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Abstract— Underground potable water pipes are essential infrastruc-
ture assets for any country. A significant proportion of those assets
are deteriorating due to pipe corrosion which results in premature
failure of pipes causing enormous disruptions to the public and loss
to the economy. To address such adverse effects, the water utilities
in Australia exploit advanced pipelining technologies with a motive of
extending the service life of their pipe assets. However, the linings
are prone to defects due to improper liner application and unfavorable
environmental conditions during the liner curing phase. To monitor the
imperfections of the pipe linings, in this article, we propose a mobile
robotic sensing system that can scan, detect, locate and measure
pipeline internal defects by generating three-dimensional RGB-Depth
maps using stereo camera vision combined with infrared laser profiling
unit. The system does not require complex calibration procedures and
it utilizes orientation correction to provide accurate real-time RGB-D
maps. The defects are identified and color mapped for easier visualization. The robotic sensing system was extensively
tested in laboratory conditions followed by field deployments in buried water pipes in Sydney, Australia. The experimental
results show that the RGB-D maps were generated with millimeter (mm) level accuracy with demonstrated liner defect
quantification.

Index Terms— 3D laser profiling, Defects detection, Mobile robot, Pipeline inspection, RGB depth mapping, Robotic
sensing, Robotic vision, Stereo camera vision, Water pipes

I. INTRODUCTION

Underground infrastructures such as water and waste
water pipes undergo severe metallic [1] and concrete [2], [3]
corrosion with age. The metallic pipes show both external
and internal corrosion either as patches or pits. This results
in reduction of their service life, which can lead to disas-
trous water pipe bursts and sewer collapses [4]. Replace-
ments of corroded pipes are generally expensive and hence
water utilities adopt different lining technologies such as
spray liners and cured-in-place pipe (CIPP) liner that can
add a protective semi-structural layer to mitigate the effects
of corrosion. However, those lining technologies can fail
over time due to poor application and environmental con-
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ditions. A survey conducted as a part of our collaborative
project among line manufacturers, applicators, researchers,
and water utilities identified the liner imperfections to be
the most crucial liner defects to be concerned. The liner
imperfections include folds, wrinkles, dimples, and bulges
in pipelines. The pipes being mostly underground, timely
monitoring and fit for purpose renewals to avoid failures are
significant challenges for water utilities around the world.
Solutions such as embedded sensors in pipes to monitor
their condition are still futuristic [5]. Human entries to such
tiny confined spaces for visual and physical inspections
are mostly impossible and associated with high health and
safety risks. Traditional methods such as robots with CCTV
(closed circuit television) inspection cameras fail to provide
critical structural information to make accurate decisions to
maintain the underground infrastructure.

There has been few attempts in the past to explore the
use of various sensing technologies for 3D reconstruction
of the internal surface of underground infrastructure such
as using LiDAR (light detection and ranging) technology
used in large diameter pipes and tunnels [6]. They require
centimeter level accuracy [7] which limits the applicability
for small diameter pipes requiring sub-centimeter accuracy.
Further the LiDAR sensors do not provide color information
and therefore, external cameras with proper calibrations
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are required for overlaying color information on 3D point
clouds. Structured 3D cameras like Intel Real-sense [8]
are heavily used in robotics to generate 3D point cloud
maps in indoor environments. However, they can’t achieve
millimeter level accuracy which is required for detecting
small defects in small diameter pipes [9]–[11].

In recent years, laser profiling with monocular vision
has been exploited to generate three-dimensional (3D)
maps of internal surfaces of pipelines providing informative
structural information of the pipes [12]–[15]. Compared to
CCTV, this emerging technology is capable of quantifying
structural defects or ovality changes in pipes. However, laser
profiling with a monocular camera needs extensive field
calibration and hey suffere from lateral movements which
cause errors in 3D reconstruction. Most of these technolo-
gies process data offline limiting real time opportunistic
decision making ability such as targeting suspicious areas
and re-scanning areas of missing data.

3D laser profiling with a laser ring projector and a single
camera is the preferred method of use by many water
utilities to generate 3D profiles of pipes [14], [16], [17]. In
this method, a laser ring projector is mounted in front of a
camera that projects a continuous red laser ring on to the
pipe surface [17]–[19]. This system is mounted on a robotic
platform and moved inside the pipe. The small deviations
of the laser ring caused by defects of the pipe surface are
detected by the camera and simple trigonometry is used
to generate the 3D point cloud. However, with unavoidable
movement disturbances, these systems tend to introduce
large errors in 3D reconstruction. They generally need
onsite calibration and do not provide color information [20].

In this paper, we propose an improved laser profiling
system that uses stereo camera vision with IR (infrared)
laser-pattern projection to overcome the limitations dis-
cussed above. The proposed stereo camera vision technique
enables to modify the depth measurements of the laser pro-
jection to compensate for lateral movements of the robot
leading to increased accuracy of the 3D reconstruction. Un-
like conventional mono camera vision-based laser profiling,
stereo camera vision system does not need field calibration
at each deployment. Therefore, it can be used efficiently in
wide range of pipe diameters with multiple deployments.
The proposed system is capable of generating 3D point
clouds of pipes in real-time while traversing through the
pipelines. We use an IR laser beam instead of the traditional
red color laser beam so as to extract real colors of the
pipe surface. Two IR cameras are used for stereo vision
processing and 3D reconstruction. The calibrated RGB (red
green blue) camera provides the true color for the 3D
reconstruction. The data is further processed to generate
a color heat map for defects and ovality variations of the
pipe surfaces. This allows visualization of the internal pipe
defects in real-time.

The key contributions of the paper are:
• Firstly, we propose a stereo vision-based laser profiling

system integrated with the mobile robotic platform for
real-time RGB-Depth mapping with true color infor-
mation extracted from the pipelines using color and

IR cameras. The proposed approach requires only one-
time calibration and generates RGB-D maps with 1mm
accuracy for pipe diameters ranging from 400mm to
700mm.

• Secondly, our system generates heat-maps that high-
light and measure defected areas in scanned pipelines
which enables easy monitoring of damaged areas and
the evolution of them in the long term.

• Thirdly, the stereo vision is utilized for detecting the
orientation of the robot by determining yaw and pitch
parameters, which assists in accurate RGB-D map
building.

The rest of this article is structured as follows: Section II
and III describe various algorithms, hardware and software
architectures. The experimental results are presented in
Section IV with discussions and finally, Section V concludes
the article by summarizing the key outcomes and briefs the
intended future work.

II. 3D DATA GENERATION AND PROCESSING

This section describes various algorithms used in the
3D data generation and processing execution pipeline as
is shown in Appendix Fig. 1. The camera images with
calibration parameters are fed into the image processing
algorithms to filter laser projection for 3D point cloud
generation. The odometry errors are corrected using orien-
tation detection algorithms. Using the circle detection and
ray casting algorithms, a heat map is generated by detecting
the ovality changes to highlight the defects.The 3D point
cloud receives the colors extracted from the RGB image.

1) Camera calibration: Camera calibration plays a major
role in measurement accuracy due to different factors in
camera optics such as lens distortions, different camera
focal lengths, camera misalignment etc. [21], [22]. Usual
checkerboard based camera calibration procedure was car-
ried out to estimate distortion parameters for image recti-
fication [23].

Usual stereo camera calibration is carried out with cam-
era intrinsic and extrinsic parameters [23].Similar to the
distortion parameter estimation, a checkerboard pattern
is used for stereo camera calibration. Those calibration
parameters are later used in the 3D reconstruction process.

2) Stereo image processing: Stereo image processing was
used for generating point clouds with true colors mapped
from the scanned pipes. The highest intensity points were
detected in one image to identify the laser beam points
while the other image was searched along the epipolar lines
to find the corresponding points. With a circular laser beam,
two intersection points were detected along the epipolar
lines, which was resolved by carrying out a directional
search starting from the center of the image. The image
disparity was used for 3D reconstruction [21].

3) RGB mapping: The calculated depth information is
used for RGB mapping by stereo calibrating one IR camera
with RGB camera and projecting the 3D points on to the
color image using Equation (1).
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where, (Px ,Py ,Pz ) are the 3D real world coordinates,
(px , py ) defines the color camera image coordinates, s is
an arbitrary scale factor and c is an arbitrary offset.

Once the 3D point is projected on the color image
the RGB values of the mapping location are taken and
embedded with the generated point cloud. A high-level
implementation of the algorithm in pseudo-code is given
in Appendix Algorithm 1.

4) Defects detection and mapping: Defects in terms of
a color heat-map and ovality are estimated through the
detection of the center of the pipe followed by ray casting.
Through experimentation, it was discovered that the exist-
ing image processing functions available in OpenCV such
as Hough Circle detection were too noisy and not accurate
enough to detect the center of the pipe on captured laser
profile images due to lighting changes with defects and
other various surface irregularities. Therefore, the following
novel approach was developed and implemented to detect
the circle on the image as well as its center.

Firstly, we converted the image into a distance transform
map by using the gray-scale values. Then, using matrix
operations we approximately identified a circle diameter
to generate a dummy circle at the center of the image.
Next, we extracted and added the distant transform values
along the generated circle circumference. By iteratively
changing the position of the circle and its radius, the al-
gorithm searched for the minimum summation of distance
transform values along the circle circumference using an
optimization algorithm.

Let camera image matrix be Ih,w where height is h and
width is w . Using Chebyshev distance transform function
Dt , the image distance transform matrix Dh,w can be
defined as:

Dh,w = Dt (Ih,w ) (2)

For any given two points, the difference of x coordinate is
∆x and the difference of y coordinate is ∆y , then Chebyshev
distance Dh,w matrix calculated as;∑

i , j
Dh,w (x, y) =

h∑
i=1

w∑
j=1

[
maxi , j

(|∆xi | , |∆y j |
)]

(3)

When the circle center denoted by xc , yc and radius
denoted by rc . Search initialization values are as in (4, 5,
6).

xc = w/2 (4)

yc = h/2 (5)

rc = [max(Iw )−mi n(Iw )]/2 (6)

Using Equation (7) the coordinates (P ) of the circle cir-
cumference are generated where xi , yi taken as a single
coordinate.

(xi −xc )2 + (yi − yc )2 = r 2
c (7)

Now the distance transform values (V1,V2, ...,Vn) in the

(a) The laser projection view be-
fore circle fitting.

(b) Projection of the optimum
circle found by the algorithm.

Fig. 1: Circle fitting.

distance transform map D that belongs to the circle cir-
cumference coordinates P is used to calculate the total sum
T .

V = D(P ) (8)

T =
n∑

i=1
(Vi ) (9)

The best fitting circle Copti mum is found by minimizing T.

Copti mum = ar g mi n
xc ,yc ,rc

(T | xc , yc ,rc ) (10)

Fig. 1 shows an example results of the optimal circle
detection algorithm. The optimum circle parameters are
then used by a custom ray casting algorithm based on a
dynamic range parameter to manage computational com-
plexity (Appendix Fig. 2).

Let, x1, y1 be the starting point of the scan range (S) and
x2, y2 be the end point of the scan range. By defining the
equation of the line with x, y and changing the angle (θ),
rays can be casted around the circle.

x1 = xc + [(rc −S/2)× cos θ] (11)

y1 = yc + [(rc −S/2)× si n θ] (12)

x2 = xc + [(rc +S/2)× cos θ] (13)

y2 = yc + [(rc +S/2)× si n θ] (14)

x −x1 =
[

y2 − y1

x2 −x1

]
(y − y1) (15)

The optimized ray casting algorithm can be used to cast
rays around the laser projection to scan and identify the
surface anomalies when generating the point cloud. Ap-
pendix Fig. 3 shows an example of a ray casting in a zoomed
IR image.

Most of the lasers tend to create a thick laser line on
the projected surface due to the reflection properties of
the surface and defects (Appendix Fig. 3). The extracted
distance transform values are fitted with a Gaussian kernel
to identify the midpoint of the thick laser line projection
as in,

G(x) =
n∑

i=1

1

σ
p

2π
×exp

[(
−1

2

(
(x −µ)

σ

))2]
(16)

where, µ is the mean, σ is the standard deviation, x is
the intensity variation, and i is the number of terms to be
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determined (assumed 4).

The highest intensity point was used to calculate the
distance to the center. It was compared with the average
radius to identify defects and hence to generate the defects
heat-map. A high-level implementation of the algorithm
is demonstrated in pseudo-code algorithm as in Appendix
Algorithm 3.

5) Orientation detection: We have implemented the itera-
tive closest point (ICP) algorithm [24], [25] to detect the
orientation of the robot by comparing the point clouds
generated in laser profile scans.

First, we took a base point cloud (P ) which was with an
estimated orientation by a correctly aligned robot. Then,
we took a point cloud (Q) with unknown orientations to
find the corresponding pairs of points (pi , q j ) by searching
for the nearest points that aligned between the two point
clouds.

P = {p1.........pn} ; Q = {q1.........qm} (17)

(pi , q j ) = ar g mi n
i , j

(
(xpi −xqi )2 + (ypi − yqi )2 + (zpi − zqi )2)

(18)

Then, we minimized the summation of the squared error
of rotation (R) and translation (t ) of those corresponding
points to estimate the transformation parameters.

E(R, t ) =
n,m∑

i=1, j=1
|pi −Rq j − t |2 (19)

It was further optimized by taking the center of the circle
as the center of the mass in the corresponding points of
both sets (MQ , MP ) to generate a new point data set as,

M = Mp −MQ (20)

p
′
i = {pi −M } (21)

E
′
(R) =

n,m∑
i=1, j=1

|p ′
i −Rq j |2 (22)

Ropti mum = ar g mi n
R

(E ′|R) (23)

A high level implementation of the algorithm is demon-
strated in pseudo-code as in Appendix Algorithm 2.

III. HARDWARE SETUP AND SOFTWARE ARCHITECTURE

The mini-PIRO (mini Pipe Inspection Robot) system
was developed under the Sydney Water funded project,
"Development of sensor suites and robotic deployment
strategies for condition assessment of concrete sewer walls".
It has two main parts: a robotic platform and sensor suite.
The robotic platform was equipped with basic pipeline
inspection functionalities such as tethered remote control,
navigation inside pipes with little water puddles, CCTV
inspection with a flashlight system. The robot is powered
and controlled through a 120m long tether connected to
a control station. The sensor suite consists of an IR laser,
cameras and an on-board computer (see Fig. 2).

Fig. 2: The mini-PIRO with sensors.

A. Sensor suite
The laser probe was mounted at the front end of the

robot using a length adjustable rod. It uses an IR laser
(within the wave length of the camera) and a conical mirror
to project the circular laser line perpendicular to the pipe
wall. An RGB camera with an IR block filter was used so
that the laser ring did not appear in the RGB camera. All
three cameras were configured to 1280×720 resolution to
extract high definition images at a rate of 30 frames per
second. The two IR cameras were used to detect the laser
ring projection in the captured images and to generate the
stereo processed point clouds whereas the RGB camera was
used to capture the color information of the associated data
points.

As the mini-PIRO is operating in dark underground
pipes, the quality of RGB-D mapping is dependent on
camera exposure, laser intensity and the robot lighting
system which are all remotely adjustable. An encoder with
1000 pulses/revolution was utilized to robot localization.
Although, encoders have long term bias with location es-
timates, in this application, they are reasonable given the
water utilities require short map segments. The algorithms
were implemented on a high-performance motherboard
with an Intel 2.5GHz quad-core processor, 8GB RAM and a
500GB SSD internal storage memory. The system was tested
extensively and operates smoothly over a long period of
time. The whole unit was secured from possible splashes
of water to protect the hardware.

B. Software Architecture
The software architecture (Appendix Fig. 4) was imple-

mented using the Robotic Operating System (ROS) frame-
work based on C++ language and OpenCV libraries for
image processing. The computationally heavy functions in
the code have been modularized and distributed among
ROS nodes to work in parallel as separate threads to
improve the real-time performance. The raw image frames
taken from the cameras were processed with pre-calibrated
camera parameters and algorithms implemented using the
OpenCV framework that generates the 2D point cloud of
the laser ring that contains the RGB-D vectors. Using the
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Fig. 3: Storm water pipe with artificial defects with bench-
marks is used in the laboratory setup to validate the sensing
performance.

odometry, the 2D point clouds generated were iteratively
combined to generate the 3D map of the pipe surface.
The final results can be visualized in real-time using ROS
RVIZ like visualizing tools. The system was automated using
Linux automation scripts for a single push button start up.

IV. EXPERIMENTS & RESULTS

The sensor suites and the algorithms were tested and
validated through a set of experiments conducted in dif-
ferent lab setups and in a utility-owned pipe section. The
purpose of these experiments were to validate the accuracy
of 3D map measurements, RGB depth mapping, defects
mapping, orientation detection, real-time performance of
laser profiling and evaluating the robustness of the system.

A. Sensor suite validation
To validate the sensors, a storm water pipe was fitted with

artificial defects with known dimensions placed around
the pipe surface. Figures 3, 4f and 4g show the lab test
environment. Artifacts with known dimensions (Fig. 4g)
were attached to the internal pipe surface to validate the
measurements by comparing it with the ground truth (Fig.
3). Different color stripes (red, green and blue) were placed
on the pipe surface as shown in Fig. 3 to validate the color
alignment.

The metric scaled point clouds generated from the pro-
posed sensor module are shown in Fig. 4. Fig. 4a shows the
RGB depth point cloud generated from the proposed system
and Fig. 4b shows the unwrapped version of the point cloud
generated using an unroll algorithm. The measurements are
validated by comparing the point cloud measurements with
the actual measurements taken using tape measure, laser
distance measure (DeWalt DW03101-XJ) and vernier caliper.
Figure 4d and 4e show some of the measurements taken at
different locations.

B. Measurements validation
Table I demonstrates the most significant validations

done on the generated point cloud by comparing the point
cloud measurements with the known dimensions of the

 

Location 
Physical 

measurement (mm) 
Point cloud 

measurement (mm) 
Error 
(mm) 

Pipe diameter 445 445.36 0.36 

Fig. 4d Point 1 13 13.56 0.56 

Fig. 4d Point 2 6 6.05 0.05 

Fig. 4d Point 3 1 1.68 0.68 

Fig. 4d Point 4 14 31.15 17.15 

Fig. 4e Point 0-1 500 501.38 1.38 

Fig. 4e Point 2-3 250 251.86 1.86 

Fig. 4e Point 3-4 60 61.4 1.4 

Fig. 4e Point 5-6 250 254.25 4.25 

Fig. 4e Point 7-8 60 63.56 3.56 
Fig. 4e Point 9-10 
Fig. 4h right defect  

• Height 

• Length 
Fig. 4h left defect  

• Height 

• Length 

60 
 

110 
110 

 
110 
110  

64.02 
 

111.31 
109.72 

 
107.87 
115.16 

4.02 
 

1.31 
2.78 

 
2.13 
5.16 

TABLE I: Evaluating the measurements of the artificial
defects placed on the pipe surface.

defects placed on the pipe. Several points were randomly
selected from the region of interest in the generated 3D
point clouds using a point cloud analytical tool and the
averaged out measurements were compared with the phys-
ical measurements. In general, the thickness measurements
were accurate to the millimeter level with some exceptions.
For example, point 4 in Fig.4d is erroneous, which is due
to dark color surface. The dark color surface absorbs most
of the projected IR laser light causing poor camera images.
Figure 4e and Table I show that points 0 to 4 measurements
taken along the circumference of the surface (on the x-
axis of the image) are accurate to the millimeter level.
However, points 5 to 10 (measurements were taken on the
y-axis of the image) have higher errors which are due to
the basic odometry received from the lateral movement of
the robot. Our future works involves improvements to the
robot localization to address these errors. The last 2 rows
in the Table I (right defect and left defect locations) show
the comparison results taken from the figure 4h point cloud
measurements compared with the ground truth that reflects
the accuracy of the readings. Fig. 4a show that the colors
of the point cloud are well aligned with the locations of the
defects and therefore the RGB-depth mapping is accurate
to the millimeter level.

Figure 4c shows the severity of the defect in which a color
gradient has been applied throughout the point cloud to
easily identify defects where yellow end of the spectrum
indicates normal and when it goes towards red end of
the spectrum the severity of the defect increases. This is
the most crucial information for a Sydney Water engineer
to identify and repair defects in the scanned pipeline by
measuring the defects from the generated point cloud up
to millimeter level accuracy. Further information such as
wave-like patterns are visible in the representation as seen
in Appendix Fig. 5 which were previously discussed in [26].
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(a) RGB depth point cloud generated
from the validation test pipe scan.

(b) The unwrapped RGB depth point
cloud generated from the laser profile.

(c) The unwrapped 3D point cloud with
the defects heat-map.

(d) Point cloud defects thickness measurements (e) Point cloud defects size measurements

(f) Triangle shaped artificial de-
fect profile made with styrofoam

(g) Lab pipe scan with the styro-
foam artificial defects

(h) 3D point cloud measurements of the styrofoam
artificial defects

Fig. 4: 3D point cloud measurement accuracy validation.

C. Performance evaluation with existing technologies
Following summarizes our comparative study with ex-

isting methods. A corroded metal pipe of diameter 600
mm extracted from the Sydney water network was used
to perform these tests (Fig. 5a). We scanned the pipe using
a commercially available 3D scanner "Creaform EXAscan
SYS-H3D-EXAD" [27] with industry specification of 0.1mm
accuracy (Fig. 5b), research work based on existing literature
[17]–[19] with 7mm accuracy and our proposed method
with 1mm accuracy (Fig. 5c). Figure 5d, 5e shows the
comparisons of all three 3D scan models. Fig. 5f shows the
heat-map highlighting the defects that overlays on the mesh
generated from the proposed system.

D. Orientation validation
Following tests were carried out to validate the algorithms

discussed in section II-.5. As shown in Fig. 6 different point
clouds have been generated by projecting the laser beam
with known angles inside the pipe: first instance - Base
scan is taken as the reference, second and third instances
- individual rotations of 10 degrees for the Y and Z axes
respectively, fourth instance - rotated in both Y and Z axes

 

Physical 
Orientation 
(Degrees) 

Z Rotation 
Detection 
(Degrees) 

Y Rotation 
Detection 
(Degrees) 

X Rotation 
Detection 
(Degrees) 

Y – 10  -0.0025866 9.851 -0.015133 

Z – 10  -9.8511 0.0025376 0.014715 

Y & Z – 10  7.0537 7.0008 0.43202 

X – 10  -0.000003 -0.000003 0.021256 

TABLE II: Evaluating the measurements of the orientation
algorithm.

by 10 degrees each, final instance - rotated along X-axis by
10 degrees.

The generated data have been fed into the algorithm and
the results have been compared with the known measure-
ments to estimate the accuracy as shown in Table II.

According to the comparisons, individual axis (pitch, yaw)
rotations are accurate with just 0.2-degree error. When
there’s a rotation in both pitch (Y) and yaw (Z) axes at
the same time the error goes up to 3 degrees. The rotation
in the roll (x) axis is ignored as it cannot be detected
accurately because of the symmetrical shape of the circular
point cloud.
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(a) Corroded metal pipe extracted from
a Sydney water network. The red laser
has been used instead of IR for image
demonstration purposes.

(b) 3D scan generated from the Creaform
handheld 3D scanner.

(c) Laser scan generated from the pro-
posed system.

(d) 3D scan and laser scan results com-
parisons. (e) Measurement comparisons.

(f) Point cloud to mesh feature valida-
tion.

Fig. 5: Ground-truth validation with an industrial 3D laser-scanner.

Fig. 6: Test data generated from the laser profile scans with
fixed known angles to validate the orientation detection.

E. Field trials and data
The robot was tested in field trials, several Sydney un-

derground water pipe networks to assess its robustness and
performance (Fig. 7). The results of the robot is being used
to test 60m long spray liner coated pipelines (Fig. 7a, 7b)
which had shiny surface and a 60m long CIPP (Cured In
Place Pipe) lined pipes (Fig. 7d ) with a relatively rough
surface are shown in the figures. And the scan results are
shown in respective figures (Fig. 7c, 7e, 7f).

F. Real-time performance
The system has been implemented in ROS to capture

capture images in 30 fps from all 3 cameras. The robot
runs an average speed of 0.2m per second while generating

a real-time point cloud. When an in-depth inspection
becomes necessary, the robot can run at a slower speed
as detailed in [26]. As an example, the areas with apparent
corrosion as in figures 7b and 7c may need more attention.

V. CONCLUSION AND FUTURE WORK

In this article, we have reported the design and devel-
opment of a robotic sensing system for RGB-D mapping
inside drinking water pipes. We utilized an IR stereo camera
vision system and IR laser-pattern projection-based sensing
system along with encoders for robot localization. The data
gathered are used to build true color 3D maps identifying
defects and achieving millimeter level accuracy. The system
was first comprehensively tested in laboratory settings fol-
lowed by field trials in the drinking water pipeline located
at Sydney city, Australia. The experimental results indicated
that the generated 3D map of the internal pipe surface is
with a millimeter level accuracy and can efficiently detect
defects and surface corrosion.

The current version of the robotic sensing system was
developed for pipes ranging from 400mm to 700mm di-
ameter. In the future, we are planning to miniaturize the
system to deploy in pipes with diameters less than 400mm.
Further research is planned to solving the measurement
inaccuracies relating to dark surfaces by utilizing high
intensity lasers. Further work is planned for integrating
ultrasound sensing technology for measuring the thickness
of water pipe linings.
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(a) Laser profiling in an actual under-
ground water pipeline.

(b) Camera image of the underground
water pipeline with spray liner coating.

(c) 3D point cloud generated on the
underground water pipeline spray liner
coating.

(d) Camera image of an actual under-
ground water pipeline with CIPP liner
coating.

(e) 3D mesh of the CIPP pipe liner coat-
ing.

(f) Unwrapped 3D mesh of the under-
ground water pipe sample.

Fig. 7: Field trials with 3D scan results.

tralian Federal Government through the Cooperative Re-
search Centres Projects (CRC-P) grant. The CRC-P Program
supports industry-led collaborations between industry, re-
searchers and the community. This CRC-P program is led by
the Water Services Association of Australia in collaboration
with 34 collaborative partners including researchers, water
utilities and industry partners. The reported work is a
part of the sub-project 3 on Smart Sensing led by the
University of Technology Sydney. The sub-project 3 partners
are Abergeldie Watertech Pty Ltd, Bisley & Company Pty
Ltd, Calucem, Central SEQ Distributor-Retailer Authority
(Urban Utilities), Downer Pty Ltd, Insituform Pacific Pty Ltd,
Interflow Pty Ltd, GeoTree Solutions, Parchem Construction
Supplies Pty Ltd, Sanexen Environmental Services, South
Australian Water Corporation, South East Water Corpora-
tion, Sydney Water Corporation, University of Technology
Sydney, Ventia Pty Ltd, Water Corporation and Water Ser-
vices Association of Australia.

Special thanks to Sydney Water funded project, Devel-
opment of sensor suites and robotic deployment strategies
for condition assessment of concrete sewer walls for making
the robot and sensors available for this work and Sydney
Water for facilitating to carry out field trials.

REFERENCES

[1] J. Valls Miro, N. Ulapane, L. Shi, D. Hunt, and M. Behrens, “Robotic
pipeline wall thickness evaluation for dense nondestructive testing
inspection,” Journal of Field Robotics, vol. 35, no. 8, pp. 1293–1310,
2018.

[2] K. Thiyagarajan, S. Kodagoda, R. Ranasinghe, D. Vitanage, and G. Iori,
“Robust Sensor Suite Combined with Predictive Analytics Enabled
Anomaly Detection Model for Smart Monitoring of Concrete Sewer
Pipe Surface Moisture Conditions,” IEEE Sensors Journal, vol. 20,
no. 15, pp. 8232–8243, 2020.

[3] K. Thiyagarajan, S. Kodagoda, R. Ranasinghe, and G. Iori, “Robust
sensing suite for measuring temporal dynamics of surface tempera-
ture in sewers,” Scientific Reports, vol. 8, 10 2018.

[4] K. Thiyagarajan, S. Kodagoda, and J. K. Alvarez, “An instrumentation
system for smart monitoring of surface temperature,” in 2016 14th
International Conference on Control, Automation, Robotics and Vision
(ICARCV), 2016, pp. 1–6.

[5] K. Thiyagarajan, S. Kodagoda, L. V. Nguyen, and R. Ranasinghe,
“Sensor Failure Detection and Faulty Data Accommodation Approach
for Instrumented Wastewater Infrastructures,” IEEE Access, vol. 6, pp.
56 562–56 574, 2018.

[6] L. Chun-Lei, S. Hao, L. Chun-Lai, and L. Jin-Yang, “Intelligent detec-
tion for tunnel shotcrete spray using deep learning and lidar,” IEEE
Access, vol. 8, pp. 1755–1766, 2020.

[7] Z. Li, P. C. Gogia, and M. Kaess, “Dense surface reconstruction from
monocular vision and lidar,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 6905–6911.

[8] J. Zhang, Z. Lu, W. Li, and Q. Liao, “A robust and fast 3d face
reconstruction method using realsense camera,” in 2017 International
Conference on Wireless Communications, Signal Processing and Net-
working (WiSPNET), 2017, pp. 2691–2695.

[9] J. Feulner, J. Penne, E. Kollorz, and J. Hornegger, “Robust real-time 3d
modeling of static scenes using solely a time-of-flight sensor,” in 2009
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2009, pp. 74–81.

[10] S. M. Ayaz, D. Khan, and M. Y. Kim, “3d handheld scanning based on
multiview 3d registration using kinect sensing device,” in 2017 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), 2017, pp. 330–335.

[11] M. Nasrollahi, N. Bolourian, Z. Zhu, and A. Hammad, “Designing
LiDAR-equipped UAV platform for structural inspection,” in 35th
International Symposium on Automation and Robotics in Construction
and International AEC/FM Hackathon: The Future of Building Things,
ISARC 2018. Department of Building, Civil and Environmental
Engineer, Concordia University, Canada: International Association for
Automation and Robotics in Construction I.A.A.R.C), 2018.

[12] Z. Liu and D. Krys, “The use of laser range finder on a robotic plat-
form for pipe inspection,” Mechanical Systems and Signal Processing,
vol. 31, pp. 246–257, 2012.

[13] J. Saenz, N. Elkmann, T. Stuerze, S. Kutzner, and H. Althoff, “Robotic
systems for cleaning and inspection of large concrete pipes,” in
2010 1st International Conference on Applied Robotics for the Power
Industry, CARPI 2010, Fraunhofer IFF, 39106 Magdeburg, Germany,
2010.

[14] O. Duran, K. Althoefer, and L. D. Seneviratne, “Automated pipe defect
detection and categorization using caniera/laser-based profiler and
artificial neural network,” IEEE Transactions on Automation Science
and Engineering, vol. 4, no. 1, pp. 118–126, 2007.

[15] J.-S. Yoon, M. Sagong, J. S. Lee, and K.-s. Lee, “Feature extraction of



GUNATILAKE et al.: STEREO VISION COMBINED WITH LASER PROFILING FOR MAPPING OF PIPELINE INTERNAL DEFECTS 9

a concrete tunnel liner from 3D laser scanning data,” NDT and E
International, vol. 42, no. 2, pp. 97–105, 2009.

[16] R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “Non contact 3D
measurement scheme for transparent objects using UV structured
light,” in 2010 20th International Conference on Pattern Recognition,
ICPR 2010, Laboratoire Le2i-CNRS UMR 5158, Université de Bour-
gogne, 12, Rue de la Fonderie, 71 200 Le Creusot, France, 2010, pp.
1646–1649.

[17] J. Kofman, J. T. Wu, and K. Borribanbunpotkat, “Multiple-line full-field
laser-camera range sensor,” in Optomechatronic Computer-Vision
Systems II, vol. 6718, Dept. Systems Design Engineering, University
of Waterloo, Waterloo, ON N2L 3G1, Canada, 2007.
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