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ABSTRACT The ability to decide if a solution to a pose-graph problem is globally optimal is of high
significance for safety-critical applications. Converging to a local-minimum may result in severe estimation
errors along the estimated trajectory. In this paper, we propose a graph neural network based on a novel imple-
mentation of a graph convolutional-like layer, called PoseConv, to perform classification of pose-graphs as
optimal or sub-optimal. The operation of PoseConv required incorporating a new node feature, referred to as
cost, to hold the information that the nodes will communicate. A training and testing dataset was generated
based on publicly available bench-marking pose-graphs. The neural classifier is then trained and extensively
tested on several subsets of the pose-graph samples in the dataset. Testing results have proven the model’s
capability to perform classification with 92 − 98% accuracy, for the different partitions of the training and
testing dataset. In addition, the model was able to generalize to previously unseen variants of pose-graphs in
the training dataset. Our method trades a small amount of accuracy for a large improvement in processing
time. This makes it faster than other existing methods by up-to three orders of magnitude, which could be
of paramount importance when using computationally-limited robots overseen by human operators.

INDEX TERMS Pose graph optimization, global optimality, graph neural network, simultaneous localization
and mapping.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is the prob-
lem of concurrently estimating a robot trajectory and a map
of its surroundings while navigating in an environment. It has
been thoroughly studied for more than three decades and
employed in a wide variety of applications, some of which
are very sensitive to the accuracy of the estimated map and
trajectory. SLAM estimates are generated by minimizing the
negative log-likelihood of a set of measurements that a robot
obtains from the environment. This estimation takes place
in the SLAM back-end where an algorithm is employed to
resolve the constraints that are generated based upon the
collected measurements. Graph SLAM [1] is one of the
most common algorithms used to resolve the SLAM prob-
lem. Robot poses along the trajectory and the observable
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landmarks in the environment under investigation are rep-
resented as vertices in the graph. In case landmarks are
not inserted into the map and only robot poses are consid-
ered, the algorithm is referred to as pose-graph optimization
[2], [3]. Spatial constraints, that are formulated based upon
the sensorymeasurements collected by the robot, are encoded
as edges that connect the graph vertices. These measure-
ments are susceptible to a wide range of uncertainties [4],
including sensor noise and systematic biases. Consequent
to such uncertainties, obtaining a perfect estimation of the
robot trajectory is deemed impossible [5]. Hence, an infer-
ence technique is carried out to find the best configuration
of robot poses and map landmarks that yields minimum
errors when imposing the constraints [5]. A solution to a
graph SLAM problem is referred to as globally consis-
tent when the optimization outcome conforms to the true
robot trajectory and the topology of the environment [6].
In fact, convergence to the globally optimal solution to a
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SLAM problem is not guaranteed by the widely prevalent
iterative optimization-based SLAM solvers [3], [7]. To that
end, researchers have started to investigate the nature of
the SLAM problem to profoundly understand its structure
back in 2010 [8]. For a comprehensive survey that studies
the properties of SLAM from a theoretical point of view,
readers are referred to [9]. Several research works followed to
determine the conditions under which certifying or achieving
global optimality would be possible as will be discussed in
the next section.

While existing global optimality certificationmethods (and
indeed, solvers) for pose-graph SLAM can be impressively
fast [10]–[12], in some applications where computational
power is limited, additional speed may be desirable. Moti-
vated by this, we propose a neural network architecture
that can learn to distinguish between (globally) optimal and
sub-optimal solutions of a 2D pose-graph SLAM problem.
The proposed classification is carried out after obtaining a
candidate solution of the pose-graph optimization problem in
the SLAM back-end.

The proposed method is a fast, approximate global opti-
mality estimator. The main advantage is speed, as our method
is significantly faster than existing methods [10], [13]. The
trade-off is that of accuracy, i.e. the classifier is not guar-
anteed to correctly identify a candidate pose-graph solution
as optimal or sub-optimal. While this is a significant draw-
back, it allows robots with limited computational resources to
perform an expedient optimality estimate, which might have
been unattainable using existingmethods. Additionally, many
robots are currently overseen by human operators, who can be
alerted by the classifier, and then visually assess the quality
of the map to decide whether to continue operation.

At the heart of the proposed method is a neural network
which predicts whether a candidate pose-graph solution is
optimal or sub-optimal. Because of the non-Euclidean nature
of the pose-graph data, we choose to adopt a graph neural
network [14], [15] that can seamlessly operate on such data
structure. In general, a graph is a data structure that exhibits
a high level of expressiveness. It consists of vertices that
are connected to each other via edges that represent certain
relationships [16].

Our approach operates on pose-graphs that have nodes
representing the 2D poses of a robot and edges that repre-
sent measurements obtained by the robot while transition-
ing between two connected nodes, and their corresponding
measurement uncertainty. It is worth noting that our approach
requires the translational and rotational measurement covari-
ances to be spherical. We also propose to add a new node
feature that will hold the information exchanged between the
nodes while the proposed convolution-like operation, that we
call PoseConv, operates on the pose-graph. More particularly,
PoseConv implements an operation to compute the costs
of all the pose-graph edges and aggregates this information
in the cost feature of each node. The neural network then
performs classification based on the cost features across
the pose-graph and consequently verifies the pose-graph’s

global optimality. The other node and edge features remain
unchanged. To achieve model generalization, classification
is done based on the cost values of the graph edges rather
than the node and edge features directly. To train the pro-
posed model, we generate a dataset that contains several
pose-graphs with different sizes and various noise model
parameters. Then, we label pose-graph samples in the training
dataset as optimal or sub-optimal by comparing the cost
of each sample with the optimal cost associated with that
sample (obtained by solving the dual semi-definite relaxation
from [10]).

The aim of this study it to enable prompt global optimal-
ity verification of pose-graph estimates with high accuracy,
which is approached through the following contributions:

• A novel operation on pose-graphs, termed PoseConv,
is proposed to convey messages that facilitate the opti-
mality verification of a 2D pose-graph.

• A supplementary node feature, referred to as cost is pro-
posed to accommodate the messages exchanged among
the nodes. This feature will hold information about the
cost of a sub-graph in the node’s neighborhood.

• A model that can learn to classify candidate solutions
of 2D pose-graphs as optimal or sub-optimal, is devel-
oped based on the novel PoseConv layer.

• Extensive testing of the proposed model has been con-
ducted on benchmark datasets and the model’s general-
ity and applicability to unseen data have been verified.

The rest of this paper is organized as follows. Section II
reviews related research work from the literature. Section III
presents in detail our proposed implementation of PoseConv,
the architecture of the pose-graph neural classifier, and the
training and testing dataset. In section IV, we evaluate the
performance of our proposed approach through several tests
on different portions of the training and testing datasets.
Finally, the conclusions drawn from this work and possible
future work directions are presented in Section V.

II. RELATED WORK
A. SLAM GLOBAL OPTIMALITY
Further to the theoretical analysis of the nature of SLAM
presented in [8], several research studies were conducted
to explore convergence guarantees. The work presented
in [17] addresses the case when map joining is used to solve
feature-based SLAM problems formulated as pose-graphs
and studies the conditions that affect the number of exist-
ing local minima. In [18], the region of attraction of the
global solution to the pose-graph optimization problem using
Gauss-Newton was estimated. The work presented in [19]
and [20] suggest that when strong duality holds, the opti-
mal cost of a pose-graph optimization problem in a robotics
application can be obtained by means of semi-definite pro-
gramming. Empirical tests have shown that the duality gap
is zero when the noise is below a critical threshold, which is
commonly the case in practice [20]. Lagrangian duality was
also employed in [21] to circumvent the non-convexity of the
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optimization constraints for the problem of rotation averaging
and hence provide bounds on the optimal solutions to the
problem, when noise levels are not critically high. Moreover,
the work in [13] proposed a technique to verify if a given
solution to a pose-graph is globally optimal. To accomplish
that, the pose-graph optimization problem is first reformu-
lated where chordal distance [22] is used instead of angular
distance to represent the magnitude of the difference between
two rotation matrices in SO(2). Thereby, the optimization
problem becomes amenable to implementing duality theory
(e.g. [23]), using which bounds on the optimal cost of a
pose-graph optimization can be computed. More specifically,
upper and lower bounds on the optimal cost can be obtained
using semi-definite programming. If the cost of a solution to
the same pose-graph exceeds that bound, it is considered a
(non-global) local minimum.

Another line of research was directed towards developing
certifiably correct algorithms that guarantee global optimal-
ity of the pose-graph optimization estimate. SE-Sync [24]
employs semi-definite programming to solve the convex
semi-definite relaxation of the SLAM maximum likelihood
estimation. Under practical noise regimes, SE-Sync is guar-
anteed to certify the correctness of its solution to the
pose-graph optimization at hand. The same semi-definite
relaxation was used in [25], along with a distributed opti-
mization algorithm to certify the optimality of distributed
pose-graph optimization.

B. GRAPH NEURAL NETWORKS
Graph neural networks (GNNs) are emerging deep learning
approaches that have gained immense popularity in the past
few years. GNNs were developed to target data structures
that are not supported by the standard deep learning meth-
ods, like recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). The operation of RNN and
CNN depends on the order in which the nodes appear in
the input graph. Nevertheless, operations on graphs should
depend on the connectivity of the nodes irrespective of their
order. There are various types of GNNs that handle graphs in
different ways. For comprehensive details on those, interested
readers are referred to [14]. Our proposed approach adopts
a message-passing GNN, whose operation happens in two
stages; message passing and aggregation [16].

In recent years, GNNs have experienced expeditious pro-
liferation and have proven their worth in a multitude of
different applications [26], such as social network user local-
ization [27], classification of images [28], aerial images [29],
videos [30], text [31], and point clouds [32].

The structure of the employed graphs varies across the
applications, where vertices and edges hold features that are
meaningful to the problem in question. The closest graph
structure to ours is that used to represent point-clouds in [32],
where each node holds three features that denote the 3D
coordinates of a point. Based on node features, edge features
are then computed, to encapsulate the relationship between
a node and its neighbors. A stack of EdgeConv [32] layers

is then used to perform classification and segmentation of
point-clouds. Each layer in the proposed model operates on
the graph data and modifies the node and edge features
accordingly.

III. PROPOSED APPROACH
In this paper, the problem of verifying the global optimal-
ity of a 2D pose-graph SLAM is addressed. A novel neu-
ral network classifier is trained to predict if a proposed
solution to a pose-graph is optimal. Figure 1 illustrates
the overall approach that is used to perform the predic-
tion. In Section III-A, a novel implementation of a graph
convolutional-like layer, referred to as PoseConv, is pre-
sented. This convolutional-like layer is used along with
a stack of other fully connected layers to build a model
that can learn to identify optimal solutions to pose-graphs.
The detailed architecture of the model is described in
Section III-B. The model was trained and tested using a
dataset composed of variants of several publicly available
pose-graphs as will be described in Section III-C.

A. POSE CONVOLUTION (POSECONV) LAYER
Consider a 2D pose-graph with n nodes denoted as
X = {x1, x2, . . . , xn} and m edges denoted as E =

{e1, e2, . . . , em}. Each node has four features; xi =
(xi, yi, θi, costi). The first three features represent the
robot pose. We propose to add a fourth feature, costi,
to accommodate the messages that will be exchanged
between the nodes in the neural network, as will be
explained later. Edges represent relative measurements
between nodes and are directional. An edge that connects
xi to xj is denoted as eij and holds six features; eij =
(1xij,1yij,1θij, �1xij , �1yij , �1θij ). The former three fea-
tures represent the relative position and orientation between
xi and xj, and the latter three are the diagonal entries of the
information matrix.

The PoseConv operation on one node is defined by apply-
ing the sum aggregation function on the messages received
along all the inbound edges. This operation only modifies the
cost features of the graph nodes. The other node features and
the edge features remain unchanged. A message from xi to xj
is computed based on the features of xi, xj, and eij as shown
in (1):

msgi,j = (α((
ux + uy

2
×
∥∥pj − pi − Ri1ij

∥∥2))
+(β(uθ ×

1
2

∥∥RiRij − Rj∥∥2F )) (1)

where α and β are learnable parameters. ux =
√
�1xij ,

uy =
√
�1yij , and uθ =

√
�1θij represent the uncertainties

of the measured 1xij, 1yij, and 1θij respectively. ‖A‖F is
the Frobenius norm of matrix A. Rij is the measured relative
orientation between Ri and Rj where Ri ∈ SO(2). 1ij is the
measured relative position between pi and pj where pi ∈ R2.
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FIGURE 1. Proposed approach.

The cost feature of node xj is then computed as in (2).

costj =
∑
i

msgi,j (2)

where msgi,j is the message sent by node xi that has an edge
with node xj.
Figure 1(a) depicts the pose-graph structure, Figure 1(c)

details the node and edge features, and Figure 1(d) shows the
computations that are carried out in the PoseConv layer. The
proposed PoseConv layer is stacked together with other fully
connected layers to perform classification of pose-graphs as
will be discussed in the next section.

B. PROPOSED NEURAL NETWORK ARCHITECTURE
Our contribution is a neural network classifier that attempts
to classify a candidate pose-graph solution as optimal
or sub-optimal. The proposed neural network architecture
is depicted in Figure 1(b). The neural network accepts
pose-graphs as input and does not require any pre-processing
of its nodes or edge features. The cost feature for all the
graph nodes is initially set to zero. The pose-graph, to be
classified, is first passed to a PoseConv layer where the nodes
exchange messages as described in Section III-A. Every node
in the graph will aggregate the messages it receives from
its neighbors using the sum aggregation function. The cost
feature of every node in the graph is then updated to the out-
come of the aggregation function. The output of the PoseConv
layer is passed to a sigmoid layer, where the cost features

will be updated accordingly. The mean of the resulting cost
features is then computed and passed to a linear function,
which will perform classification based on the cost features.
This functionwill output a k × 2 tensor, where k is the number
samples in the input dataset and 2 is the number of classes:
optimal or sub-optimal. The k × 2 output tensor of the linear
function is then passed to a softmax layer, which applies the
softmax function shown in (3) to rescale the elements of the
2× 1 tensor corresponding to every graph to the range [0, 1],
while ensuring that they sum up to 1.

Softmax(wi) =
ewi∑

j=1:2 e
wj

(3)

The Adaptive moments (Adam) optimizer [33] with a
learning rate of 0.01 is used to train the neural network by
minimizing the cross entropy loss function.

C. TRAINING, VALIDATION, AND TESTING DATASETS
The dataset used to train, validate, and test the proposed
neural network is generated based on publicly available,
bench-marking pose-graphs including INTEL [34], FRH,
FR079 [34], CSAIL [34], KITTI05 [35], KITTI06 [35],
KITTI07 [35], and KITTI09 [35]. The pose-graphs have
different sizes and were originally recorded in various envi-
ronments. The measurements in each dataset were used
to generate a set of variants of that dataset by adding
extra additive noise to translational measurements, rotational
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TABLE 1. Structure of the generated dataset.

measurements, or both. The additive noise parameters were
incrementally varied between the minimum and maximum
values reported in Table 1 for each dataset. The total number
of variants for each pose-graph dataset is also reported in
the same table, along with the corresponding number of opti-
mal samples. The dataset contains 8189 pose-graph samples,
3851 samples of which are optimal. Hence, our developed
dataset is balanced, with 47% of the samples being optimal
and 53% being sub-optimal.

The optimal cost attainable for each pose-graph variant,
which will herein after be referred to as the ’SDP value’,
was computed using SE-Sync [10], [24], [36]–[38]. More
particularly, a convex semi-definite relaxation of the SLAM
maximum likelihood estimation is first formulated. A special-
ized optimization algorithm is then employed to solve this
semi-definite relaxation, while exploiting the graph structure
of the problem. This optimization algorithm was used instead
of other SDP solvers due to its efficiency and ability to certify
the global optimality of a pose-graph solution. More details
on the mathematical formulation of the problem can be found
in [24].

Every pose-graph variant was also solved using the
Levenberg-Marquardt (LM) optimizer. Then, each solution
was evaluated by means of a cost function [13] that uses
the chordal distance as a parameterization of the distance
between two rotation matrices in SO(2) as in (4). The chordal
distance is defined as the Frobenius norm of the difference
between the rotation matrices as seen in the second term of
the following equation.

f =
∑
ij

(||pj − pi − Ri1ij||
2
+

1
2
||RiRij − Rj||2F ) (4)

where ||A||F is the Frobenius norm of matrix A, Rij is the
measured relative orientation betweenRi andRj, and1ij is the
measured relative position between pi and pj, corresponding
to nodes i and j respectively. The definitions of the terms in (4)
can be found in Figure 1.

Then, candidate solutions to the pose-graph problems that
are generated by the LM solver are labeled as sub-optimal
if their costs exceed the SDP value, and optimal otherwise.
Figure 2 depicts a sample of the pose-graph variants that
constitute the dataset.

IV. PERFORMANCE EVALUATION
The proposed pose-graph neural classifier was extensively
tested with various partitions of the training and testing sets
to verify its validity, applicability, and generality, as will
be described here. Section IV-A presents the results of
the leave-set-out cross-validation, where the generalization
capability of the model will be illustrated. The results of
the 10-fold cross-validation technique are then discussed in
Section IV-B. Finally, the performance of the proposed neural
network was compared to other architectures with a different
number of PoseConv layers and the selection of our neural
network architecture is justified.

A. LEAVE-SET-OUT CROSS-VALIDATION
This technique will evaluate how the proposed pose-graph
neural classifier will generalize to unseen subsets of the
dataset while training. As mentioned earlier, the dataset
consists of variants of eight different pose-graphs: INTEL,
CSAIL, FR079, FRH, KITTI05, KITTI06, KITTI07, and
KITTI09. The dataset was partitioned into eight subsets, each
containing only the variants of one of these pose-graphs.
Then, the pose-graph neural classifier was trained and val-
idated on each of these subsets (see Figure 3). For a fair
judgement, the test was repeated using several initial random
seeds. The mean and standard deviation of the resulting test
accuracies across the different initial random seedswhen each
of the sets listed earlier was used as a test set are plotted
in Figure 4.
It is evident that the model is capable of achieving high test

accuracies for the various test sets. It is worth mentioning that
the classifier was trained for 200 epochs only. In some cases,
the tested model converges after few tens of training epochs
where it achieves >92% accuracy. In other cases, though,
convergence happens at a much lower rate, where after
200 training epochs the model achieves 80− 90% accuracy.
We observed that changing the initial random seed affects
convergence rate, but allowing more training epochs will
allow the accuracy of every classifier in each subset to reach
the accuracy of the highest-performing classifier, indepen-
dent of seed. We discuss this in more detail in Section IV-C.
Hence for each test set, we have displayed the results

where the initial random seed resulted in the model achieving
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FIGURE 2. Sample pose-graphs from the generated dataset. Rows show variants of different datasets; INTEL, CSAIL, FR079, and
KITTI05 respectively, and columns show different noise parameters. The title of each column in the figure indicates the noise
parameters in the following format: (additive noise in relative orientation, additive noise in relative x position, additive noise
in relative y position).

FIGURE 3. Leave-set-out cross-validation technique.

the highest test accuracy. Figure 5 depicts the training and
testing results for the selected models and Figure 6 shows the
corresponding loss curves.

Figure 7 depicts sample testing results from the INTEL
dataset when the INTEL pose-graph variants were used as
a testing set and the remaining pose-graph variants were
used for training. The figures show samples that are cor-
rectly labeled as optimal, correctly labeled as sub-optimal,
incorrectly labeled as optimal, and incorrectly labeled as
sub-optimal.

Overfitting is one of the most serious challenges that must
be addressed when developing and training neural networks.
It happens when the neural network does not have the capa-
bility to map unseen input data to the correct output [39].
In other words, the neural network fails to generalize well to
data outside the training set. Several factors might cause the
network to overfit, such as insufficient training data and high
model complexity. The leave-set-out cross-validation test has

FIGURE 4. Leave-set-out cross-validation results with different initial
random seeds.

FIGURE 5. Leave-set-out cross-validation results.

demonstrated the generalizability of the proposed approach,
where high accuracies were obtained when testing the neural
network on variants of pose-graphs that were not present in
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FIGURE 6. Leave-set-out cross-validation loss curves.

the training dataset. These variants exhibited different trajec-
tory shapes and were obtained in different environments. This
is attributed to the fact that the network is not aware of the
raw x, y, and theta values, and hence is not aware of how the
trajectory looks like. Rather, classification is done based on
the cost feature of each node in the graph which reflects how

much estimation error is associated with the edges linked to
each node. Furthermore, GNNs have the ability to perform
estimations on graphs whose sizes are different from those in
the training set, as analyzed in [40] and confirmed through
the various tests conducted in this paper.

Our proposed approach achieves a large speed-up when
compared to other pose-graph optimality verification tech-
niques such as solving for the SDP value [10], or computing
lower and upper bounds on the optimal cost of the solution
to the pose-graph as proposed in [13]. Figure 8 compares the
time needed to compute the SDP values using SE-Sync [10]
and to predict the optimality of a set of pose-graphs using
our proposed approach. The number of nodes in the tested
pose-graphs varies between 900 and 3500 nodes, while the
number of edges ranges from 1100 to 5500 edges. For each
pose-graph, 31 variants were generated where extra additive
noise was added to orientation measurements. The standard
deviation of the additive noise was varied from 0 to 0.3 in
increments of 0.01. As can be noticed from the figure,
the time needed to compute the SDP value increases when
the noise and the size of the pose-graph (the sizes of the

FIGURE 7. Sample test results.
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FIGURE 8. Time to verify optimality using our approach and SE-Sync.

pose-graphs are listed in Table 1) increase. Varying the noise
parameters does not have any effect on the time needed to
predict the optimality of a pose-graph using the proposed
approach. Besides, increasing the size of the pose-graph
introduces a very slight increase (∼10−4 seconds between
the smallest and largest tested pose-graphs) in the prediction
time. In addition, our approach can be up-to one order of
magnitude faster when performing predictions on batches
of pose-graphs, which could be beneficial if a dedicated
server is employed to perform optimality checks for multiple
SLAM systems simultaneously. Table 2 lists the time needed
to predict the optimality of batches of pose-graphs and the
corresponding average time per sample.

TABLE 2. Time in seconds to predict optimality of batches of pose-graphs
using our proposed approach.

While we do not have access to the source code of the
approach proposed in [13], they reported the time needed
to compute the lower and upper bounds on the optimal
cost for some pose-graph datasets. These datasets include
INTEL, FR079, CSAIL, M3500 [41], M3500a, M3500b,
and M3500c1 for which computing the lower and upper
bounds consumed 2.2s, 2.3s, 1.5s, 20.9s, 23.4s, 25.1, and

1M3500a, M3500b, and M3500c are variants of the M3500 pose-graph
where extra additive noise with standard deviation 0.1rad, 0.2rad, and 0.3rad
was added to the relative orientation measurements.

24.2s respectively. As the size of the pose-graph and the
magnitude of the additive noise increases, the time to compute
the bounds also increases.

In conclusion, the time needed to classify a sample
pose-graph as optimal or sub-optimal using the proposed
approach could be shorter by up-to three orders of magnitude
than SE-Sync and by up-to four orders of magnitude than the
approach in [23], for the tested pose-graph variants. All the
speed tests were conducted on an ASUS STRIX laptop, with
Intel core i7-6700HQ @ 2.60GHz × 8. The C++ version
of SE-Sync was used to measure the speed of computing the
SDP value, while the proposed approach was implemented
using the cpu version of the deep graph library [42]. Further
speed-ups are expected using the gpu version of the library.

B. 10-FOLD CROSS-VALIDATION
The dataset was randomly split into 10 non-overlapping sub-
sets, or folds, of equal size. The pose-graph neural classifier
is then trained 10 times, where every fold serves as a test set
exactly once, while the remaining folds are used as training
sets. The overall performance of the model is then evaluated
based on its resulting test accuracies. Figure 9 depicts the
flow-chart of the 10-fold cross-validation technique.

FIGURE 9. 10-fold cross-validation technique.

The loss curves obtained from training the model 10 times
exhibited two different convergence speeds. The majority
showed fast convergence while some demonstrated slower
convergence, and hence need much longer training periods
to converge. When training the model for a longer period of
time, it was clear that the loss curve with slower convergence
was still decreasing. The accuracies obtained on the test set,
as well as on all the pose-graph variants’ sets in all the training
scenarios are shown in Figure 10. To improve the accuracies
obtained for folds 3, 4, 6, and 10, the model should be trained
for much longer.

To further prove the validity of the proposed model,
the prediction accuracy of optimal and sub-optimal samples
were computed. Table 3 lists the number and percentage of
the correctly and incorrectly labeled samples from the test
set during the 10-fold cross validation. The test set consisted
of 818 samples that were different from one fold to another.
It can be noticed that the prediction accuracy in the cases
where the model was not yet converged is lower compared
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TABLE 3. Prediction accuracy of optimal and sub-optimal samples obtained from the 10-fold cross validation test.

TABLE 4. Performance of pose-graph neural classifier with different numbers of PoseConv layers.

FIGURE 10. 10-fold cross-validation results - Accuracies.

to when the model has already converged. More particularly,
the accuracies obtained for folds 3, 4, 6, and 10 are slightly
less than the other folds. Allowing more training epochs for
these folds will result in an increase in the prediction accu-
racy. All in all, the model was able to successfully classify
both optimal and sub-optimal pose-graph candidate solutions
with high accuracy.

C. NUMBER OF POSECONV LAYERS
In this section, the performance of the proposed neural net-
work architecture will be compared to architectures with

varying numbers of PoseConv layers. FRH, FR079, INTEL,
KITTI07, and KITTI09 pose-graph variants were used as
training sets, while KITTI06 and CSAIL pose-graph variants
were used for testing. The number of PoseConv layers in the
model were varied between 1 and 20 and each model was
trained for 200 epochs. Samples of the resulting training and
testing accuracies are listed in Table 4.

Across the 20 tests, it was noticed that some models
converge much faster than others, as depicted in Figure 11.
We believe that this happens because of the differences in
the initial conditions. Figure 12 shows an example where the
same model was trained twice with different initial random
seeds for more than 8000 epochs. This figure suggests that
both models are likely to eventually converge to similar loss
values and hence achieve comparable performance.

The differences in the convergence speeds with varying
initial random seeds could be attributed to the use of the
chordal cost function to construct the messages exchanged
among the nodes. In [43], it was shown that the chordal cost
for a minimal 2D pose-graph problem with three poses and
three measurements introduces some saddle points, which
could slow down the training process. While the training
process does not minimize chordal cost itself, and the result
in [43] does not comment on the existence of saddle points
in larger problems, we conjecture that the use of chordal cost
in the messages contributes to the difference in convergence
rate.
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FIGURE 11. Loss curves for models with different number of PoseConv
layers.

FIGURE 12. Loss curves obtained when training the same model with
different initial seeds.

Moreover, the results achieved by the model with one
PoseConv layer are comparable to those achieved by the
models with more PoseConv layers. Hence, the proposed
approach employs only one PoseConv layer to achieve higher
efficiency and faster training and prediction.

V. CONCLUSION
In this paper, a novel pose-graph optimality verification
technique was proposed. A graph convolutional-like layer,
dubbed PoseConv, was developed and used in a graph neural
network to address the problem of classifying pose-graphs
into optimal or sub-optimal. PoseConv performs message
passing between the nodes of a pose-graph and aggregates
the exchanged messages in the cost feature of every node
in the graph, while keeping the other node and edge fea-
tures unchanged. The cost feature is a new feature that
we proposed to add, to carry the information needed for
the classifier to learn how to distinguish between optimal
and sub-optimal solutions. Eight different bench-marking
datasets were employed to build a dataset that includes
pose-graphs of variable size, varied measurement noise
parameters, and recorded in diverse environments using dif-
ferent equipment. The proposed approach has been exten-
sively tested on various partitions of the dataset. Training and

testing results have verified the validity and generalization
of the proposed approach. The pose-graph neural classifier
has been able to distinguish between optimal and sub-optimal
solutions of unseen pose-graph samples from the dataset. This
is due to the fact that the classifier classifies pose-graphs
based on the cost features, which are independent of the actual
values of the node and edge features of the pose-graph. This
makes the approach capable of generalizing to previously
unseen pose-graphs, even if they are of different sizes than
those in the training dataset.

The work proposed in this paper can be extended to allow
classification of candidate solutions to 3D pose-graphs into
optimal and sub-optimal estimates. To accommodate this
extension, the proposed PoseConv layer would be altered due
to the increase in the dimensionality of the input pose-graph.
Each node in the 3D pose-graph will have seven features,
instead of four in the current version, that represent the 3D
position and orientation of the robot and the additional cost
feature that will accommodate the communicated messages.
Consequently, the linking edges will encode the relative 3D
pose between two nodes and the corresponding measurement
noise parameters. Similar to the current implementation of
the PoseConv layer, messages will carry information about
the chordal cost (for the 3D case, instead) associated with
each edge and will be aggregated into the cost feature of each
node. The increase in the number of node and edge features
might require a more complex architecture of the neural
network.

Future research work in this area can also be directed
towards integrating the proposed neural classifier with a cor-
rection mechanism where sub-optimal candidate solutions to
pose-graph can be improved. These areas of improvements
are left for future work.
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