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ABSTRACT This article presents a framework for converting wireless signals into structured datasets,
which can be fed into machine learning algorithms for the detection of active eavesdropping attacks at the
physical layer. More specifically, a wireless communication system, which consists of an access point (AP),
K legitimate users and an active eavesdropper, is considered. To detect the eavesdropper who breaks into
the system during the authentication phase, we first build structured datasets based on different features and
then apply sophisticated support vector machine (SVM) classifiers to those structured datasets. To be more
specific, we first process the signals received by the AP and then define a pair of statistical features based on
the post-processing of the signals. By arranging for the AP to simulate the entire process of transmission and
the process of constructing features, we form the so-called artificial training data (ATD). By training SVM
classifiers on the ATD, we classify the received signals associated with eavesdropping attacks and non-
attacks, thereby detecting the presence of the eavesdropper. Two SVM classifiers are considered, including
a classic twin-class SVM (TC-SVM) and a single-class SVM (SC-SVM). While the TC-SVM is preferred
in the case of having perfect channel state information (CSI) of all channels, the SC-SVM is preferred in
the realistic scenario when we have only the CSI of legitimate users. We also evaluate the accuracy of the
trained models depending on the choice of kernel functions, the choice of features and on the eavesdropper’s
power. Our numerical results show that careful parameter-tuning is required for exceeding an eavesdropper
detection probability of 95%.

INDEX TERMS Physical layer security, active eavesdropping, machine learning, support vector machine
(SVM), single-class SVM.

I. INTRODUCTION
Information-security is of paramount importance, inspiring
the research of physical layer security (PLS) in wireless sys-
tems. In contrast to security solutions operating at the upper
ISO layers, PLS exploits the the random nature of wireless
channels in order to guard agains eavesdroppers (E) [1]–[3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra De Benedictis.

In the context of PLS, typically two different types of eaves-
droppers are discussed: i) passive eavesdroppers who only
listen and ii) active eavesdroppers who break into the system
by impersonating legitimate users. Naturally, an active E is
more destructive than a passive one, because the amount of
information leaked to the active E is higher [3], [4]. Hence,
numerous contributions have dealt with active eavesdropping
[3], [5]–[7]. A promising solution is to exploit the detection
of eavesdroppers.
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TABLE 1. Contrasting our Contributions to the Related Literature

In fact, if a transmitter is unaware of E’s presence, then
it might broadcast its signals without hesitation. By contrast,
if this transmitter is aware of the security risks, then it can
generate artificial noise for drowning out the eavesdrop-
pers, but this method consumes a precious portion of the
power budget [2]. By contrast, if a transmitter can detect
the eavesdroppers, then it can activate sophisticated counter-
measures. In short, intrusion detection has to be addressed
in all security problems, including PLS. When it comes to
applying machine learning to intrusion detection, most of
the previous contributions focus on the upper ISO layers,
where the personal datasets of users, e.g., the faces, the
gaits and other features [19]–[21], are available. Nonethe-
less, there are impressive contributions on authentication
[8]–[11], [13]–[18], but apart from [12], there is a paucity of
physical-layer-related intrusion detection contributions based
on machine learning.

To elaborate, Hou et al. [9] suggest using carrier fre-
quency offset (CFO) along with Kalman filtering, while
Xiao et al. [8] suggest channel probing and hypothesis test-
ing. However, no machine learning aided intelligence is used
in the context of these works. By contrast, Xiao et al. [11]
use Q-learning andDyna-Q in combination with game theory,
while Lu et al. [18] also apply Q-learning for enhancing the
PLS of vehicular ad-hoc networks. As a further advance,
extreme learning machines relying on single hidden layer
based feedforward neural networks have been introduced by
Wang et al. [13]. In [15], Qiu et al. use Gaussian mixture
models to identify spoofing attacks, while Pan et al. [17]
rely on industrial datasets as the input data and compare
the detection performance of four algorithms, including a
twin-class support vector machine (TC-SVM) algorithm,

the classic k-nearest neighbors (k-NN) and decision trees.
Pei et al. [10] consider both TC-SVM and Fisher’s linear
discriminant analysis (Fisher’s LDA) in order to identify the
channels compromised by an eavesdropper. TC-SVM is also
applied to the PLS problems of the smart grid [14], while
in-situ machine learning is applied in [16]. Again, a range
of different machine learning algorithms has been applied for
enhancing a range of PLSmetrics, but the detection of attacks
by E has received limited attention.

Hence, despite the efforts suggested, numerous PLS-related
aspects remain unsolved. The authors of [10], [11], [13], [14],
[16], [18] do not consider the impact of wireless propagation
on realistic modulated signals. As an exception, Weinand
et al. [12] proactively handle the wireless propagation of
realistic signals usingmachine learning algorithms. Similar to
[12], we also consider the transmission process by exploiting
the relationship between the transmitted and received signals.
However, in contrast to [12] that uses Gaussian mixture mod-
els for classification, we demonstrate the superiority of both
the TC-SVM and of the single-class SVM (SC-SVM) models
in this article. Explicitly, compared to Gaussian mixture
models, TC-SVM and SC-SVM do not rely on probabilistic
assumptions, but on the distance of a data point from another.
In the typical scenario, when the distribution of the data
is unknown, Gaussian mixture models may not be suitable
choices.

When it comes to creating features for characterizing the
data extracted from wireless signals, the authors of [10],
[13], [14], [16], [18] suggest sophisticated techniques for
detecting E. Lu et al. [18] suggest using the received signal
strength (RSS) indicator and the time of arrival (TOA)
of a packet as a pair of unique features of a data point.
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Pei et al. [10] consider three features, including the TOA, the
RSS and the Z-transform. In [13], the feature space is con-
structed byWang et al. based on formulating both the Pearson
correlation coefficient and the Euclidean distance between
two samples. In [14], each feature has a certain distribution
that is fitted to the preprocessed data by Esmalifalak et al.
As a further advance, Weinand et al. [12] consider chan-
nel estimation and use the normalized magnitudes of the
estimated channels as the features of the input data. Fur-
thermore, according to Chatterjee et al. [16], the in-phase
and quadrature (I-Q) components along with the CFO can
also be used to create features. However, no open-source
solution has emerged as a clear winner for constructing the
features of a dataset, especially not at the intersection of PLS
and machine learning. Accordingly, the judicious question
arises: how wireless PLS signals can be processed before
entering them into a machine learning algorithm for intrusion
detection? Since the data is one of the most important pillars
of machine learning [22], it is necessary to answer this open
question. Moreover, according to [23], the choice of suitable
data features can reduce the cost of 5G authentication systems
and make them more reliable.

Hence, we conceive a framework of creating the data from
wireless PLS signals for ensuring that all the features of
the data exhibit the required statistical properties. Using the
resultant data, we detect active eavesdropping attacks with
the aid of both TC-SVM and SC-SVM. Specifically, our
contributions can be summarized as follows.
• We process the received signals by transforming them
into a structured dataset, which consists of two different
features (namely, the MEAN and the RATIO). The fea-
tures are specially formulated for ensuring that they are
associated with certain constants. Moreover, data points
in a feature column satisfy the particular requirement
that the newer a data point, the closer it approaches the
corresponding constant.

• We construct two specific types of so-called arti-
ficial training data (ATD), explicitly depending on
whether the channel state information (CSI) is known or
unknown, we formulate two types of ATD. If the CSI
of an active E’s channel is known, then the ATD has
two classes, which can then be used for training our
TC-SVM models. By contrast, if the CSI of a passive
eavesdropper’s channel is unknown, the ATD has a sin-
gle class, which will be used for SC-SVM models. The
ATD concept introduced in this article can also be read-
ily applied to other types of supervised and unsupervised
learning models.

• By using TC-SVM and SC-SVM, we evaluate the per-
formance of our solution conceived for detecting the
eavesdropper’s attacks. We then critically appraise the
pros and cons of four kernel functions.

The remainder of the article is organized as follows.
Section II presents the principles of TC-SVM and SC-SVM.
In Section III, we discuss how to construct the features of
a dataset based on the reception of wireless signals during

the authentication period. Section IV introduces two different
types of artificial training data, which are used by TC-SVM
and SC-SVM, respectively. Finally, our numerical results and
conclusions are provided in Sections V and VI, respectively.

Notations: sign(z) = 1 if z > 0 and sign(z) = −1 if z ≤ 0.
Vectors and matrices are represented by lowercase boldface
and uppercase boldface, respectively; [·]T and [·]† denote the
transpose operator, and Hermitian operator, respectively; IL
is the L×L identity matrix; ‖ ·‖ denotes the Euclidean norm;
z ∼ CN (0, IL) denotes a complex Gaussian random vector
z ∈ CL×1 with zero-mean and covariance IL ; Ev1,...,vM {·}

denotes the expectation over v1, . . . , vM . Some important
symbols are defined in Table 2, while the remaining symbols
will be defined whenever used.

II. A BRIEF INTRODUCTION TO TC-SVM AND SC-SVM
A. THE DEVELOPMENT OF TYPICAL MODELS
In the 1960s, the perceptron was suggested using the func-
tional relationship l = sign (〈w, r〉 + b) between the input
vector r ∈ R ⊆ Cn×1 and the output value l. Herein, l is
referred to as the label for the input vector r and, assigning
a value (say 1 or −1) to l represents the classification of the
input vector. For example, if l = 1 means that r has some
attribute A, then l = −1 can be used to show that r is not
of that attribute A. Due to the above-mentioned functional
relationship, the input space R is separated into two regions
by the hyperplane 〈w, r〉 − b = 0. In one of the two regions,
l can take the value of 1, while in the other region, the value
of l is (−1). Given that the binary classification depends on
the position of the separating hyperplane, during the learning
process the perceptron seeks the most suitable coefficients w
and b for ensuring that assigning a value to l (i.e. classifying
r) is as close to optimal as possible.

Upon replacing sign(·) by a continuous sigmoid func-
tion, such as tanh(·), multi-layer perceptrons (MLPs) were
formed. In many cases [24]–[26], the so-called support vector
machines (SVMs) typically provide better results than the
classical MLPs. Various SVM classifiers may be constructed
based on different types of kernel functions, such as the radial
basis function (RBF) kernel and the sigmoid kernel. The
choice of the kernel functions is quite pivotal in terms of its
complexity. One of the main advantages of SVM classifiers
is the ability to perform well even on small data sets.

B. KERNEL METHODS
Prior to describing the operation of SVMs, we will clarify
the role of kernel functions in SVM classifiers. Let φ(·) :
R → H be a nonlinear mapping that casts the input space
R to a higher-dimensional space H (the feature space).
If xt ∈ R and xt ′ ∈ R, then the inner product K (xt , xt ′) =
〈φ(xt ), φ(xt ′ )〉 is a kernel function [27], [28]. The main ratio-
nale of using the kernel function is that once it has been given
beforehand, one can directly computeK (xt , xt ′) from xt and
xt ′ without necessarily having explicit expressions for φ(xt )
and φ(xt ′ ) during learning. That helps us to accelerate the
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TABLE 2. Notation

FIGURE 1. Using kernel methods, the data in the input space can become
more linearly separable in a higher-dimensional space.

computational speed. Moreover, the kernel function allows
us to avoid working inR; instead, we only evaluate the input
samples using the inner product inH. From the viewpoint of
data classification, themapφ(·) can help us to convert linearly
inseparable data (in R) into linearly separable structures (in
H) [28]. As an example, Figure 1 illustrates the reason for
mapping data points in R to the associated data points in H
in a way that the crosses and circles become separable by the
hyperplane.

C. CLASSIFICATION BASED ON TWIN-CLASS SVM
The binary classification problem based on SVM can be
formulated as follows [28], [29]:

min
w,b

1
2
‖w‖2 (1a)

s.t. lω (〈w, xω〉 + b) ≥ 1, (1b)

where xω is the position vector of the ω-th sample, ω ∈
� , {1, 2, . . . ,Ttot }, and Ttot is the total number of training
samples. In (1b), lω = +1 if xω is labelled as (#1); otherwise,
lω = −1 if xω is labelled as (#0).

As illustrated in Figure 2, the samples are separated by a
hyperplane that takes the form of h(x) = 〈w, x〉 + b = 0.
The separating hyperplane is in the middle of two margins,
and the Euclidean distance between the two margins is equal
to 2/‖w‖. The goal of (1) is to maximize the margin width
2/‖w‖, so that the samples are correctly separated. Note that
maximizing 2/‖w‖ is equivalent to (1a), while the correct
separation is equivalent to (1b).

FIGURE 2. A dataset, with two types of samples, is separated by a
separating hyperplane. The ω-th sample, which is positioned at xω , will be
labelled as (#1) (or lw = +1) if it lies above the separating hyperplane.
Otherwise, it will be labelled as (#0) (or lw = −1).

Let �(#0) and �(#1) denote the set of indices
{ω ∈ �|lω = −1} and the set of indices {ω ∈ �|lω = 1},
respectively. If (1) has optimal solutions of w = w? and
b = b?, then we say that X = {(xω, lω) |ω ∈ �} are linearly
separable. In this case, there exists at least one separating
hyperplane that separates the samples into two sub-sets, i.e.,
X(#0) =

{
(xω, lω) |ω ∈ �(#0)

}
and X(#1) = X \ X(#0).

Furthermore, the optimal separating hyperplane among all
possible hyperplanes will have the following equation:

h?(x) = 〈w?, x〉 + b? = 0. (2)

Note that x in (2) is not necessarily the same as xω (ω ∈ �).
A certain labelled sample xω (ω ∈ �) only lies on the optimal
hyperplane if it satisfies h?(xt ) = 0. Given the hyperplane
h?(x), the input space is divided into two sub-spaces, where
one of the sub-spaces contains all samples xω ∈ X(#0), while
the other contains all samples xω ∈ X(#1).

It should be noted that (1) may not work in numerous
practical scenarios, because the labelled samples are lin-
early inseparable. In this case, the classification tasks sim-
ply fail to work and no hyperplane can be found. For this
reason, the use of kernel methods will make classification
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tasks easier when the inseparable data can be translated into
a higher-dimensional feature space in which the structure
of data becomes more separable [27]–[29].1 Thus, we will
replace xω in (1) by the function φ(xω) so as to avoid working
directly in the input space. However, the problem is that the
transformed data may remain inseparable. To overcome this
difficulty, slack variables ξω ≥ 0 are added to the classifi-
cation problems (see [30] and [31, ch.7]). This breakthrough
method has become the background of SVM-based classifi-
cation methods [30]. Following this method, one can change
the original problem (1) to the following:

min
w,b,ξt

1
2
‖w‖2︸ ︷︷ ︸

regularizer

+C
Ttot∑
ω=1

ξω︸ ︷︷ ︸
error

(3a)

s.t. lω (〈w, φ (xω)〉 + b) ≥ 1− ξω, (3b)

whereC is the regularization/margin parameter. To elaborate,
(3) is called a L1 soft-margin in SVM terminology. If ξω = 0
for ∀ω ∈ �, then (3) reduces to the hard-margin SVM (1).
Otherwise, with ξω 6= 0, we accept that the ω-th sample xω
can bemisclassified [27, Ch.2]. According to [27], (3) may be
transformed into an equivalent optimization problem through
the use of the Lagrangian function and Karush–Kuhn–Tucker
conditions, which is formulated as

max
a1,...,aT

Ttot∑
ω=1

aω −
1
2

Ttot∑
ω=1
ω′=1

aωaω′ lωlω′K (xω, xω′) (4a)

s.t.
T∑
ω=1

aωlω = 0 (4b)

0 ≤ αω ≤ C, ω ∈ � (4c)

where K (xω, xω′) , 〈φ(xω), φ(xω′ )〉 is the kernel function.
Remark 1: Any data point for which aω = 0 will not

contribute to the prediction of new data points, thus only the
data points for which aω 6= 0 are called support vectors
(SVs). Furthermore, any data point for which 0 < aω < C
is called an unbounded SV. Also, any data point for which
aω = C is called a bounded SV.While the unbounded SVs lie
on themargins, the bounded SVs are between the twomargins
(see [27, p.24]). Additionally, we denote S as the set of
indices of all SVs, U as the set of unbounded SV indices, and
S\U as the set of bounded SV indices. Note thatU ⊆ S ⊆ �.
The equation of the optimal hyperplane is given by

h(?|SVM)(x) =
∑
s∈S

aslsK (xs, x)+ b, (5)

where b is calculated for unbounded SVs (see [27, ch.2] or
[31, (7.37)])

b =
1
|U |

∑
u∈U

(
lu −

∑
s∈S

aslsK (xs, xu)

)
. (6)

1Once again, Figure 1 illustrates the role of kernel methods in translating
inseparable data points in the two-dimensional space into separable data
points in the three-dimensional space.

Note that in (5)–(6), xs is the s-th SV, while xu is the u-th
unbounded SV. Due to U ⊆ S, we have {xu|u ∈ U} ⊆ {xs|s ∈
S}. For the kernel K (xs, x), we will consider four specific
functions in Section V for comparison purposes.

D. CLASSIFICATION BASED ON SC-SVM
Slightly differently from classical TC-SVM models,
a SC-SVM model is described as follows [32]–[34]:

minimize
w,ρ,ξi

1
2
‖w‖2︸ ︷︷ ︸

regularizer

+
1

νTtot

Ttot∑
w=1

ξw − ρ︸ ︷︷ ︸
error

(7a)

subject to 〈w, φ(xw)〉 ≥ ρ − ξw. (7b)

Herein, ρ is an offset parameter determining the distance
from the origin to the hyperplane, while ν ∈ (0, 1] is a param-
eter balancing the maximal distance from the origin and the
number of data points in the region created by the hyperplane
[33]. Each ξw ≥ 0 is a slack variable, and φ(·) : X → F is a
mapping that casts the input spaceX to a higher-dimensional
space F (namely, the feature space). Once this minimization
problem has been solved, the decision function will be given
by

y(x) = sign
(
wTφ(x)− ρ

)
. (8)

According to [34], most of the data points are put into a region
(e.g., a ball) and these data points in the set {x1, . . . , xTtot }will
be labelled by +1. At the same time, any data points outside
the region will be referred to as outliers. Consequently, some
true outliers might be potentially misclassified when being
put inside the region. In short, the objective of SC-SVM is
to create a region for most of the data points in X , while the
remaining ones lie outside the region and are considered as
being associated with eavesdropping attacks.

III. COLLECTING WIRELESS SIGNALS AND
CREATING/DEFINING FEATURES
While the previous section presented useful tools for clas-
sifying new data, this section shows the process of creating
relevant features and then forming datasets.

A. COLLECTING WIRELESS DATA
We assume that a single access point (AP) supports K legit-
imate users in the presence of an active E. Each node is
equipped with a single antenna and all nodes are randomly
positioned. Let the channel between the AP and the k-th user
be gk . Similarly, the channel between the AP and E is denoted
by gE. We have two phases: Uplink phase for authentication
and downlink phase for confidential data transmission.

1) UPLINK PHASE
For the purposes of authentication and channel estimation,
the AP requests legitimate users to send some pilot vectors
before it transmits confidential messages in return. The k-th
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FIGURE 3. System model. At the stage (?), the AP forms the ATD by imitating the uplink phase and simulating signal
processing. Using machine learning algorithms, the AP has the trained models and uses them for predicting the testing
data at the stage (??).

user (or user k) is assumed to send some pilot vector pk
to the AP. Herein, pk ∈ CL×1 is a column vector with L
entries. By assuming L ≥ K , we can design K orthogonal
pilot vectors satisfying that p†kpk ′ = 0 for k 6= k ′ and
‖pk‖2 = 1. If E wants to overhear the signal sk that is
intended for the k-th user, E will design her pilot sequence
pE to be the same as pk and will send pE to the AP (see [7]
and [35]). After receiving pilots from the legitimate users and
E, the AP interprets these pilots as requests for information.
Consequently, the AP will transmit the confidential downlink
signal sk , which is intended for user k , to both user k and E.
Hence, the confidential information between the AP and the
k-th user is inevitably leaked to E.

At some instance t , the AP receives the following signal

yp[t] =


√
Lρu

∑K
k=1 pkgk [t]+ n[t], non-attack

√
Lρu

∑K
k=1 pkgk [t]

+
√
LρEpEgE[t]+ n[t], attack,

(9)

where ρu , Pu/N0 and ρE , PE/N0. Herein, Pu and PE
are the average transmit power of each user and that of E,
respectively; while N0 is the average noise power per receive
antenna; n is an additive white Gaussian noise (AWGN)
vector with n ∼ CN (0, IL). Note that yp[t], gk [t], gE[t]
and n[t] are the realizations of yp, gk , gE and n at time t ,
respectively.

2) DOWNLINK PHASE
In the downlink phase, the AP transmits its signals to the legit-
imate users. Naturally, E also receives the signals intended for
user k because the AP assumes that a pair of legitimate users
(i.e., user k and E) are requesting the same messages. Recall
that the AP may not be aware of the presence of E and her
attack.

It may be readily shown that the data rate of user k reduces,
when E breaks into the uplink phase (see [7] for more details).

In other words, the signal-to-noise ratio (SNR) of the k-th
user, denoted as snrk , reduces with the increase of E’s power.
Consequently, the difference between the data rate of user k
and the data rate of E, namely the security rate, also becomes
lower.

Hence, it is crucial that we detect the presence of E in the
uplink phase. Once the AP has identified an eavesdropping
attack, it will be able to design suitable strategies, such as the
use of secure beamforming and artificial noise injection for
drowning out E. Herein, we do not delve into such strategies
in the downlink phase because this topic is richly documented
in the literature (see [7] and references therein). Instead,
sophisticated SVM-based methods of detecting active eaves-
dropping attacks in the uplink phase will be considered.

B. CREATING FEATURES/ATTRIBUTES
By projecting yp[t] along the pilot vector p†k , we have the
post-processed signal yk [t] = p†kyp[t], i.e.

yk [t] =


√
Lρugk [t]+ p†kn[t], non-attack
√
Lρugk [t]+

√
LρEgE[t]

+p†kn[t], attack.

(10)

Proceeding by defining zk [t] , |yk [t]|2, the AP can calculate

ϕ
(1)
k , Et {zk [t]} , (11)

ϕ
(2)
k ,

Et {zk [t]} − Et

{∣∣∣p†kn[t]∣∣∣2}
Et

{∣∣∣p†kn[t]∣∣∣2} (12)

based on sufficient statistical knowledge of {gk}Kk=1 and gE.
Note that Et {·} ≡ E{gk }Kk=1,gE,n

{·} due to the dependence of

{gk}Kk=1, gE and n on t .
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In practice, if user k sends his/her pilot vector pk to the
AP T times,2 then the AP will have T different values zk [1],
. . ., zk [T ]. Using these values, the AP will create a structured
dataset that consists of the following two features:
• Feature 1 (MEAN):

f (1)k [T ] ,
1
T

T∑
t=1

zk [t] =

{
f (1)k|H0

[T ], non-attack

f (1)k|H1
[T ], attack.

(13)

Herein,H0 implies that there is no eavesdropping attack,
whileH0 implies eavesdropping.

• Feature 2 (RATIO):

f (2)k [T ] ,

∑T
t=1 zk [t]−

∑T
t=1 |p

†
kn[t]|

2∑T
t=1 |p

†
kn[t]|

2

=

{
f (2)k|H0

[T ], non-attack

f (2)k|H1
[T ], attack.

(14)

Statistically, if the AP receives a sufficient number of samples
(i.e., if T is large enough), we have

f (1)k [T ]
large T
≈ ϕ

(1)
k , (15)

f (2)k [T ]
large T
≈ ϕ

(2)
k . (16)

In short, we can create a testing dataset from wireless
signals. Table 3 illustrates the two features of the testing
data used in this article. The testing dataset begins with the
T0-th data point, which is related to the T0-th time slot, T0 ∈
{1, 2, . . . ,T }. If T0 = 1, we use all the T data points collected
during T authentication time-slots in the uplink. By contrast,
if T0 > 1, we only exploit T − T0 data points from the T0-th
time slot to the T -th time slot. The position of the t-th data
point in the 2-dimensional space is (f (1)k [t], f (2)k [t]). Note that
the subscript k still implies that we are checking if the k-th
user is under attack. It should also be noted that our testing
data has not yet been labelled. In Figure 4, the impact of T
on the distribution of data points is shown. It can be seen that
the first data points are close together and hard to separate.
However, the larger T , the more separable the data becomes.

IV. ARTIFICIAL TRAINING DATA
In this section, artificial training data (ATD) will be created.
The ATD used for TC-SVM corresponds to the case of having
both the legitimate users’ CSI and the active E’s CSI. By con-
trast, the ATD used for SC-SVM corresponds to the passive-E
scenario of only having the legitimate users’ CSI.

A. ATD FOR TWIN-CLASS SVM
The AP can create the ATD by imitating the uplink phase by
performing the following steps:
• Step 1: Start with k = 1.
• Step 2: Start with t̂ = 1.

• Step 3: Generate ĝk
dist
= gk , ĝE

dist
= gE and n̂ ∼

CN (0, IL). Note that the notation X
dist
= Y implies that

X and Y have the same distribution.
2Herein, pk is repeatedly sent for authentication.

TABLE 3. Testing Data: T Points are Associated With the Label (#0) and T
Points are Associated With the Label (#1)

• Step 4: Calculate

ẑk
[̂
t
]
=


∣∣∣√Lρûgk [̂t]+ p†k n̂

[̂
t
]∣∣∣2 , non-attack∣∣∣√Lρûgk [̂t]+√LρÊgE [̂t]

+p†k n̂
[̂
t
]∣∣∣2, attack

(17)

f̂ (1)k

[̂
t
]
=

1
t̂

t̂∑
ς=1

ẑk [ς ] =

{̂
f (1)k|H0

[̂
t
]
, non-attack

f̂ (1)k|H1

[̂
t
]
, attack,

(18)

f̂ (2)k

[̂
t
]
=

∑t̂
ς=1 ẑk [ς ]−

∑t̂
ς=1 |p

†
k n̂[ς]|

2∑t̂
ς=1 |p

†
k n̂[ς ]|

2

=

{̂
f (2)k|H0

[̂
t
]
, non-attack

f̂ (2)k|H1

[̂
t
]
, attack

(19)

• Step 5: When t̂ ≥ T0, we stick the label (#0) to the t̂-
th data point

(̂
f (1)k|H0

[̂
t
]
, f̂ (2)k|H0

[̂
t
])

in order to imply that
user k is not under attack. By contrast, we stick the label
(#1) to the t̂-th data point

(̂
f (1)k|H1

[̂
t
]
, f̂ (2)k|H1

[̂
t
])

in order
to imply that user k is under attack.

• Step 6: Set t̂ = t̂ + 1 and repeat Steps 3-5. Go to
Step 7 if t̂ > T̂ . Herein, T̂ is a large number that can
be freely determined by the designers. To make the ATD
statistically reliable, we choose T̂ � T .

• Step 7: Set k = k + 1 and repeat Steps 2-6. Stop the
process if k > K .

Remark 2: The ATD for classical TC-SVM is shown in
Table 4. It will be used to train classical TC-SVM models in
this article (and any other supervised learning models). Those
trained models are then applied to the testing dataset in Table
2, whereby we can ascertain whether the signal obtained is
affected by an active E.

Remark 3: In contrast to T , we can let T̂ be a very
large number because T̂ belongs to an artificial process. For
example, in the uplink phase, the AP can request both user
k and E to send the same pilot vector pk twenty times (i.e.,
T = 20), but cannot request them to send pk too many times
(e.g., T = 2000). However, for an artificial process carried
out at the AP, it is possible to simulate the reception of a large
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FIGURE 4. The distribution of data points in R2. The 1-st red dot and the 1-st blue cross are, respectively, positioned at
(

f (1)
k|H1

[1], f (2)
k|H1

[1]
)

and at(
f (1)
k|H0

[1], f (2)
k|H0

[1]
)

. Similarly, the 2-nd red dot and the 2-nd blue cross are, respectively, positioned at
(

f (1)
k|H1

[2], f (2)
k|H1

[2]
)

and at(
f (1)
k|H0

[2], f (2)
k|H0

[2]
)

. When the value of T increases, red dots tend to cluster together and become separable from blue crosses.

TABLE 4. Artificial Training Data (ATD) Used for Classical TC-SVM

number of copies of pk as desired. Given sufficiently large T̂ ,
we can reach f̂ (1)k [T̂ ]

/
ϕ
(1)
k ≈ 1 and f̂ (2)k [T̂ ]

/
ϕ
(2)
k ≈ 1.

B. ATD FOR SINGLE-CLASS SVM
While the ATD used for TC-SVM contains two types of
data points (corresponding to two labels), the ATD used for
SC-SVM contains only a single type of data point (corre-
sponding to a single label). Naturally, the ATD used for
SC-SVM can be extracted from the ATD used for SVM by
removing one of the labels and keeping the other one.

In practical use cases, SC-SVM is related to the scenario
of not having the CSI of E. Thus, it is reasonable to assume
that the ATD used for SC-SVM only includes data points
associated with the label (#0) (i.e., non-attack). Naturally,
if we only have the perfect CSI of legitimate users, we can
only simulate the virtual process of transmitting signals from
the legitimate users to Alice and create (#0)-related data
points.

TABLE 5. Artificial Training Data (ATD) Used for SC-SVM

Table 5, which is constructed of the last T̂ rows of Table 4,
shows the ATD used for SC-SVM. As expected, Table 5 does
not include any data points associated with eavesdropping
attacks.

C. ATD NORMALIZATION/WHITENING
Normally, SVM works with data within the range of [0, 1].
Thus, it is necessary for the AP to normalize all features in
the training datasets. Normalizing (or whitening) makes all
values in a feature column fall within [0, 1]. More specifi-
cally, if a certain feature column consists of values u1, u2,
. . ., and uTtot , then the AP will have to run the following
algorithm:
• Step 1: Find umin = min{u1, u2, . . . , uTtot } and umax =
max{u1, u2, . . . , uTtot }.

• Step 2: Compute utempk =
uk − umin
umax − umin

where k ∈

{1, 2, . . . ,Ttot }. Assign the temporary value utempk to uk
by letting uk = utempk .

Upon applying the above algorithm to all feature columns
in the ATD, we can normalize the ATD before actually using
the SVM classifiers. Naturally, if the training data (i.e., the
ATD in this article) is normalized, then the testing data also
must be normalized accordingly.
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FIGURE 5. An illustration of four trained TC-SVM models that correspond
to four different kernel functions (i.e., linear, RBF, polynomial (degree 2),
and sigmoid kernels).

V. NUMERICAL RESULTS
In this section, we present several numerical examples for
characterizing the proposed framework under specific set-
tings. As for the channel’s fading, we set gk =

√
βkhk and

gE =
√
βEhE. Herein, βk and βE represent the path loss, while

hk ∼ CN (0, 1) and hE ∼ CN (0, 1) represent the Rayleigh
fading.3

The complexity depends heavily on the choice of the
loss function and the optimization method [36]. Using
the big-O notation, it is experimentally confirmed that if
the implementation is based on LIBSVM, the run-time of
TC-SVM as well as SC-SVM is on the order of about
O(T̂ 3

tot ), where T̂tot is the total number of training samples
in the ATD [37]–[39]. Our experiments are carried out in
Python and the execution of each TC-SVM/SC-SVM clas-
sifier takes around 0.09 seconds for training an ATD-based
model and for labelling the data points in the testing
data.

A. EXAMINING T̂ , T AND T0
Table 6 shows the accuracy of RBF-based TC-SVM (and
SC-SVM) classifiers for different values of T̂ and T . Observe
that the accuracy of 99% is achievable, provided that the
parameters are appropriately chosen. Moreover, the results
show that in the case of TC-SVM, the accuracy increases both
with T as well as with T̂ . By contrast, in the case of SC-SVM,
there is little change in the accuracy. Explicitly, the change of
T̂ , as well as T does not affect much how SC-SVM learns the
decision boundary. Additionally, although TC-SVM offers
higher accuracy than SC-SVM, we have to note that a com-
parison between these two may be unfair due to the differ-
ences inherent in these two approaches (e.g., (3) uses the
regularization parameter C , while (7) uses the parameter ν),
and that SC-SVM requires only the CSI of the legitimate
users.

3Although Rayleigh fading is used to model hk and hE, other types of
fading can also be used because the framework, presented in Sections III
and IV, is not limited to any specific type of fading.

TABLE 6. The Kernel Function, Which is Mentioned in (5), is the RBF
Kernel, i.e., xsx = exp{−γ ||xs − x||}. The SVM Parameters are γ = 0.5 and
C = 1. The SC-SVM Parameters are ν = 0.02, γ = 0.5. System Parameters:
K = 4, L = 10, ρu = ρE = 5, βk = 1, βE = 1, and T0 = 1

FIGURE 6. An illustration of 4 trained TC-SVM models that correspond to
four different kernel functions (i.e., linear, RBF, polynomial (degree 3),
and sigmoid kernels). The cyan area and B markers relate to (#0), while
the brown area and ◦ markers relate to (#1).

B. EXAMINING FOUR DIFFERENT KERNEL FUNCTIONS
Fig. 5 shows the accuracy of four different classifiers versus
T for TC-SVM. These four classifiers are based on

• linear kernel: K (xs, x) = 〈xs, x〉,
• RBF kernel: K (xs, x) = exp{−γ ‖xs − x‖},
• polynomial kernel: K (xs, x) = (γ 〈xs, x〉 + r)d ,
• sigmoid kernel: K (xs, x) = tanh (γ 〈xs, x〉 + r).

Herein, it should also be noted that we set r to 0, so that the
RBF, polynomial and sigmoid kernels are fairly treated. The
other parameters are as follows: K = 4, L = 10, ρu = 5,
ρE = 4, βk = 1, βE = 1, T̂ = 2000, T0 = 5, and
γ = 0.001. Also in Fig. 5, the accuracy increases with T . For
example, when T ≥ 80, the accuracy exceeds 95% for the
linear kernel. Among the four kernels considered, the linear
kernel has the highest accuracy (e.g., over 95%), while the
sigmoid kernel has the lowest accuracy (e.g., less than 80%).
The accuracy of four different SC-SVM classifiers versus T
indicate no accuracy improvements with T , hence it has been
omitted. However, it should be noted that among the SC-SVM
models, the sigmoid kernel has the highest accuracy (over
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FIGURE 7. An illustration of 4 trained SC-SVM models that correspond to
linear, RBF, polynomial (degree 3), and sigmoid kernels. B markers are
the ATD points associated with the label (#0). The brown area is the area
that contains most of the ATD points B.

95%), while the RBF kernel has the lowest accuracy (i.e.,
around 90%). Additionally, there is no obvious difference
between the polynomial kernel and the linear kernel (i.e.,
around 93%).

For characterizing the above-mentioned kernel functions in
the case of TC-SVM, we provide an intuitive visual compar-
ison in Fig 6. The total number of training samples is Ttot =
2T̂ = 400, i.e., 200 samples with the label (#1) and 200
samples with the label (#0). Similarly, Fig. 7 illustrates four
different SC-SVM models with T̂ = 200 samples. Observe
from Fig. 7 that there are only ATD points corresponding to
the label (#0), because the SC-SVMmodels are trained on the
data having a single class.

C. RECEIVER OPERATING CHARACTERISTIC CURVES AND
SENSITIVITY-SPECIFICITY TRADE-OFF
According to [40]–[42], the true positive rate (or probability
of detection) is defined as

TPR =
True positive (TP)
Positive (Pos)

,

where TP represents the number of (#1)-labelled samples
correctly classified as (#1), and Pos is the total number of
actually (#1)-labelled samples. By contrast, the false positive
rate (or probability of false alarm) is defined as [42]

FPR =
False positive (FP)
Negative (Neg)

,

where FP is the number of (#0)-labelled samples incorrectly
classified as (#1), and Neg is the total number of actually
(#0)-labelled samples.

To plot the TPR against the FPR, we offer Fig. 8 that
contains two receiver operating characteristic (ROC) curves.
The kernel used for Fig. 8 is the RBF kernel. The other
parameters are as follows: K = 4, L = 10, ρu = 5,
ρE = 2, βk = 1, βE = 1, C = 1, ν = 0.02, γ = 0.001,
T̂ = 1000, T = 20, and T0 = 1. The area under the ROC

FIGURE 8. ROC curves and the areas under the corresponding ROC curves
in two different regimes.

curve (AUC) is 0.95 in the case of TC-SVM and 0.87 in the
case of SC-SVM. These two numbers reveal that TC-SVM
may be better than SC-SVM, when taking into account both
TPR and FPR. Since the TPR increases with the FPR, the
careful choice of parameters are required to maintain a low
FPR and an acceptable TPR (e.g.FPR ≤ 0.2 and TPR ≥ 0.8).

Apart from the TPR and FPR, there are two other similar
rates referred to as false negative rate (FNR) and true negative
rate (TNR), which are formulated as:

FNR =
False negative (FN)

Positive (Pos)
= 1− TPR,

and

TNR =
True negative (TN)
Negative (Neg)

= 1− FPR,

where FN is the number of (#1)-labelled samples incorrectly
identified as (#0), and TN is the number of (#0)-labelled
samples correctly identified as (#0). Note that TPR is also
known as (a.k.a.) the sensitivity that quantifies howwell a test
can identify true positives, while TNR is a.k.a. the specificity
that measures how well a test can identify true negatives.
The trade-off between the sensitivity and the specificity is
illustrated in Fig. 9.We can see from Fig. 9 that the sensitivity
and specificity of the TC-SVM model are higher than those
of the SC-SVMmodel. This confirms again that the TC-SVM
model outperforms the SC-SVM model. Additionally, it is
readily seen that the higher the sensitivity, the lower the
specificity becomes. Explicitly, this means that neither the
TC-SVMmodel nor the SC-SVM can improve the sensitivity
and the specificity at the same time. In other words, if a
model can improve its probability of detecting malicious
samples associatedwith actual eavesdropping attacks, then its
proportion of admitting benevolent samples associated with
the situation of non-attack will go down.

D. EXAMINING THE IMPACT OF ρE AND γ

Fig. 10 shows the accuracy versus the ratio ρE/ρu in two
sub-cases corresponding to γ = {0.001, 1}. Herein, we fix
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FIGURE 9. The trade-off between the sensitivity and the specificity in two
different regimes.

FIGURE 10. An illustration of the trained TC-SVM and SC-SVM models that
correspond to the RBF kernel.

ρu = 5 and change ρE. The kernel used in Fig. 10 is the
RBF kernel. The parameter C of TC-SVM is equal to C = 1,
while the parameter ν of SC-SVM is equal to ν = 0.02. The
common system parameters are as follows: K = 4, L = 10,
βk = 1, βE = 1, (T̂ ,T ,T0) = (2000, 50, 15).
In general, the accuracy of the TC-SVM model increases

from about 58% at ρE = 0.1ρu to about 92% at ρE = ρu.
This is because the TC-SVM model learns from the data
belonging to two classes in which class (#1) is related to the
eavesdropper’s power. When ρE increases, the data points in
class (#1) becomemore readily separable from the data points
in class (#0), thereby yielding higher accuracy. Additionally,
the change of γ has little impact on the accuracy of the
TC-SVM model.

By contrast, the accuracy of the SC-SVM does not change
significantly with ρE. This is because the SC-SVM model
learns from the data having a single class, i.e., (#0). Thus,
it is less sensitive to ρE that inherently affects only the class
(#1). Furthermore, the change of γ significantly affects the
accuracy of the SC-SVM model. For example, when γ =
0.001, the accuracy may exceed 97%, even when ρE is small.
This means that γ is an influential parameter in allowing
the SC-SVM model to learn the unique characteristics of the

FIGURE 11. The four trained TC-SVM models correspond to four different
values of γ in the case of the RBF kernel (with C = 1). The cyan area and
B markers relate to (#0), while the brown area and ◦ markers relate
to (#1).

normal data points, thereby detecting the abnormal outliers
that are related to the eavesdropper.

E. OVER-FITTING PROBLEMS: THE IMPACT OF γ
In Figure 11, we make a comparison among four different
sub-cases corresponding to γ = {0.05, 1, 20, 400}. The total
number of training samples is equal to Ttot = 2T̂ = 400.
Figure 11 illustrates the transformation of models, when γ
increases. With γ = 400, we face an over-fitting problem due
to the fact that the fourth model learns so well and becomes
too detailed.

VI. CONCLUSION
We have considered a wireless communication system that
requires the uplink phase for authentication. Eve has been
assumed to impersonate a legitimate user. To identify the
presence of Eve, we have introduced the ATD and employed
TC-SVM/SC-SVM. The results have shown the following
insights:
• i) Underlined the importance of formulating/defining
features and converting the received signals into those
features.

• ii) Characterized the impact of selecting kernel functions
and TC-SVM/SC-SVM parameters.

• iii) Quantified the impact of both the training and testing
dataset length on the accuracy.We have shown that when
T̂ and T increase, the accuracy of the linear-kernel-
based, RBF-kernel-based, and polynomial-kernel-based
TC-SVM classifiers can be improved.

• iv) The impact of selecting γ in relation to the accuracy
has been presented, especially in the case of SC-SVM.
We have also shown the impact of selecting γ on the
associated over-fitting problems.

The data obtained through our framework can also be fed into
other machine learning algorithms, such as Gaussianmixture,
random forest and isolation forest. However, the comparison
of these algorithms in the context of PLS is still an open
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problem to be tackled by future research. For future work,
we plan to delve more into the data to explore hidden features
that can further improve the performance of detectionmodels.
Explicitly, the family of data augmentation techniques holds
the promise of making the data more robust for authentication
purposes (e.g., see [43]).
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