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Abstract—This letter introduces a novel framework to optimize
the power allocation for users in a Rate Splitting Multiple Access
(RSMA) network. In the network, messages intended for users
are split into different parts that are a single common part
and respective private parts. This mechanism enables RSMA
to flexibly manage interference and thus enhance energy and
spectral efficiency. Although possessing outstanding advantages,
optimizing power allocation in RSMA is very challenging under
the uncertainty of the communication channel and the transmit-
ter has limited knowledge of the channel information. To solve the
problem, we first develop a Markov Decision Process framework
to model the dynamic of the communication channel. The deep
reinforcement algorithm is then proposed to find the optimal
power allocation policy for the transmitter without requiring any
prior information of the channel. The simulation results show that
the proposed scheme can outperform baseline schemes in terms of
average sum-rate under different power and QoS requirements.

Index Terms—Rate splitting, multiple access, deep reinforce-
ment learning, Proximal Policy Optimization, MDP.

I. INTRODUCTION

RATE splitting multiple access (RSMA) has emerged as
a promising technology that can achieve robust, high

data rate, low latency for 6G networks. RSMA is based on
a concept of rate splitting in which each message transmitted
from the transmitter to a user is split into a common (public)
part and a private part [1]. The common parts of the messages
are then combined into a single common message and can
be encoded with a public shared codebook. The private parts
are independently encoded to respective users. At each user,
the common message is first decoded by using the public
shared codebook among the users and transmitter. After that,
each user reconstructs its original message from the part
of its common message and its intended private message
with Successive Interference Cancellation (SIC). In traditional
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multiple access methods, the rate performance is affected by
the multiuser interference when the Channel State Information
at the Transmitter (CSIT) is imperfect. In contrast, RSMA
can flexibly manage interference by allowing the interference
to be partially decoded and partially treated as noise. Thus,
RSMA can enhance the spectral efficiency, energy efficiency,
and security, compared to those of existing multiple access
schemes, i.e., Space Division Multiple Access (SDMA), Non-
Orthogonal Multiple Access (NOMA), Orthogonal Multiple
Access (OMA) and multicasting [1]–[5].

Although possessing some outstanding advantages, optimiz-
ing the performance of RSMA in terms of spectral and energy
efficiency is very challenging. Unlike traditional methods,
messages in RSMA are split into different parts and the
transmitter has to allocate carefully transmission power for
each split message to meet the power and QoS constraints
with the imperfect CSIT. The transmitter can only maintain
an estimation of the CSIT based on the feedback from the
users. For this, the transmitter is usually assumed to have
information of the channel distribution in advance [2], [3].
In [4], a cooperative rate splitting scheme is proposed to
enhance secure sum-rate in an RSMA network by utilizing
the common message in two purposes, i.e., a desired message
and artificial noise. In [5], a precoder design and sum-rate
maximization are jointly optimized in which the channel state
is allowed to change during the transmission according to
some known stationary distributions. Although aforementioned
works can maximize the (secure) sum-rate under partial or
imperfect CSIT, either the channel state distribution or channel
state matrix is assumed to be known by the transmitter in
advance. However, this assumption might not be practical,
especially in environments that have severe interference caused
by constant changes of multiple channels between users [6].

In this paper, we introduce a framework that enables the
transmitter can adaptively select the power allocation policy
under the dynamic and uncertainty of communication channel.
For this, we first formulate the power allocation problem by
using the Markov Decision Process (MDP) framework. We
then introduce a highly-effective deep reinforcement learning
(DRL) scheme based on Proximal Policy Optimization [7]
algorithm to find the optimal policy for the transmitter without
requiring any information of the channel in advance. To the
best of our knowledge, this is the first approach using DRL to
solve the power allocation problem for RSMA networks. Sim-
ulation results show that our proposed scheme can outperform
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Fig. 1: An RSMA network consists of 1 M -antenna Base Station
(BS) and K single-antenna users.

other baseline schemes in terms of sum-rate and QoS.

II. SYSTEM MODEL

We consider an RSMA network which consists of one
M -antenna Base Station (BS) and K single-antenna users
(M ≥ K), denoted by U = {u1, . . . , uk, . . . , uK}, as
illustrated in Fig. 1. The BS has a set of messages W =
{W1, . . . ,Wk, . . . ,WK} to be transmitted to the users. The
message intended for user uk, denoted as Wk, is split into a
common part and a private part, i.e., W c

k and W p
k (∀k ∈ K

with K = {1, 2, . . . ,K}), respectively. The common parts of
all K messages are combined into a single common message
W c. The single common message W c and K private messages
W p
k are independently encoded into streams sc, s1, s2, . . . , sK ,

where sc and sk are encoded common and private symbols.
The transmitted signal of the BS is thus defined as follows:

x =
√
µcPtwcsc +

K∑
k=1

√
µkPtwksk, (1)

where wc ∈ CM×1 and wk ∈ CM×1 are the precoding vectors
of the common and private messages, respectively. µc and µk
are the power allocation coefficients, i.e., the ratios between
the transmission power allocated for the common and private
messages to the total transmission power Pt, respectively. The
normalized power allocation coefficients are constrained by
µc +

∑K
k=1 µk ≤ 1. The received signal at user uk is yk =

hHk x+ nk, where nk is noise at the user, hk ∈ CM×1 is the
channel gain between the BS and user uk. The SINRs of the
common and private messages are calculated as follows:

γck(µµµ) =
µcPt|hkwc|2∑K

j=1 µjPt|hkwj |2 + 1
,

γpk(µµµ) =
µkPt|hkwk|2∑

j 6=k µjPt|hkwj |2 + 1
,

(2)

where µµµ = [µc, µ1, µ2, . . . , µk, . . . , µK ] is the power alloca-
tion coefficient vector. The noise power is normalized to one
for simplicity. With the above SINRs, achievable rates of the
private messages are calculated as follows:

Rk(µµµ) = log2
(
1 + γpk(µµµ)

)
,∀k ∈ K. (3)

To ensure that the common message can be successfully
decoded by all users, the achievable rate of the common
message is calculated as follows:

Rc(µµµ) = min
k∈K

{
log2

(
1 + γck(µµµ)

)}
. (4)

Since Rc is shared between users such that Ck is the user
uk’s portion of the common rate Rc with

∑K
k=1 Ck ≤ Rc.

The total achievable rate of the user uk is then defined by
Rtotk = Ck +Rk [8]. The sum-rate is calculated by [2]:

Rsum(µ, cµ, cµ, c) =

K∑
k=1

(
Ck(µµµ, c) +Rk(µµµ)

)
, (5)

where c = [C1, C2, . . . , CK ] is the common rate vector. In
order to achieve the maximum sum-rate for the system, the BS
should be able to allocate the power to the common and private
messages in the way that the total power does not exceed the
power of the BS. Given the power allocation coefficient vector
µµµ and common rate vector c, the optimization problem is then
defined as follows:

max
µ,cµ,cµ,c

Rsum(µ, cµ, cµ, c) (6a)

s.t. µc +

K∑
k=1

µk ≤ 1, (6b)

K∑
k=1

Ck ≤ Rc, (6c)

Ck +Rk ≥ Qk, k ∈ K, (6d)
c ≥ 0. (6e)

Constraint (6b) ensures that the sum of allocated power
does not exceed the total power at the BS. Constraint (6c)
guarantees that the common message can be decoded by all
the users. Constraint (6d) is the minimum rate requirement
(QoS) of user uk. The final constraint (6e) is to guarantee the
positive rate of the common message.

Optimizing (6) is challenging under the dynamic and uncer-
tainty of the channel as the channel gain hk between the BS
and user uk varies over time, and channel state distribution
is unknown by the BS. Unlike conventional multiple access
schemes, splitting messages into different parts makes the
problem even more challenging because the power needs to
be allocated in the way that all the messages are decodable.
To model the dynamic of the channel state, we first formulate
the problem by using the MDP framework.

III. PROBLEM FORMULATION

To formulate the problem by using the MDP, we define a
tuple (S,A,P, r, γ), where S is the state space, A is the action
space, P : S × A × S → R is the state transition probability
distribution, r : S × A → R is the reward function, and
τ ∈ (0, 1) is the discount factor.
A. State Space and Action Space

The state space of the BS is defined as: S =
{
γck, γ

p
k}; 1 ≤

k ≤ K
}

, where γck and γpk are the SINR feedbacks of the
common and private messages from user uk, respectively. The
SINR feedbacks contain estimation errors due to the imperfect
channel state information. The action space of the BS is
defined as: A = {µ, cµ, cµ, c}, where µµµ and c are the power allocation
coefficient vector and common rate vector, respectively.
B. Reward Function

The reward function is designed to maximize the sum-rate of
the BS as in (6). To encourage the BS to optimize the sum-rate
while all the QoS requirements of users are taken into account,
we penalize the BS for each violated user’s QoS. At current
time step t, the BS observes the current state st ∈ S, takes
action at ∈ A, and receives an immediate reward rt(st, at).
The immediate reward can be defined as follows:
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rt(st, at) = Rsum(1− pt), (7)

where pt is the penalty received by the BS for action at that
does not satisfy the QoS constraint in (7). In particular, the
penalty pt at the time step t can be defined as follows:

pt =
1

K

K∑
k=1

χ(Ck +Rk −Qk), (8)

where the function χ(Ck + Rk − Qk) is equal to 1 if
Ck + Rk − Qk < 0, and otherwise χ(Ck + Rk − Qk) = 0.
If all the users’ QoS are guaranteed, we have pt = 0 and
rt(st, at) = Rsum. If none of the users’ QoS is guaranteed,
we have pt = 1 and rt(st, at) = 0. Unlike the QoS constraint,
the power and common rate constraints must not be violated
at any given time step because the total transmission power at
the BS is limited and the common message must be decodable
at all users. Therefore, we do not include the penalties for the
power and common rate constraints in the immediate reward.
Alternatively, these constraints are treated as a part of our
algorithm design, which is further discussed in Section IV.

C. Optimization Formulation

Let ψ denote a stochastic policy (i.e., ψ : S × A → [0, 1])
which is the probability that action at is taken at time step
t given the state st, i.e., ψ = Pr{at|st}. Given the discount
factor τ ∈ (0, 1), let J(ψ) denote the expected discounted
reward of the BS by following policy ψ:

J(ψ) = Eat∼ψ,st∼P
[ ∞∑
t=0

τ trt(st, at)
]
. (9)

Our goal is to find the optimal policy ψ∗ for the BS that
maximizes J(ψ), i.e.,

max
ψ

J(ψ)

s.t. at ∼ ψ(at|st), st+1 ∼ P(st+1|st, at).
(10)

Note that the state transition probability distribution
P(st+1|st, at) is unknown to the BS. Maximizing J(ψ) is
very challenging as we consider that the state and action spaces
are continuous. Thus, conventional (deep) reinforcement learn-
ing methods (e.g., Q-learning and DQN) cannot be directly
adopted. In this paper, we propose to use the Proximal Policy
Optimization (PPO) algorithm [7] to approximate the optimal
policy of the BS. The PPO is a sample-efficient algorithm
which can work under the large continuous state and action
spaces and can deal with the uncertainty of the channel state.

IV. PROXIMAL POLICY OPTIMIZATION ALGORITHM

Because the policy of the continuous action space cannot
be obtained by using a conventional action-value method (e.g.
DQN), PPO uses a policy’s parameter vector to efficiently
update the policy. The parameter vector, denoted as θθθ, can
be a linear vector or a nonlinear function approximator (i.e., a
deep neural network) [7]. As a result, the optimal policy can
be approximated as ψ∗ ← ψθθθ with ψθθθ(at|st) = Pr{at|st;θθθ}.
The parameter vector θθθ can be updated by using a gradient
ascent method as follows:

θθθt+1 = θθθt + αĝt, (11)
where α is the step size, and ĝt is a gradient estimator. The
gradient estimator ĝt can be calculated by differentiating a loss
function as follows:

ĝt = ∇θθθL(θθθ). (12)

We can observe from (11) and (12) that the choice of the
loss function L(θθθ) has significant impact on the policy update.
L(θθθ) should have a small variance so that it does not cause bad
gradient updates which result in significant decreases of J(ψ).
Since continuous action space is sensitive to the policy update,
a minor negative change in updating θθθ can lead to destructively
large policy updates [7]. To overcome this problem, PPO
algorithm uses a loss function LPPO(θθθ) to replace L(θθθ):

LPPO(θθθ) = min
( ψθθθ
ψθθθold

Aψθθθ , u(ε, Aψθθθ )
)
, (13)

where Aψθθθ is the advantage function and u(ε, Aψθθθ ) is the
clip function. The advantage function measures whether or
not the action is better or worse than the policy’s default
behavior. The clip function guarantees the policy does not
change significantly after each update.

The advantage function at time step t can be defined by:

Aψθθθt (st, at;θθθ) = Qψθθθt (st, at;θθθ)− V ψθθθt (st;θθθ), (14)

where Qψθθθt (st, at;θθθ) = Eat∼ψθθθ,st∼P
[∑∞

l=0 τ
lrt(st+l, at+l)

]
is the action value function and V ψθθθt (st;θθθ) =

Est∼P
[∑∞

l=0 τ
lrt(st+l, at+l)

]
is the state value function.

The clip function is thus defined as follows:

u(ε, Aψθθθ ) =

{
(1 + ε)Aψθθθ , if Aψθθθ ≥ 0,

(1− ε)Aψθθθ , if Aψθθθ < 0.
(15)

The idea of PPO is to prevent the new policy from being
attracted to go far away from the old policy ψθθθold . The first
term inside the min operator in (13), i.e., ψθθθ

ψθθθold
Aψθθθ , is the sur-

rogate objective which takes into consideration the probability
ratio between the new policy and old policy, i.e., ψθθθ

ψθθθold
. The

second term, i.e., u(ε, Aψθθθ ), removes the incentive for moving
this probability ratio outside of the interval [1− ε, 1 + ε].

In this paper, we use a deep neural network as a non-
linear function approximator to approximate the policy ψθθθ
and advantage function Aψθθθ . The input of the network is
the state of the environment, i.e., st = {γck, γ

p
k ;∀k ∈ K}.

The output is the joint power allocation and common rate
vector at = [µc, µ1, . . . , µK , C1, . . . , CK ]. To ensure that
the power constraint in (6b) and the common rate vector
constraint in (6c), we use the Softmax activation function for
the output layer of the network so that µc +

∑K
k=1 µk = 1,

and
∑K
k=1 Ck = Rc.

V. PERFORMANCE EVALUATION

A. Parameter Settings

We consider the total transmission power of the BS to be
Pt = 40 (dBm). The number of antennas of the BS and the
number of users are set as M = K = 4. The channel estima-
tion hk at the BS contains estimation error, i.e., hk = ĥk+h̃k,
where ĥk is the actual channel, h̃k is the channel estimation
error. The mean value of h̃k is inversely proportional to the
transmission power, i.e., E

{
||h̃k||2

}
∼ P−0.6t [8]. The QoS

requirements are assumed to be the same at each user, i.e.,
Qk = Qm = 0.1(bps/Hz).
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Fig. 2: Learning curves of the algorithms with Pt = 40 (dBm) and
Qm = 0.1 (bps/Hz).
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Fig. 3: (a) Average sum-rate vs. total transmission power at the BS
(Pt) and (b) average sum-rate vs. minimum QoS requirement (Qm).

We first evaluate the performance of the proposed PPO
algorithm with two baseline schemes that are Q-learning and
Greedy. Because Q-learning is an action-value method which
cannot be directly applied for the continuous state/action
problem, we discretize the state and action spaces as follows.
In Q-learning, we divide each dimension of the state space into
two levels. To discretize the action space, we adopt an uniform
power allocation mechanism [2]. We consider 9 discrete ac-
tions of the Q-learning and 99 discrete actions of the Greedy
scheme. As a result, Q-learning algorithm maintains a Q-table
of 210 × 9 Q-values. With Greedy algorithm, all historical
reward values are stored in the memory and the BS keeps
selecting the action that obtains the highest reward, compared
to the historical rewards. Otherwise, the BS randomly selects
other actions to further explore the environment. It is noted
that the state/action space quantization above is applied for
the baseline schemes and the proposed PPO algorithm still
considers the complete continuous state and action spaces.

B. Simulation Results
In Fig. 2, we show the learning curves of the three al-

gorithms in the first 4,000 episodes in which each epsiode
has the length of 200 time steps. To further evaluate the
advantages of RSMA over conventional techniques, we use
SDMA as a baseline scheme. For a fair comparison, we do not
include NOMA in the simulation since NOMA requires a more
complex architecture, i.e., multiple layers of SIC, for decoding
the messages. We also evaluate the proposed PPO algorithm
for RSMA in both perfect and imperfect CSIT scenarios.

The proposed PPO algorithm clearly outperforms the base-
line schemes in terms of average sum-rate. The reason is that
with the large number of states and actions, Q-learning is
unable to update all the Q-values to obtain the desired optimal
policy. This is also known as the curse-of-dimensionality prob-
lem. Furthermore, the state/action space quantization may also

remove states and actions that are valuable in the policy update
process. For the Greedy scheme, the connection between the
state, action and the policy is not considered, which yields a
much lower performance. The sum-rate obtained by SDMA
with PPO is much lower than those of RSMA.

Next, we vary the transmission power capacity at the BS
and evaluate the performance of the three algorithms as
shown in Fig. 3(a). As the transmission power increases, the
average sum-rate obtained by all algorithms increase, and the
proposed PPO always achieves the best performance compared
to those of the Q-learning and Greedy. In particular, when the
transmission power of the BS is 60 dBm, the average sum-
rate obtained by the proposed PPO algorithm can achieve up to
11.9 and 11.7 with perfect and imperfect CSIT, respectively,
which are significantly greater than those of the Q-learning
and Greedy (i.e., 4.7 and 2.9). Similar to the results obtained
in Fig. 2, the sum-rate values obtained by SDMA are much
lower than those of RSMA with all transmission power values.

Finally, we vary the QoS requirements to evaluate the
performance of the three algorithms as shown in Fig. 3(b). As
the QoS requirements increase, the average sum-rate obtained
by all the algorithms decrease. The reason for this is that at
high rate requirements, the BS cannot satisfy the constraints
of all the users and thus it is penalized by the penalty pt
as defined in (7). However, our proposed PPO algorithm still
achieves the best performance given all the QoS requirements.

VI. CONCLUSION

In this letter, we have developed a highly effective frame-
work to maximize the sum-rate for RSMA networks under
the dynamic and uncertainty of the communication channel.
Specifically, we have first formulated the problem with MDP
framework and then proposed a deep reinforcement learning
algorithm to quickly find the optimal power allocation policy.
Our proposed method does not require any information of the
channel state in advance and can deal with the continuous
state and action spaces. Simulation results have shown that our
proposed scheme can outperform baseline schemes in terms of
average sum-rate under different power and QoS constraints.
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