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ABSTRACT The use of Stereoscopic 3D (S3D) videos has been popular in commercial markets with
ongoing developments in the field of visual entertainment in recent years. A wide variety of projection
methods of 3D video content is currently available, such as projection to a panoramic screen and projection
of omnidirectional video content from head mounted displays using Virtual Reality (VR) technology.
This article investigates the Quality of Experience (QoE) and associated Visually Induced Motion Sick-
ness (VIMS) caused by the viewing of S3D videos. The investigations used three different projection
screens: a 3D flat screen, a 3D panoramic screen in a hemispherical shaped room and a VR headset. Several
assessment methods including a Simulator Sickness Questionnaire (SSQ), ElectroEncephaloGraphy (EEG),
and measurement tools for eye blink rate detection were applied to measure the QoE experienced by viewers.
The SSQ scores were also compared with the behavioral data such as attention and meditation levels and
enjoyment ratings acquired from different video content and projection screens. The results indicate that the
projection screen is a key factor affecting the level of visual fatigue, VIMS and QoE assessments, which are
discussed in-depth in the article.

INDEX TERMS Stereoscopic video, omnidirectional content, virtual reality, quality of experience, elec-
troencephalography, simulator sickness.

I. INTRODUCTION
The recent growth of Stereoscopic 3D (S3D) technology
has led to the commercial production of 3D movies. How-
ever, research studies have found that people may experience
visual fatigue after watching stereoscopic movies or images.
The visual fatigue is usually accompanied by symptoms such
as headaches, nausea, dizziness or eyestrain [1].

Quan et al. [2] studied the perception of 3D content and
viewers’ experiences. The authors suggested that the percep-
tion of 3D content could be differentiated from 2D content by
viewers. Some studies proposed the perception of 3D content
using a panoramic screen to achieve better visual attention.
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Wegner et al. [3] proposed a design specification for the pro-
jection of 3D videos on a circular panoramic screen; however,
the design requires subjective quality experiments which have
yet to be conducted. With the recent development of virtual
reality (VR) and the production of powerful Head-Mounted
Displays (HMDs), e.g. the HTC VIVE [4] and Facebook
Oculus [5] product families, omnidirectional video content
has become popular. These HMDs can process and dis-
play both 3D and 360◦ video content. Previous researchers
have conducted a series of Quality of Experience (QoE)
experiments with Visually Induced Motion Sickness (VIMS)
caused by viewing S3D videos. Most of the previous research
focused on the evaluation of the QoE in a viewing environ-
ment with a single projection screen but there is a lack of
research that evaluates the QoE in different environments

9584 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0090-8660
https://orcid.org/0000-0003-1632-8062
https://orcid.org/0000-0003-1318-8447
https://orcid.org/0000-0003-3795-7722
https://orcid.org/0000-0002-5026-5416


S.-M. Choy et al.: QoE Comparison of S3D Videos in Different Projection Devices

with more than one projection screen. Therefore, this arti-
cle aims to identify the effects of VIMS and analyze 3D
fatigue with three different projection screens, varying from
an individual research-grade flat 3D screen, a consumer-
grade VR headset and a 3D panoramic screen [6] with a series
of objective and subjective tests. The subjective evaluation
approach in this article invited participants to first view a set
of S3D videos, during which time their ElectroEncephaloG-
raphy (EEG) and eye tracking biosignals were recorded. They
then completed a survey to rate the enjoyment level and video
quality, measuring their QoE. After performing these sub-
jective tests, the EEG signals and QoE data were collected,
analyzed and evaluated.

In the following, Section II discusses the background
theory underpinning QoE and visual fatigue of 3D videos
using various viewing screens. Section III and Section IV
describe the experimental methodology used and explains the
methods used with different projection screens. Section V
discusses and analyzes the experimental results obtained,
whilst Section VI concludes the article and proposes future
directions for exploration. The main contributions of this
article are to integrate three different subjective evaluation
methods to evaluate the QoE of S3D videos in three different
viewing environments, with a series of statistical analyses to
assess whether their results correlate or not.

II. BACKGROUND
There is an existing body of research to discuss QoE
experiments with different projection screens. These
QoE experiments can generally be classified into three
types: image quality assessment models, subjective evalua-
tions among participants and adding stimulus for compar-
ison. In [7], the authors conducted subjective evaluations
on images displayed in an HMD environment. They sug-
gested a testbed for conducting subjective tests on an omni-
directional environment using different projection schemes.
Sun et al. [8] proposed a novel image quality assessment
model for non-reference 360◦ images that were compared
against other existing image quality assessment models on
360◦ databases. Narciso et al. [9] proposed a study using an
HMD to measure the influence of video format and sound
format on a user’s sense of presence and cybersickness.
A statistical analysis of their results failed to identify signif-
icant differences in the sense of presence and cybersickness
observed between video and sound variables. A further study
by Narciso et al. [10] proposed adding smell as an additional
stimulus to measure the influence of presence, cybersickness
and fatigue in VR environments. The results found no corre-
lation between smell and other variables. Duan et al. [11]
conducted a perceptual quality assessment of omnidirec-
tional images through the collection of viewing directions,
subjective quality scores and eye-tracking information into
a database for omnidirectional image quality assessment.
This database was compared with other existing image qual-
ity assessment databases. Singla et al. [12] compared the
QoE of omnidirectional content viewed through different

HMDs. Three categories of omnidirectional content with
low, medium and high degrees of both camera and content
motion were evaluated and it was found that there was a
significant contribution of resolution and video content to the
quality ratings. Anwar et al. [13], [14] compared high priority
QoE factors of omnidirectional content in VR environments
in terms of perceptual quality, presence and cybersickness.
Also, two QoE factors for subjective evaluation: user’s famil-
iarity and user’s interest in VR environments were evaluated
by Absolute Category Rating (ACR) method. An artificial
neural network (ANN) based QoE prediction model was also
proposed to predict the impact of the three QoE factors under
different stalling events on the cybersickness level of users.

Considering the quality assessment of S3D videos,
Zhang et al. [15] conducted objective and subjective quality
assessments of panoramic videos encoded at different bitrates
and with the addition of noise at the same resolution. The
results of the subjective quality assessments revealed that the
subjective perception between normal videos and panoramic
videos varied when the bitrate changed. Appina et al. [16]
proposed novel subjective quality and objective quality pre-
diction by using 288 test videos derived from 12 ‘‘pristine’’
S3D videos, where ‘‘pristine’’ video refers to uncompressed
video with highest quality. The proposed pristine videos were
chosen through subjective quality tests based onmotion infor-
mation, spatial information and disparity using a 6-point scale
rating (scaled from 0 to 5). However, there was no further
elaboration of QoE assessments.

Considering motion sickness and visual fatigue,
Naqvi et al. [17] proposed measures to assess VIMS caused
by the viewing of S3D videos and compared the ratio of
low frequency to high frequency components in video con-
tent, where low frequency components were defined as less
than 0.15 Hz, corresponding to sympathetic modulations,
whereas the high frequency components were defined to be
higher than 0.15 Hz, representing parasympathetic activities.
Duan et al. [18] conducted an experiment to assess VIMS of
immersive videos of real scenes by controlling visual oscil-
lations. Wang et al. [19] compared the VIMS and eye fatigue
caused by HMDs using Simulator Sickness Questionnaire
(SSQ) scores and eye-trackingmethods respectively. By anal-
ysis of the parameters in the eye tracker, new assessment
models were proposed to assess eye fatigue of HMDs. Eye
fatigue assessment models of [20] were proposed to assess
eye fatigue based on eye movement data and eye blink data
using an unobtrusive eye tracker.

Some researchers have used EEG signals to assess VIMS.
The EEG signals included five waves, namely alpha (α),
beta (β), delta (δ), theta (θ ) and gamma (γ ), each of which
corresponds to different frequency ranges and which reflect
different emotion states of viewers. The EEG components are
divided into two types: temporal and oscillatory components.
Table 1 shows the characteristics of the EEG components
used in the cognitive neuro system. Oscillatory compo-
nents reflect various neural states of participants [21]. Mea-
surement of brain wave power in the different frequency
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bands corresponding to the α, β, δ, and θ waves can be
used to detect fatigue by looking at the ratio between slow
waves (δ and θ ) and fast waves (α and β) as a function of
time [22]. In cognitive neuroscience, by comparison of the
behavior of temporal components before and after an event
happens, mental fatigue can be measured. Also, different
frequency bands reflect varying levels of alertness. The pro-
portion of low frequency bands such as α, θ and δ waves
tend to increase, whereas the proportion of high frequency
bands such as γ and β waves decrease when the alertness
declines [23]. Liu et al. [24] and Petrantonakis et al. [25]
proposed using EEG signals to measure the bioelectrical
activities and emotion recognition of humans. The emotions
were classified into six classes: happiness, surprise, anger,
fear, disgust and sadness. EEG can be recorded in tempo-
ral resolution so that the viewing experience of S3D video
could be monitored in real-time. Li et al. [26] conducted
3D visual fatigue tests to measure biosignals by watching
both 2D and 3D videos in a binocular parallax condition.
The results found that measured EEG biosignals were sig-
nificantly correlated with the subjective measurement of 3D
visual fatigue. Choy et al. [27] proposed the adoption of the
EEGmethod to conduct objective and subjective experiments
to record signals [28]. The experiments included the com-
parison of 2D and S3D videos. Zou et al. [29] investigated
the effectiveness of nine types of EEG indices and suggested
that the alpha wave is the most promising indicator to detect
stereoscopic visual fatigue. Hu et al. [30] utilized fMRI brain
imaging to bridge low- level and high-level semantics for
video classification. Oliveira et al. [31] studied EEG and
other biosignals such as galvanic skin response, respiration
rate and volume, skin temperature and heart rate, in relation
to multimedia content and delivery based on user emotions.
Liu et al. [24] proposed a method to recognize the dominance
level of emotion interaction with the human brain using an
EEG approach. However, this method used auditory stimuli
only and did not consider visual stimuli.

To analyze EEG signals, some researchers adopted analy-
sis of variance (ANOVA) statistical methods for their anal-
ysis. Li et al. [32] used ANOVA to compare and analyze
EEG signals in order to find the responses of the brain when
conducting acupuncture tests. Salami et al. [33] applied a
common spatial pattern (CSP) algorithm via a brain com-
puter interface (BCI) to identify the features of EEG sig-
nals. Unbalanced Factorial ANOVA was adopted to analyze
the feature vectors of EEG signals using the F distribu-
tion parameter from an ANOVA table by linear regression.
Mehmood et al. [34] conducted emotion recognition experi-
ments to record EEG signals and processedHjorth parameters
such as activity, mobility and complexity [35]. A one-way
ANOVAmethod was analyzed to select optimal EEG features
from Hjorth parameters for different EEG frequency ranges.

In this work, EEG signals were measured and information
such as attention, meditation, eye blinks and brain wave pow-
ers were obtained. The brain wave power equations from [29]
were used to calculate the visual fatigue level. The evaluation

TABLE 1. Characteristics of Major EEG Components

of visual fatigue by EEG signals is thought to be a more
accurate measure than a typical subjective rating. Secondly,
VIMSwas also evaluated by using a SSQ to correlate with the
visual fatigue. Thirdly, the enjoyment level and video quality
were obtained by typical subjective ratings.

III. EXPERIMENTAL METHODOLOGY
In order to assess the response of viewing S3D videos, some
measurement tools are proposed to assess visual fatigue as
follows.

A. VISUALLY INDUCED MOTION SICKNESS (VIMS)
To conduct the subjective evaluation of QoE, a SSQ is
the most common method to assess VIMS, proposed by
Kennedy et al. [36]. Table 2 shows 16 symptoms to assess
motion sickness, where each symptom item contains different
ratings. The rating scheme of items is based on the data col-
lection and analysis from the simulator sickness experienced
by US pilots using ten different flight simulators [37]. The
three sub-scales, Nausea (N), Oculomotor (O) and Disorien-
tation (D), were based on the greatest varimax loading struc-
ture for identification. The symptom items of each sub-scale
had at least a 0.3 varimax loading factor. Some items included
more than one sub-scale factor, e.g., difficulty focusing,
nausea, difficulty concentrating and blurred vision. Each
symptom item was rated on four levels: none (0), slight (1),
moderate (2) and severe (3). The Total Severity (TS) score
was computed by the sum of three sub-scales based on the
type of symptoms and the scoring level, with a particular
multiplying factor. TheN,O, D and TS scoreswere calculated
as shown in Table 2.

Table 3 shows the potential score ranges of SSQ scores
which shows the score ranges of each symptom level. For
instance, when all participants have ‘‘slight’’ symptoms
related to disorientation, the resulting D score is 97.4. The
total SSQ score, which is also known as the TS score, can
range from 0 to 235.6. The SSQ was used to assess motion
sickness when participants were watching S3D videos.
Kaufmann et al. [38] adopted the SSQ to assess the sick-
ness for participants of handheld projector interaction. Solim-
ini et al. [39] found that watching 3D movies might raise the
potential risk of health problems. Choy et al. [27] noted that
watching 3D movies may result in higher VIMS and viewers
might experience higher visual fatigue.

9586 VOLUME 9, 2021



S.-M. Choy et al.: QoE Comparison of S3D Videos in Different Projection Devices

FIGURE 1. Block diagram of the experimental methodology.

TABLE 2. 16 SSQ Symptoms to Assess Motion Sickness

TABLE 3. Potential Score Ranges of SSQ Scores

B. ELECTROENCEPHALOGRAPHY (EEG)
Researchers have previously shown that analysis of EEG
signals is a reliable technique for the detection of fatigue [40].
Different authors have used different algorithms of EEG
signals to calculate a brain wave power ratio: Eoh et al. [41]
used 1) (θ + α)/β and 2) α/β to evaluate the fatigue level of
drowsiness in simulated driving tasks, whilst Jap et al. [42]
used 3) (θ + α)/(α + β) and 4) θ /β to evaluate the fatigue
in monotonous driving simulator tasks. All algorithms show
an increase with fatigue due to a decrease of beta waves.
Li et al. [43] applied all algorithms and proposed an evalu-
ation model for driver fatigue detection.

Chen et al. [44] suggested test methods to examine fatigue
measurement of 3DTV by adopting all four algorithms above.

The results showed that brain wave power ratios may
help to indicate fatigue whilst viewing 3DTV. In this work,
the ratio of brain wave powers was computed using equations

(1) and (2) to determine the fatigue level of 3D video. A pre-
vious 3D fatigue experiment conducted by Choy et al. [27]
found that the fatigue level was typically higher than
0.05 when participants were watching 3D videos, while the
fatigue level was lower than 0.05 when watching 2D videos.
The result revealed that the typical 3D fatigue level is nor-
mally higher than 0.05.

Power Ratio1 =
θ + α

β
(1)

Power Ratio2 =
θ + α

α + β
(2)

IV. METHODS
The experiment was divided into three parts in order to com-
pare three different viewing environments created by different
devices: 1) a flat screen, 2) a panoramic screen, and 3) a VR
headset device.

A. EXPERIMENTAL PROCEDURES
All participants completed a short S3D vision test based on
the ITU-R BT 2021 standard [45] before participating in the
experiment. Figure1 illustrates the methodology of the exper-
iment. Every participant was required to watch 5 sets of S3D
video sequences, each about 1-minute duration, with each
device. To prevent bias, the video sequences were played in
a random order, generated by the Stat Trek Random Number
Generator [46]. After watching each video sequence, the par-
ticipants were required to complete the SSQ to rate the enjoy-
ment level and video quality. Each participant participated
in 3 sessions, with a 10-minute viewing break between each
session (30 minutes at most) in order to minimize the motion
sickness and fatigue. Participants were free to discontinue the
test at any time if suffering from motion sickness, physical
sickness or dizziness. The average duration of the whole
experiment for each participant was 1.5 hours, including all
viewing breaks to minimize VIMS and fatigue.

B. EXPERIMENTAL DEVICES
1) DEVICE 1: FLAT 3D SCREEN
A 25.5’’ Panasonic BT-3D L2550 Full HD (1920 × 1080)
LCD 3D screen was used to play all S3D video sequences. In
accordance to the specifications of the THX Cinema Certifi-
cation [47], participants were required to sit in front of the 3D
screen at a 0.9m viewing distance with a 36◦ viewing angle
to watch 3D movies.
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FIGURE 2. A participant wearing the Mindwave EEG headset and active
shutter glasses to watch 3D movies in the Data Arena.

2) DEVICE 2: 3D VIDEO PROJECTION IN PANORAMIC
SCREEN
The panoramic screen is a 10m diameter hemispherical room,
known as the Data Arena at the University of Technol-
ogy Sydney [6]. In the Data Arena, six 3D-stereo projec-
tors arranged in circular position and a large panoramic
screen were used to project S3D videos. The specifications
of the Data Arena are shown in Table 4. Participants wore
active shutter 3D glasses and stood in the middle of the
panoramic screen to view stereoscopic videos, as shown
in Figure 2. A high-performance computer graphics system
drove the six S3D video projectors and the video walls were
edge-blended to produce a seamless 3D panorama. Soft-
ware tools including MeshLab [48] and FFMPEG [49] were
used for graphic computation, rendering and re-construction
of 3D images, and consistent projection from the six projec-
tors. Algorithmswere implemented to present S3D videos at a
high level of resolution. In this experiment, the six projectors
projected three identical, edge-blended 1920 × 1080 pixels
S3D video sequences to fill the 360◦ surround panoramic
screen.

TABLE 4. Specifications of the Data Arena

3) DEVICE 3: 3D VIDEO ON 360◦ IN VIRTUAL REALITY
Participants were required to wear a HMD to view the 360◦

scene. HTCVive equipment was used in this experiment. The
refresh rate, field of view and resolution of HTC Vive are
90Hz, 110◦ and 2160×1200 pixels respectively. Tominimize
possible issues related to the synchronicity of the stimuli,
participants were required to sit down to watch the video
sequences in order to restrict body movements while they
could turn their heads for different viewing positions. Before
the experiment, all participants were briefed on how to use
the HMD and its controller, and the 3D video player.

C. EEG DEVICES
When viewing 3D videos with the different devices,
participants were required to wear a NeuroSky Mindwave

FIGURE 3. NeuroSky Mindwave brainwave dataset.

FIGURE 4. 5 video sequences extracted from Big Buck Bunny and
RMIT3DV databases: (a) Big Buck Bunny, (b) Water fountain, (c) Wishing
well, (d) Flame, (e) Garden.

brainwave headset shown in Figure 3. The headset contained
2 sensors that connected with the ear and forehead, respec-
tively. Whilst a participant viewed a series of S3D videos,
EEG signals and eye blink rates were captured by brain-
wave software from the Mindwave equipment to measure the
fatigue level and track the eye blink frequency during the
experiment.

D. VIDEO STIMULUS AND METRICS
The video sequences were extracted from Big Buck
Bunny [50] and RMIT3DV [51] databases, as shown
in Figure 4. The characteristics of the video sequences are
summarized in Table 5. The selection criteria of the video
sequences were based on the variety of 3D effects and the
comparison of 3D video experiences between animation and
outdoor scenes in different viewing environments.

For the subjective assessment of the video quality of
S3D videos, an ACR method was adopted according to the
ITU-T P.910 document recommendation [52]. The partici-
pants were asked to rate the video quality on a five-level
scale according to the enjoyment of the video experience
(5: very enjoyable, 1: not enjoyable at all). All captured
EEG data, QoE evaluation metrics by using ACR method
and SSQ scores were then analyzed to compute the fatigue
level, total SSQ scores, and total eye blink frequency for each
video sequence. ANOVA was also analyzed to identify the
significance of QoE factors for the three different devices and
five sets of video sequences.

V. RESULTS AND DISCUSSION
A total of 15 participants (11 males and 4 females) ranging
in age from 18 to 46 years old (mean: 29.1 years, s.d.: 8.67
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TABLE 5. Characteristics of Video Sequence

FIGURE 5. Total SSQ scores.

years) participated in the experiment. All participants were
asked about their fatigue level to ensure that they were not in
a fatigued condition before undertaking the test.

A. SIMULATOR SICKNESS QUESTIONNAIRE (SSQ)
Figure 5 and Figure 6 show the total SSQ scores and total
SSQ scores with 3 sub-scales of each video sequence for the
3 different viewing devices respectively. Error bars across
all participants are presented to indicate the 95% confidence
interval. For all videos, the total SSQ scores of the VR device
was more than 50 whereas that of the panoramic screen was
lower than 20. The results suggest that VR devices may
lead to more serious VIMS whereas VIMS may be less
serious with the panoramic screen. The total SSQ scores
with a panoramic screen was the lowest, especially for the
‘‘Water fountain’’ and ‘‘Garden’’ video sequences. No par-
ticipants experienced the motion sickness symptoms. The
results revealed that the viewing distance and the synchro-
nization of the projection of video sequences in the Data
Arena may contribute to less visual fatigue, resulting in
lower total SSQ scores. On the other hand, the SSQ scores
of both the ‘‘Wishing well’’ and ‘‘Flame’’ video sequences
from all projection screens were generally higher than both
the ‘‘Water fountain’’ and ‘‘Garden’’ video sequences. The
results suggest that the chaotic movement of the ‘‘Wishing

well’’ and ‘‘Flame’’ video sequences may correlate with
higher SSQ scores. A single-factor ANOVA of the SSQ score
was conducted. The results showed that the device factor
(F = 2.78, p < 0.01) was found to be significant.

B. EEG BRAIN ACTIVITY
Figure 7 shows the brain wave power ratios across the 5 video
sequences for the 3 different devices respectively, where
PR1 and PR2 represent the brain wave power ratios calcu-
lated from Equations (1) and (2) respectively. The average
brain wave power ratios measured for all video sequences
ranged between 0.05 and 0.09, which were higher than 0.05,
representing a higher level of 3D fatigue for all partici-
pants [27]. It can be seen that the brain wave power ratios
of VR devices ranging from 0.0623 to 0.0893 stimulated the
highest levels of brain wave power ratios across all video
sequences, whereas the brain wave power ratios caused by
the flat 3D screen and panoramic screen were similar, ranging
from 0.0572 to 0.0708 and from 0.0507 to 0.0683 respec-
tively. Among the video sequences, ‘‘Wishing well’’ caused
the highest fatigue level when the participant was viewing
with the VR device (0.0893) or the flat 3D screen (0.0683).
With the panoramic screen, ‘‘Water fountain’’ caused the
highest fatigue level (0.0708) and ‘‘Wishing well’’ the sec-
ond highest (0.0650). Participants recorded the most signif-
icant differences between the two brain wave power ratios
when watching ‘‘Wishing well’’ with the VR device, poten-
tially reflecting different emotional responses of the partic-
ipants [53]. A single-factor ANOVA of the two brain wave
power ratios was conducted. The results showed that the
device factor from the two brain wave power ratios, (F =
1.85, p < 0.01) and (F = 3.23, p < 0.01), was found to be
significant.

C. EYE BLINK FREQUENCY, ATTENTION AND MEDITATION
LEVELS
Figure 8 shows the average eye blink frequency of par-
ticipants when using different devices to watch the video
sequences. Among all participants, the eye blink frequency
over one minute duration when using the flat 3D screen
was between 46.2 and 57.3 times per minute, which was
greater than with the VR device, which ranged from 36.4 to
50.3 times per minute. Also, shown in both Figure 5 and
Figure 7 respectively, are the SSQ scores and the brain wave
power ratios using the flat 3D screen and panoramic screen,
which were generally less than those in the VR device. The
eye blink results correlate to SSQ scores and brain wave
power ratios, indicating that the 3D screen may cause a lower
level of visual fatigue than the VR device. Also, the eye
blink frequency was greater with the flat 3D screen than the
Data Arena except for the ‘‘BBB’’ video sequence, possibly
reflecting a lower level of visual fatigue for the different scene
content. The relatively large confidence intervals from Data
Arena (at least more than ±5 for each video sequence) may
also affect the accuracy. On average, the ‘‘Wishing well’’
video sequence caused the lowest frequency of eye blink,
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FIGURE 6. Total SSQ scores with 3 sub-scales: Nausea (N), Oculomotor (O) and Disorientation (D).

FIGURE 7. Measured brain wave power ratios for different viewing
devices and 3D videos.

which may be attributed to the movements of the objects
under the water, the unstable water movements and natural
lighting conditions. However, when participants were watch-
ing ‘‘Flame’’ with the VR device, the lowest frequency of eye
blink, valued 36.4 times per minute, was recorded among the
five video sequences, which may be a result of the main focus
point, the flame, in the scene and the rapid movement of the
flame. Previous researchers have investigated whether there
is any implication of eye movements and eye blinks when
viewing chaotic scenes, aiming at examining its nature in
terms of non-linear dynamics [54] or changing the focus on an
object when its distance varied in regards to the accommoda-
tive process [55]. These factors need to be further explored.

Figure 9 shows the attention and meditation levels of
participants, as calculated by the Mindwave device, when
they were watching each video sequence with the 3 different
devices. According to the manufacturer’s specification of the
Mindwave equipment, both the attention (similar to concen-
tration) and meditation (similar to relaxation) are reported by
an ‘‘eSense’’ meter to characterize mental states. The eSense
scale is between 1 and 100. A value between 40 and 60 is

FIGURE 8. Eye blink frequency.

FIGURE 9. Attention and meditation levels.

considered to be a neutral condition [56]. The results show
that both the attention and meditation levels maintained an
average level of 50 with the different devices, which may
reveal a neutral neuro condition of the participants [57], [58].
Celia et al. [59] suggested that chaotic and fast audiovisuals
increase attention scope but decrease conscious processing.
The results show that the attention levels of ‘‘Wishing well’’
and ‘‘Flame’’ are the highest (at 56.7 and 54.9 respectively)
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FIGURE 10. Enjoyment rating of participants.

with the flat 3D screen. However, this trend is not seen with
the Data Arena and VR device. Projection devices may be a
factor affecting the correlation between attention scope and
conscious processing.

A single-factor ANOVA of eye blink frequency, attention
and meditation levels were conducted. The results showed
that both the device and video sequence factors were not
significant. This may be because the attention and medita-
tion levels obtained from participants might be in acceptable
ranges because they can recognize the content [60].

D. ENJOYMENT RATING OF S3D VIDEO
Figure 10 shows the ACR enjoyment rating of participants.
Generally, among all participants, the enjoyment rating of
watching video sequences with the 3D screen ranged from
2.93 to 3.80 which was greater than with the VR device which
ranged from 2.13 to 3.33. The results also reflect the fact that
viewing the sequences with the panoramic screen lead to the
highest enjoyment rating, valued between 3.40 and 4.60. This
may be due to the longer viewing distance, larger viewing
screen and the novelty of the unique immersive space in the
Data Arena.

A single-factor ANOVA of enjoyment rating was con-
ducted. The results showed that the device factor (F = 12.2,
p < 0.01) was found to be significant.

E. STATISTICAL ANALYSIS OF QOE EXPERIMENTAL
FACTORS
To statistically evaluate the impact of experimental factors,
two-factor ANOVA within-subjects were carried out to find
the correlation of the QoE assessment metrics of SSQ score,
brain wave power ratios and eye blink frequency with the
three different devices. The three major experimental factors
(device, video sequence, ACR enjoyment rating) below were
analyzed:

1) Device: 3 different devices refers to the corresponding
3 different viewing environments

2) Video sequence: 5 different S3D video sequences used
in the experiments

3) Enjoyment rating: The level of enjoyment when partic-
ipants were viewing S3D videos

As indicated in Table 6, Table 7 (A), Table 7 (B)
and Table 8, the within-subjects ANOVA results showed

TABLE 6. Results From Within-Subjects ANOVA on SSQ

TABLE 7. (A) Results From Within-Subjects ANOVA on Power Ratio1.
(B) Results From Within-Subjects ANOVA on Power Ratio2.

TABLE 8. Results From Within-Subjects ANOVA on Eye Blink Frequency

significant correlations among total SSQ score, brain wave
power ratios and eye blink frequency, respectively. Only
p-values smaller than 0.05 are shown in the above mentioned
tables. The effect of attention and meditation levels were
not significant. The results indicate that both the device and
video sequence factors have a significant impact (p ≤ 0.01)
among all QoE assessments. For the eye blink frequency,
there was a significant cross-influence factor between device
and video sequence (p < 0.01). The SSQ scorewas also found
to be significant (p < 0.01) with the enjoyment rating. The
statistical cross-influence analysis of the experimental factors
in QoE found that:

1) Among all QoE assessments, the type of device used
to view a S3D video is significant for most QoE
parameters such as SSQ, brain wave power ratios and
enjoyment rating. To extend this work, more projection
screens can be tested with different video content with
various 3D effects to further explore the correlation of
QoE parameters.

2) One-factor ANOVA of individual factors such as eye
blink frequency, attention and meditation level did not
show a significant effect among the different types
of devices. However, it was found that a two-factor
ANOVA of eye blink frequency showed a significant
difference with both the type of viewing device and
the video content. The results revealed that eye blink
frequency may be related to the nature of the video
content and the stereoscopy of the added depth. Future
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work will be conducted to verify if there is any sig-
nificant difference when using different video content
for comparison such as the comparison from static to
dynamic 3D video content.

3) It was found that the SSQ score significantly corre-
lated with the enjoyment rating. The result revealed
that subjective indicators, such as SSQ scores and
the enjoyment rating, correlated with VIMS and the
quality perception respectively. To explore the above
correlations, future experiments will be conducted to
investigate more video sequences for investigation.

VI. CONCLUSION
In this article, a series of experiments were conducted to
investigate the occurrence of 3D fatigue of participants for
three different viewing environments. Evaluation metrics
used were Simulator Sickness Questionnaire (SSQ), EEG
(brain wave) power in different brain wave frequency bands,
eye blink detection, attention and meditation levels (as calcu-
lated by the EEG headset) and the Absolute Category Rating
(ACR) enjoyment rating of watching video sequences. Across
the five video sequences evaluated with a variety of con-
tent, experimental results indicated that participants watching
Stereoscopic 3D (S3D) video sequences with a VR device
exhibited higher SSQ scores, and therefore a higher visual
fatigue than using other devices. The results also suggest that
watching S3D videos with VR device may result in higher
Visually Induced Motion Sickness (VIMS). Also, the lowest
SSQ score and the highest enjoyment rating were recorded
when participants watched S3D videos with the panoramic
screen in the Data Arena facility at the university campus.
The results suggest that the projection screen is a key factor
affecting the level of visual fatigue, VIMS and QoE. The
panoramic screen may be used to improve SSQ score and
achieve higher enjoyment rating. Furthermore, both the pro-
jection screen and the content of video sequence are also
key factors which affect the enjoyment rating when view-
ing S3D videos. The video content with chaotic movement
may affect SSQ score, level of visual fatigue and enjoyment
rating.

In future experiments, a larger sample of video sequences
will be explored in order to further evaluate the correlation
of ACR enjoyment rating with both SSQ scores and brain
wave power ratios. In continuing this work, the findings
of this research could help to extend the identification of
quality factors to assess the stereoscopic visual fatigue and
enhance the development of better quality experience (and
measurement thereof) for 3D screens in different viewing
environments. Also, this research may contribute to adapting
the design of 3D video sequences to suit particular viewing
environments. For example, the design of an optimum 3D
video experience in a particular viewing environment, with
the user preference of a typical S3D video content could
be adapted to the 360◦ video content in a panoramic screen
and the omnidirectional visual content in a VR environment.
On the other hand, the Data Arena as a unique immersive

multimedia facility on-campus can be used to further inves-
tigate the QoE assessments of 360◦ 2D videos, S3D videos
and S3D videos with omnidirectional content respectively.
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