirBN:

– Flexible subsets of components By introducing the binary variables, the latent
distributions for different entities at different layers can be defined on different
subsets of components. The model complexity is reduced as fewer components are
involved. Also, the flexible usage of components may help each latent distribution
focus on closely related components without assigning weights to unrelated ones.

– Flexible weight ratios between components Recall that the ratios of component
weights are unchanged when propagated from the current layer to the next layer.
Thus, the concentration parameters of Dirichlet distributions should also follow
these ratios generally. In ssDirBN, since we allow some components to be non-
existing, the ratios of components can thus change greatly during the layer-wise
connections, which enhances the representation capability of the model.

– Decoupling sparsity and smoothness The sparsity in our ssDirBN is controlled
by the Bernoulli parameter ωi for entity i, with component k retained only if b(l)ik =

1. The smoothing effect is placed on the remaining components and controlled
through the linear coefficient β(l)

ji . In this way, the sparsity and smoothness are
decoupled and we can obtain the benefits of both properties at the same time.

3.2 Necessity of fixing b
(l)
iK = 1

Fixing b(l)iK = 1 (∀i, l) and making component k propagate to componentK when b(l)ik =
0 (∀k) are key steps to guarantee the feasibility of upward count propagation method
in ssDirBN. Recall that we have

∑
j β

(l)
ji =

∑
k

∑
j βjiπ

(l)
jk to ensure that generated

counts follow a Multinomial distribution. If we directly introduce the binary variable
b
(l)
ik , which makes b(l)ik ∼ Bernoulli(ωi)(∀k), we have

P ({h(l)
jik}j |{π

(l−1)
jk }k) ∝ [q

(l)
i]

∑
k

∑
j βjib

(l)
ik
π
(l)
jk

∏
k

(π
(l−1)
jk)

h
(l)
jik

That is, the counts of {h(l)jik}j cannot form a Multinomial distribution. However, we can
still obtain

∑
j β

(l)
ji =

∑
k

∑
j βjib

(l)
jkπ

(l)
jk in ssDirBN, which enables the upward count

propagation.

4 Related Work

In addition to the DirBN variants mentioned in the introduction, ssDirBN is also closely
related to Gamma Belief Networks (GBN) [22], which is another multi-stochastic lay-
ered deep generative model. Instead of Dirichlet distributions, GBN used Gamma distri-
butions to propagate scalar variables between layers and was the first to develop upward
latent counts propagation and downward variable sampling method for model inference.

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 7

Applications of GBN and the related inference technique have been observed in natu-
ral language modelling [7], Dynamic Systems [14, 8, 17, 13] and even variational auto-
encoder methods [18]. GBN does not enjoy the unique sparsity property of Dirichlet
distribution and cannot be used to model latent distributions.

The basic idea of our ssDirBN is inspired by the sparse topic models (sparseTM) [16,
2]. Compared with our ssDirBN, sparseTM places binary variables for all the com-
ponents of the Dirichlet distribution. However, as a shallow model, sparseTM cannot
model the complex entity-wise dependencies. Our usage of binary variables may also
be similar to the techniques of Bayesian-dropout [6], which uses binary variables to de-
cide whether or not to propagate the corresponding neuron to the next layer. In ssDirBN,
we propagate the “neuron” to the last component when the binary variable equals to 0,
rather than directly discarding it.

5 ssDirBN for relational modelling

We apply our ssDirBN in the setting of relational modelling, which focuses on con-
structing multi-stochastic layered membership distributions over communities for enti-
ties. The detail generative process is expressed as follows:

1. πππ(1)
i ∼ Dirichlet(ααα);

2. For l = 2, . . . , L

– β
(l−1)
ji

{
∼ Gam(ci, d), j ∈ {j : Rji = 1} ∪ {i};

= 0, otherwise; ;

– ω
(l)
i ∼ Beta(γ, s), b(l)iK = 1, {b(l)ik }

K−1
k=1 ∼ Bernoulli(ω(l)

i)

– πππ
(l)
i ∼ Dir

(∑
j β

(l)
ji (bbb

(l)
i · πππ

(l−1)
j + eeeK · (

∑
k π

(l−1)
jk δ

b
(l)
ik

=0
))
)

3. Mi ∼ Poisson(M), (Xi1, . . . , XiK) ∼ Multi(Mi;π
(L)
i1 , . . . , π

(L)
iK);

4. Λk1k2 ∼ Gam(kΛ,
1
θΛ

);
5. Zij,k1k2 ∼ Poisson(Xik1Λk1k2Xjk2);
6. Rij = 111(

∑
k1,k2

Zij,k1k2 > 0).

In this generative process, ααα in line 1 represents the concentration parameter in the
Dirichlet distribution in generate all the entities’ latent distribution at layer 1; line 2
represents our proposed ssDirBN structure, which can generate sparse and smooth la-
tent distributions at layer L; line 3 generates latent count variable (Xi1, . . . , XiK) for
entity i’s latent distributionπππ(L)

i at layerL;Λk1k2 in line 4 is a community compatibility
parameter such that a larger value of Λk1k2 indicates a larger possibility of generating
the links between community k1 and community k2; and Zij,k1k2,t is a community-to-
community latent integer for each relation Rij .

It is noted that, through the Multinomial distributions with πππ(L)
i as event probabili-

ties, XXXi can be regarded as an estimator of πππ(L)
i . Since the sum also follows a Poisson

distribution as Mi ∼ Poisson(M), according to the Poisson-Multinomial equivalence,
each Xik is equivalently distributed as Xi,k ∼ Poisson(Mπ

(L)
ik). Therefore, both the

prior distribution for generatingXik and the likelihood based onXik are Poisson distri-
butions. We may form feasible categorical distribution on its posterior inference. This

8 Y. Li et al.

trick is inspired by the recent advances in data augmentation and marginalisation tech-
niques [4], which allows us to implement posterior sampling for Xik efficiently.

The countsXXXi lead to the generation of the K ×K integer matrix Zij,k1k2 . Based
on the Bernoulli-Poisson link function [3, 21], the observed Rij is mapped to the latent
Poisson count random variable matrix CCCij . It is shown in [4] that {Cij,k1k2}k1,k2 =
0 if Rij = 0. That is, only the non-zero links are involved during the inference for
CCCij,k1k2 , which largely reduces the computational complexity, especially for large and
sparse dynamic relational data. That is, since we use the Poisson-Bernoulli likelihood
in modeling the relations, the computational cost of our model scales to the number of
positive links.

5.1 Inference

We adopt the Markov chain Monte Carlo (MCMC) algorithm to iteratively sample the
random variables from their posterior distributions. The latent conditional distributions
of random variables we are approximating are: {πππ(l)

i }i,l, which involves upward prop-
agating the counting variable to each layer and downward sampling the variables of πππ,
the binary variable b(l)ik ;ααα, which is the concentration parameters in generating the latent
distributions at layer 1; scaling parameter M , which controls the latent count variables
at layer L; {Λk1k2}k1,k2 , which denotes the compatibility values between community
k1 and community k2; {Zij,k1k2}i,j,k1,k2 , which represents the latent integer variable
for the relation from entity i to entity j from community k1 to community k2.
Upward propagating latent counts Using similar techniques of DirBN, we first up-
ward propagate entity i’s latent countsmmm(l)

i at layer l to all the entities at layer l− 1 via
the following steps:

– sample ‘derived latent counts’ y(l)ik and Beta random variable q(l)i as

y
(t)
ik ∼ CRT(m(s)

ik ,
∑

j

βjiπ
(l−1)
jk), q

(s)
i ∼ Beta(

∑

j

β
(l)
ji ,
∑

k

m
(s)
ik),

y
(t)
iK ∼ CRT(m(s)

iK ,
∑

j

βjiπ
(l−1)
jK +

∑

j,k

βjiπ
(l−1)
jk δbik=0);

– distribute count y(l)ik to the entities at layer l − 1 as follows:

{h(l−1)
ijk }j ∼ Multi(y(l)ik ;

{π(l−1)
jk

β
(l)
ji }j∑

j βjiπ
(l)
jk

), if k = 1, . . . ,K − 1;

{{h(l−1)
ijK }j , {h

(l−1)
ijk }(i,k):b(l)

ik
=0
} ∼ Multi(y(l)iK ;

{{π(l−1)
jK

β
(l)
ji }j ,{π

(l−1)
jk

β
(l)
ji }(j,k):b(l)

jk
=0
}

∑
j βjiπ

(l)
jK

+
∑

(j,k):b
(l)
jk

=0
π
(l−1)
jk

β
(l)
ji

), otherwise.

– collect all the latent counts propagated to entity i at layer l − 1 as m
(l−1)
ik =∑

j h
(l−1)
jik .

Downward sampling πππ(l)
i Given the upward propagated latent counts mmm(l)

i , entity i’s
latent distribution at layer l can be sampled as:

πππ
(l)
i ∼ Dir(

∑
j

β
(l)
ji (bbb

(l)
i · πππ

(l−1)
j + eeeK · (

∑
k

π
(l−1)
jk δ

b
(l)
ik

=0
)) +mmm

(l)
i)

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 9

Sampling b(l)ik We integrate out ω(l)
i to sample b(l)ik . Since new values of b(l)ik will lead

to new πππ
(l)
i (the length of πππ(l)

i is different), we also need to generate new value for πππ(l)
i

when calculating the acceptance ratio. Given the current binary value of b(l)ik , we use
the generative process to generate a new latent distribution πππ(l,∗)

i based on the oppo-
site value of b(l)ik and then accept the opposite value of b(l)ik and πππ(l,∗)

i with a ratio of
min(1, α), where α is defined as:

α =
P (b

(l,∗)
ik |b

(l)

i,/k, γ, s)

P (b
(l)
ik |b

(l)

i,/k, γ, s)
·
P ({πππ(l−1)

j ,πππ
(l+1)
j }j |πππ(l,∗)

i ,−)
P ({πππ(l−1)

j ,πππ
(l+1)
j }j |πππ(l)

i ,−)
(3)

Sampling {β(l)
ji }j,i,l For For j ∈ {j : Rji 6= {i}, the prior for β(l)

ji is Gam(ci, d), the
posterior distribution is

β
(l)
ji ∼ Gam(cj +

∑

k

h
(l)
jik, d− log q

(l)
i) (4)

Sampling {Xik}i,k: We have Mi ∼ Poisson(M),

(Xi1, . . . , XiK) ∼ Multi(Mi;π
(L)
i1 , . . . , π

(L)
iK)

d
= Xik ∼ Poisson(Mπ

(L)
ik),∀k.

Both the prior distribution for generating Xik and the likelihood parametrised by Xik

are Poisson distributions. The full conditional distribution of Xik (assuming zii,·· =
0,∀i) is then

P (Xik|M,πππ,ΛΛΛ,ZZZ) ∝

[
Mπ

(L)
ik e−

∑
j 6=i,k2

Xjk2 (Λkk2+Λk2k)
]Xik

Xik!
(Xik)

∑
j1,k2

Zij1,kk2+
∑
j2,k1

Zj2i,k1k .

(5)
This follows the form of Touchard polynomials, where 1 = 1

exTn(x)

∑∞
k=0

xkkn

k! with

Tn(x) =
∑n
k=0{

n
k
}xk and where {n

k
} is the Stirling number of the second kind. A

draw from (5) is then available by comparing a Uniform(0, 1) random variable to the
cumulative sum of { 1

exTn(x)
· xkknk! }k.

Sampling {Zij,k1k2}i,j,k1,k2 We first sample Zij,·· from a Poisson distribution with
positive support:

Zij,·· ∼ Poisson+(
∑

k1,k2

Xik1Xjk2Λk1k2),where Zij,·· = 1, 2, 3, . . . (6)

Then, {Zij,k1k2}k1,k2 can be obtained through the Multinomial distribution as:

({Zij,k1k2}k1,k2) ∼ Multinomial


Zij,··;

{
Xik1Xjk2Λk1k2∑
k1,k2

Xik1Xjk2Λk1k2

}

k1,k2


 (7)

10 Y. Li et al.

Sampling {Λk1k2}k1,k2 For Λk1k2 ’s posterior distribution, we get

P (Λk1k2 |−) ∝ exp


−Λk1k2(

∑

i,j

Xik1Xjk2)


Λ

∑
i,j Zij,k1k2

k1k2
· exp (−Λk1k2θΛ)ΛkΛ−1

(8)

Thus, we get

Λk1k2 ∼ Gam


∑

i,j

Zij,k1k2 + kΛ,
1

θΛ +
∑
i,j Xik1Xjk2


 (9)

SamplingM Given Gamma distribution Gam(kM , θM) as the prior distribution forM ,
M ’s posterior distribution is:

P (M |−) =MkM−1 exp(−θMM)
∏

i,k

(
exp(−Mπ

(L)
ik)

)
M

∑
i,kXik (10)

Thus, we sample M from:

M ∼ Gam


kM +

∑

i,k

Xik,
1

θM +N


 (11)

Sampling α Similarly, given Gamma distribution Gam(kα, θα) as the prior distribution
for α, α’s posterior distribution is

α ∼ Gam(kα +
∑

i,k

h
(1)
iαk,

1

θα −
∑
i log q

(1)
i

) (12)

Computational complexity It is noted that our ssDirBN for relational modeling does
not increase the computational scalability of the DirBN for relational modeling. We
have changed the counts allocation in the detailed process of latent counts propagation,
however, the computational complexity remained the same in our ssDirBN and DirBN.
It is easy to see that the complexity of sampling the binary variable bbb also scales to the
number of positive relations. Thus, the computational complexity of our ssDirBN for
relational modeling is the same as that of DirBN.

Table 1: Dataset information. N is the number of entities, NE is the number of positive links.
Dataset N NE Dataset N NE Dataset N NE Dataset N NE
Citeer 3 312 4 715 Cora 2 708 5 429 Pubmed 2 000 17 522 PPI 4 000 105 775

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 11

5.2 Experimental results

Dataset Information We apply our ssDirBN in the following four real-world sparse
datasets: three standard citation networks (Citeer, Cora, Pubmed [15] and one protein-
to-protein interaction network (PPI) [23]. The number of entities N and the number of
relations NE for these datasets are provided in Table 1. In the citation datasets, entities
correspond to documents and edges represent citation links, whereas in the protein-to-
protein dataset, we model the protein-to-protein interactions [9]. We do not include the
feature information of entities in the experiments. Instead, we use an identity matrix IN
as the feature matrix when these information are needed in specific models.
Evaluation Criteria We primarily focus on link prediction and use this to evaluate
model performance. We use AUC (Area Under ROC Curve) and Average Precision
value on test relational data as the two comparison criteria. The AUC value represents
the probability that the algorithm will rank a randomly chosen existing-link higher than
a randomly chosen non-existing link. Therefore, the higher the AUC value, the better
the predictive performance. Each reported criteria value is the mean of 10 replicate
analyses.
Experimental settings For hyper-parameters, we let c0 = d0 = e0 = f0 = g0 = h0 =
0.1 for all the datasets. The re-sampling of hyper-parameters is specified in the similar
way as that of [4]. Each run uses 2 000 MCMC iterations with the first 1 000 samples
discarded as burn-in and the mean value of the second 1 000 samples’ performance
score is used report the required score. Unless specified, reported AUC values are ob-
tained using 90% (per row) of the relational data as training data and the remaining
10% as test data. After testing various scenarios for different settings of L and K, we
set the number of layers L = 3 and the number of communities K = 10 for all the test-
ing cases as the performance can be obtained in the balance of excellence performance
scores and fast running time.
Comparison methods: Several Bayesian methods for relational data and two Graph
Auto-Encoder models are used for comparison: the Mixed-Membership Stochastic Block-
model [1], the Hierarchical Latent Feature Relational Model (HLFM) [10], the Node
Attribute Relational Model (NARM) [19], the Hierarchical Gamma Process-Edge Parti-
tion Model (HGP-EPM) [21], graph autoencoders (GAE) and variational graph autoen-
coders (VGAE) [11]. The NARM, HGP-EPM, GAE and VGAE methods are executed
using their respective implementations from the authors, under their default settings.
The MMSB and HLFM are implemented to the best of our abilities and we set the
number of layers and length of latent binary representation in HLFM as same as those
in ssDirBN. For the GAE and VGAE, the AUC and Precision values are calculated
based on the pairwise similarities between the entity representations.

Performance of ssDirBN for different values of K,L Fig. 3 shows the link predic-
tion performance of ssDirBN for relational modeling on the cases ofK = 5, 10, 15, 20, 30
and L = 2, 3, 4, 5. In terms of the number of communities K, we find that the perfor-
mance of K = 10 is significantly better than the one of K = 5 and slightly worse
than those of K = 15, 20, 30. The performance of L = 3 has similar behaviours as it
is much better than that of L = 2, which is likely because the insufficient deep struc-
ture, and slightly worse than those of L = 4, 5, which may possibly due to that L = 3

12 Y. Li et al.

Table 2: Link prediction performance comparison. It is noted that we do not use the entities’
feature information and only use the binary relational data for each dataset.

AUC (mean and standard deviation)
Model Citeer Cora Pubmed PPI

MMSB 0.690± 0.004 0.743± 0.007 0.774± 0.005 0.801± 0.003
NARM 0.759± 0.003 0.809± 0.003 0.808± 0.004 0.821± 0.002
HGP-EPM 0.763± 0.003 0.810± 0.003 0.803± 0.006 0.834± 0.004
HLFM 0.781± 0.010 0.829± 0.005 0.829± 0.005 0.856± 0.010
GAE 0.789± 0.004 0.846± 0.006 0.822± 0.004 0.874± 0.009
VGAE 0.790± 0.003 0.849± 0.004 0.826± 0.002 0.880± 0.007
DirBN 0.779± 0.004 0.832± 0.008 0.845± 0.008 0.892± 0.007

ssDirBN 0.815± 0.007 0.839± 0.007 0.853± 0.004 0.912± 0.002

Average Precision (mean and standard deviation)
Model Citeer Cora Pubmed PPI

MMSB 0.661± 0.004 0.704± 0.005 0.742± 0.004 0.823± 0.003
NARM 0.781± 0.004 0.831± 0.004 0.771± 0.005 0.844± 0.002
HGP-EPM 0.776± 0.002 0.840± 0.003 0.786± 0.006 0.864± 0.004
HLFM 0.793± 0.004 0.842± 0.003 0.802± 0.003 0.883± 0.008
GAE 0.839± 0.004 0.884± 0.007 0.846± 0.004 0.889± 0.003
VGAE 0.846± 0.003 0.889± 0.004 0.850± 0.003 0.882± 0.004
DirBN 0.819± 0.004 0.875± 0.03 0.860± 0.007 0.884± 0.002

ssDirBN 0.871± 0.007 0.891± 0.003 0.889± 0.006 0.913± 0.005

is deep enough. The behaviours of AUC and Precision are quite consistent in forming
these conclusions.

Citeer Cora Pubmed PPI

0.775

0.800

0.825

0.850

0.875

0.900

0.925

A
U

C

K = 5

K = 10

K = 15

K = 20

K = 30

Citeer Cora Pubmed PPI

0.86

0.88

0.90

0.92

0.94

P
re

ci
si

on

K = 5

K = 10

K = 15

K = 20

K = 30

Citeer Cora Pubmed PPI
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
U

C

L = 2

L = 3

L = 4

L = 5

Citeer Cora Pubmed PPI
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

P
re

ci
si

on

L = 2

L = 3

L = 4

L = 5

Fig. 3: Link prediction performance (AUC and Precision) of ssDirBN for relational modelling on
different values of K and L.

Link Prediction performance Table 2 displays the AUC and Average Precision values
over the testing relational data. As we can see, our ssDirBN performs the best among all
these comparison methods. The performance of deep hierarchical models (i.e., VGAE,
HLFM, DirBN, ssDirBN) are usually better than the shallow models, which verifies the

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 13

advantages of deep structures. The competitive performance of our ssDirBN, as well
as the one of DirBN, over GAE and VGAE verifies the promising aspects of using
Dirichlet distributions to construct the deep generative models.

Sparsity and smoothness Fig. 4 verifies that our ssDirBN can simultaneously obtain
sparsity and smoothness. For sparsity, as we can see from the top row, our ssDirBN can
obtain better Average Precision values and lower model complexity (larger sparsity)
than the approach of DirBN. For smoothness, the bottom row shows that our ssDirBN
have larger values of concentration parameters in generating the membership distribu-
tions than that of DirBN. Given the same output counts, larger concentration parameters
will lead to smoother posterior distributions. Thus, the posterior distributions of πππ(l)

i in
our ssDirBN would be smoother than that in DirBN.

90000 95000
Model complexity

0.82

0.84

0.86

P
re

ci
si

on

Citeer

DirBN

ssDirBN

65000 70000 75000 80000
Model complexity

0.84

0.86

0.88

0.90

Cora

50000 55000 60000
Model complexity

0.86

0.88

0.90

Pubmed

110000 115000 120000
Model complexity

0.88

0.90

0.92

PPI

DirBN ssDirBN

0.0

0.1

0.2

0.3

B
ox

p
lo

t
of
{∑

j
β

(l
)

ji
π

(l
)

jk
} i,

k
,l

DirBN ssDirBN

0.0

0.2

0.4

0.6

DirBN ssDirBN

0.0

0.5

1.0

1.5

2.0

DirBN ssDirBN

0.0

0.2

0.4

Fig. 4: Top row: model complexity versus Precision value for the datasets of Citeer, Cora,
Pubmed, PPI. We define ‘model complexity’ as the number of community membership val-
ues for all entities. In DirBN, it is calculated as NKL, whereas in ssDirBN, it is calculated
as:
∑
i,k,l δb(l)

ik
=1

. Each dotted line represents that its connected red and blue dots are evalu-

ated on the same training and testing dataset. Bottom row: boxplot of concentration parameters
{
∑
j β

(l)
ji π

(l)
jk }i,k,l in generating membership distributions for DirBN and ssDirBN on Citeer,

Cora, Pubmed, PPI.

Visualizations on membership distributions Fig. 5 displays example membership
distributions over the first 50 entities in the Citeer data for DirBN and ssDirBN. For
DirBN, the membership distributions become more dominated by a few communities
from layer 1 to layer 3. However, the components’ weight ratio does not change too
much. For ssDirBN, the membership distributions clearly show more changes across
different layers. The representation capability of our ssDirBN can be thus enhanced
through the larger changes of membership distributions across different layers.

14 Y. Li et al.

l = 3

(a) DirBN

node 1→ node 50

l = 2

node 1→ node 50

l = 1

(b) ssDirBN

Fig. 5: Visualizations of the membership distributions ({πππ(l)
i=1:50}

3
l=1) on the Citeer data set for

DirBN (left) and ssDirBN (right). The panels in the top, middle and bottom row represent the
membership distributions at layer l = 1, 2, 3. In each panel, columns represent entities. Colors
represent communities (with K = 10) and the length of color occupations in one column repre-
sents the membership value of the particular community for that entity.

6 Conclusion

We have decoupled the sparsity and smoothness in the Dirichlet Belief Networks (DirBN)
by introducing a binary variable for each component of each entity’s latent distribution
at each layer. Through further model and inference modifications, we guarantee the
proposed ssDirBN is well defined for the latent distributions and can be inferred by
using efficient Gibbs sampling algorithm. The promising experimental results validate
the effectiveness of ssDirBN over DirBN in terms of reduced model complexity and
improved link prediction performance, and its competitive performance against other
approaches. Given the substantial performance improvement over DirBN, we are inter-
ested in combining ssDirBN with other applications (e.g. topic modelling, collaborative
filtering) in the future.

Acknowledgements

Yaqiong Li is a recipient of UTS Research Excellence Scholarship. Xuhui Fan and
Scott A. Sisson are supported by the Australian Research Council (ARC) through the
Australian Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS,
CE140100049), and Scott A. Sisson through the ARC Future Fellow Scheme (FT170100079).
Bin Li is supported in part by STCSM Project (20511100400), Shanghai Municipal Sci-
ence and Technology Major Projects (2018SHZDZX01, 2021SHZDZX0103), and the
Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institu-
tions of Higher Learning.

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks 15

References

1. Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed member-
ship stochastic block models. Journal of Machine Learning Research, 9:1981–2014, 2008.

2. Sophie Burkhardt and Stefan Kramer. Decoupling sparsity and smoothness in the dirichlet
variational autoencoder topic model. Journal of Machine Learning Research, 20(131):1–27,
2019.

3. David B. Dunson and Amy H. Herring. Bayesian latent variable models for mixed discrete
outcomes. Biostatistics, 6(1):11–25, 2005.

4. Xuhui Fan, Bin Li, Caoyuan Li, Scott Sisson, and Ling Chen. Scalable deep generative
relational model with high-order node dependence. In NeurIPS, pages 12637–12647, 2019.

5. Xuhui Fan, Bin Li, Yaqiong Li, and Scott Sisson. Poisson-randomised dirbn: Large mutation
is needed in dirichlet belief networks. In ICML, 2021.

6. Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In ICML, pages 1050–1059, 2016.

7. Dandan Guo, Bo Chen, Ruiying Lu, and Mingyuan Zhou. Recurrent hierarchical topic-
guided RNN for language generation. In ICML, pages 3810–3821, 2020.

8. Dandan Guo, Bo Chen, Hao Zhang, and Mingyuan Zhou. Deep poisson gamma dynamical
systems. In NeurIPS, pages 8442–8452, 2018.

9. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017.

10. Changwei Hu, Piyush Rai, and Lawrence Carin. Deep generative models for relational data
with side information. In ICML, pages 1578–1586, 2017.

11. Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

12. Yaqiong Li, Xuhui Fan, Ling Chen, Bin Li, Zheng Yu, and Scott A. Sisson. Recurrent
dirichlet belief networks for interpretable dynamic relational data modelling. In IJCAI, pages
2470–2476, 2020.

13. Aaron Schein, Scott Linderman, Mingyuan Zhou, David Blei, and Hanna Wallach. Poisson-
randomized gamma dynamical systems. In NeurIPS, pages 782–793, 2019.

14. Aaron Schein, Hanna Wallach, and Mingyuan Zhou. Poisson-gamma dynamical systems. In
NIPS, pages 5005–5013, 2016.

15. Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. In AI magazine, pages 29–93, 2008.

16. Chong Wang and David Blei. Decoupling sparsity and smoothness in the discrete hierarchi-
cal dirichlet process. In NIPS, pages 1982–1989. Curran Associates, Inc., 2009.

17. Sikun Yang and Heinz Koeppl. A poisson gamma probabilistic model for latent node-group
memberships in dynamic networks. In AAAI, 2018.

18. Hao Zhang, Bo Chen, Dandan Guo, and Mingyuan Zhou. WHAI: Weibull hybrid autoen-
coding inference for deep topic modeling. In International Conference on Learning Repre-
sentations, 2018.

19. He Zhao, Lan Du, and Wray Buntine. Leveraging node attributes for incomplete relational
data. In ICML, pages 4072–4081, 2017.

20. He Zhao, Lan Du, Wray Buntine, and Mingyuan Zhou. Dirichlet belief networks for topic
structure learning. In NeurIPS, pages 7955–7966, 2018.

21. Mingyuan Zhou. Infinite edge partition models for overlapping community detection and
link prediction. In AISTATS, pages 1135–1143, 2015.

22. Mingyuan Zhou, Yulai Cong, and Bo Chen. Augmentable gamma belief networks. Journal
of Machine Learning Research, 17(163):1–44, 2016.

23. Marinka Zitnik and Jure Leskove. Predicting multicellular function through multi-layer tis-
sue networks. In Bioinformatics, pages i190–i198, 2017.

	ECMLPKDD 2021 Author Notification
	ecmlpkdd2021_paper_yaqiong_li_13106240
	ECML:PKDD 21 Submission 958._review commentspdf

