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Estimating the features of noise is the first step in a chain of protocols that will someday lead to fault-
tolerant quantum computers. The randomized benchmarking (RB) protocol is designed with this exact
mindset, estimating the average strength of noise in a quantum processor with relative ease in practice.
However, RB, along with most other benchmarking and characterization methods, is limited in scope
because it assumes that the noise is temporally uncorrelated (Markovian), which is increasingly evident
not to be the case. Here, we combine the RB protocol with a recent framework describing non-Markovian
quantum phenomena to derive a general analytical expression of the average sequence fidelity (ASF) for
non-Markovian RB with the Clifford group. We show that one can identify non-Markovian features of the
noise directly from the ASF through its deviations from the Markovian case, proposing a set of methods to
collectively estimate these deviations, non-Markovian memory time scales, and diagnose (in)coherence of
non-Markovian noise in a RB experiment. Finally, we demonstrate the efficacy of our proposal by means
of several proof-of-principle examples. Our methods are directly implementable and pave the way for a
better understanding of correlated noise in quantum processors.
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I. INTRODUCTION

The biggest challenge faced in any quantum computa-
tion can almost unequivocally be said to be the presence
of errors. Among these, noise arising from interactions
with the surroundings of a system represent an important
class that is still far from being well understood. Given
the current widespread interest in designing complex fault-
tolerant quantum systems, together with the fundamental
restriction that no system can ever be fully isolated from
its surroundings, the need to advance our understanding of
this type of noise cannot be understated.

Over the last decade, the approach known as randomized
benchmarking (RB) [1–5] has become the gold standard to
certify the performance of gate sets and characterize the
noise in computations involving these sets. RB generally
refers to an experimental protocol allowing estimation of
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the error rates of a gate set by quantifying their con-
trol fidelity as a function of the number of gates [6].
Moreover, it does so in an efficient way that is robust
to state preparation and measurement (SPAM) errors, as
opposed to approaches such as quantum process tomogra-
phy (QPT) [7]. It is important to point out, however, that
the two approaches are rather complementary [8], as RB
extracts less information about the noise, namely average
error rates of average gates, but requires little resources
for high confidence [9], while QPT allows noise to be
fully reconstructed but with a higher resource cost [10].
Aside from QPT and RB, there is a plethora of other
methods lying in between, such as gate-set tomography
[11], compressed sensing [12,13], or direct fidelity esti-
mation [14–16], to name a few, to characterize quantum
devices. The main reason why RB has become an essential
tool for quantum technologies is thus its practicality and
applicability to realistic experimental settings.

The most common versions of RB protocols are exe-
cuted for sequences of Clifford gates [3], and consider
noise that is both time and gate independent, in particu-
lar, Markovian and context independent. In this case, it
is observed that the so-called average sequence fidelity
(ASF), i.e., a figure of merit relating to the gate fidelity
of the noise [17], behaves as a decaying exponential in
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the number of gates applied in the sequence. Nevertheless,
progress for time-dependent [9] and gate-dependent noise
[18–20], as well as different gate sets [20–22] or other fig-
ures of merit has also been made [23,24]. Despite this,
RB has generally remained elusive to a characterization
in the presence of temporally correlated, so-called non-
Markovian noise, and has rather been identified when the
ASF does not behave as a decaying exponential in numer-
ical and experimental studies [25–29]. Hence it is not an
overstatement that overcoming the Markovianity assump-
tion in RB remains one of the most important hurdles to
clear towards fault tolerance in quantum computers.

Correlated noise has been thoroughly examined in par-
ticular scenarios, such as that of dephasing noise. For
classical correlations, e.g., in Refs. [29,30] (and similarly
in Ref. [31]), the noise is modeled as rotations of a qubit
around the z axis as determined by a classical random vari-
able, and deviations from the uncorrelated case are found.
For the quantum counterpart, in Ref. [32] this is general-
ized to correlations being mediated by a bath, modeled as
a multimode bosonic field interacting with the qubit. Simi-
larly, correlations arising as interaction between neighbor-
ing qubits, so-called crosstalk [33] have been addressed in
multiqubit RB protocols, generally noticing that averag-
ing over a single qubit generally leads to a nonexponential
decay of the ASF.

The study of temporal correlations in quantum systems
necessarily require in its foundations a theory of quantum
stochastic processes. The development of such a theory has
much older origins than RB but has often been contentious
and faced conceptual problems still widely discussed in
the community [34]. Nevertheless, approaches in terms
of higher-order maps [35,36] have proved successful in
providing a general theory of quantum stochastic pro-
cesses [34], in particular, unambiguously establishing a
Markov condition [37,38] and providing an operational
framework to characterize non-Markovian processes [39].

In this paper, we derive an analytical expression for
the ASF of a RB experiment with the Clifford group
under non-Markovian gate-independent noise. This allows
the study of the behavior of ASF decays due to non-
Markovianity, and particularly of deviations from expo-
nential decays, given a model for the noise. We also discuss
ways in which the relevant time scales, i.e., sequence
lengths, for finite non-Markovian noise can be determined,
and deviations from a Markovian decay can be quantified,
both with or without an a priori model of the noise. The
main limitation to these methods is precisely the RB proto-
col itself, as the non-Markovian ASF—as we show—is not
a simple function of sequence length anymore. Neverthe-
less, just as in the standard Markovian case, the relevance
of RB lies in its simplicity, as it allows non-Markovian
features to be analyzed and quantified from experiment
with relative ease. Overcoming these restrictions thus can
be a focus of future research towards a practical and

more complete characterization of temporally correlated
noise.

The paper is structured as follows. In Sec. II we intro-
duce the RB protocol and discuss the theoretical setting
employed in the remainder of the paper. In Sec. III we
introduce the process-tensor framework and elaborate on
how it is a natural framework for non-Markovian RB. In
Sec. IV we present our main result within Eq. (7) and dis-
cuss some of its properties and consequences, including
containment of the Markovian case, the issue of initial cor-
relations and the impact of SPAM errors. In Sec. V we
introduce a theoretical measure for non-Markovian RB by
means of Eq. (15), discussing the case of classical corre-
lations and the possibility of blindness to non-Markovian
noise by RB. In Sec. VI we discuss the more realistic
scenario of finite non-Markovian noise, with which we
can operationally approach the problem of determining
sequence lengths, i.e., time scales, at which temporal cor-
relations in the noise are relevant, as well as quantifying
deviations from an exponential decay whenever a model
for the noise is unknown. In Sec. VII we show a proof-of-
principle numerical example finding agreement with our
analytical result, and discuss the effect of SPAM errors
and non-Markovianity blindness. Finally, in Sec. VIII we
demonstrate numerically how the memory length of a finite
non-Markovian noise process can be estimated in practice,
non-Markovian deviations quantified, and how to diagnose
(in)coherence of non-Markovian noise. We conclude in
Sec. IX with an overview of our results and a perspective
for future work.

II. RANDOMIZED BENCHMARKING

While there are many variants of RB, and a general
framework encompassing these can be established [6], for
concreteness here we consider a RB protocol employ-
ing the Clifford group. This has been the most common
approach in RB mainly because the elements on the
Clifford group can be realized efficiently on a quantum
processor [40–42]. The RB protocol is then as follows:

1. Prepare an initial state ρ.
2. Sample m distinct elements, G1,G2, . . . ,Gm, uni-

formly at random from the Clifford group. Let
Gm+1 := ©1

i=mG
†
i = G†

1 ◦ · · · ◦ G†
m, where ◦ denotes

composition of maps and G†(·) = G†(·)G for any
Kraus representation with unitaries G of the map G.
We refer to Gm+1 as an undo gate.

3. Apply the composition ©m+1
i=1 Gi on ρ. In practice,

this amounts to applying a noisy sequence Sm :=
©m+1

i=1 Ĝi of length m on ρ, where Ĝi are the physical
noisy gates associated to G.

4. Estimate the probability fm = tr [MSm (ρ)] via
a positive operator-valued measure (POVM) ele-
ment M.
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5. Repeat steps 1 to 4 n times for the same ini-
tial state ρ, same POVM element M, and dif-
ferent sets of gates chosen uniformly at random
{G(1)i }m

i=1, {G(2)i }m
i=1, . . . , {G(n)i }m

i=1 from the Clifford
group to obtain the probabilities f (1)m , f (2)m , . . . f (n)m .
Compute the average Fm = 1/n

∑n
i=1 f (i)m . We refer

to Fm as an average sequence fidelity.
6. Examine the behavior of the ASF Fm over different

sequence lengths m.

The important insight in the RB protocol is that the ASF
contains the average noise rate of the applied sequences,
which can be extracted efficiently by analyzing it over
varying sequence lengths. Specifically, when the noise is
approximated as both independent of the gates applied and
the time step at which these are applied, the ASF is given
by

Fm = Apm + B, (1)

where the error rate of the noise, or so-called noise
strength, is given by p ∈ [0, 1] and A, B are constants deter-
mined by state preparation and measurement errors [5].
This implies that having performed a RB experiment, the
data of the experimental ASFs can be fitted to an expo-
nential, from which the noise strength p and the SPAM
factors can be extracted. The noise strength is directly
related [17] to the gate fidelity of the noise with respect to
the identity [28], and hence the labeling of Fm as a fidelity,
but similarly other figures of merit can be used to learn
average error rates through RB [23,24].

It is important to mention that SPAM errors are implicit
to steps 1 and 4, that is, in an execution of the pro-
tocol, neither the initial state preparation nor the mea-
surement of the output state might be perfect. In the
time- and gate-independent scenario for the Clifford group,
however, as seen in Eq. (1), SPAM errors are constants
both independent of the error rate and the sequence
length.

The exponential decay in Eq. (1) can be obtained by
modeling each noisy gate as Ĝi := � ◦ Gi for some com-
pletely positive trace-preserving (CPTP) map �; then the
analytical average of the survival probabilities is given by
the average over gates Gi. For our purposes, we just care
that the gates belong to a unitary 2-design, i.e., any distri-
bution of gates replicating up to the second moment of the
unitary group with the uniform Haar measure [43], such as
the Clifford group. This implies that averaging over gates
can be replaced with that over the Haar measure to obtain
Fm, and similarly the use of higher unitary designs could
serve to characterize higher-order statistical properties of
noise in RB [44]. Detail about how such averaging is
carried out can be seen in Appendix B.

Importantly, one sees deviations from an exponen-
tial decay for more complex noise profiles, including

non-Markovian noise. Nevertheless, within a Markovian
assumption, RB generally renders a linear combination of
exponential decays for the ASF [6], with the particular
case of gate dependence rendering a single perturbation
term that decays exponentially as well with the sequence
length [18,19]. Here, together with the assumption that the
gates G belong either to the multiqubit Clifford group or to
a 2-design, we make the assumption that the noise mod-
eled by the maps � is gate independent. Other than these
two assumptions, we are interested in temporal correlations
in the noise described as being mediated by an external
environment.

III. QUANTUM PROCESSES AND
NON-MARKOVIANITY

The setting we consider is that of a bipartite quantum
system, labeled SE, composed of a dS-dimensional system
S and a dE-dimensional environment E. An experimenter,
in principle, would apply the sequence Sm = ©m+1

i=1 Gi of
Clifford gates Gi solely on S, and not have access to E.
We consider different scenarios for the initial state ρ,
which is solely prepared on S, but can nevertheless get
correlated with E afterwards, accounting for a new type
of SPAM error. We now can model the noisy gates as
Ĝi = �i ◦ (IE ⊗ Gi), where �i acts on the full SE system
and IE is an identity map on E. In particular, we require the
(gate-independent) noise maps�i to be at least completely
positive (CP) trace nonincreasing and allow a further time
dependence, �i �= �j for i �= j ; this can further be con-
strained to requiring trace preservation (e.g., if the device
never fails), unitarity (e.g., if the device is perfectly iso-
lated), or time independence (the noise does not change
between time steps).

The sequence Sm can be understood as a particular
example of a quantum stochastic process where the under-
lying dynamics are given by the noise inherent to the
computation on the whole SE. Motivated by what is done
operationally in a laboratory, the process-tensor framework
[34,38,39,45] provides the means by which we can treat the
underlying noise source separately from what the experi-
menter has control over, which are the gates they apply.
This effectively means that we can treat the whole noise in
the sequence, together with the initial state, as a tensor ϒm.
We may contract this tensor with the set of Clifford gates,
which too can be incorporated in a tensor Cm. This can be
depicted as in the circuit of Fig. 1.

These tensors, ϒm and Cm, just as any quantum map,
can have different representations [46]. Here we employ
the Choi-state representation, which simply is a generaliza-
tion of the Choi-Jamiołkowski isomorphism for quantum
channels [47]. Specifically, these can be written as

ϒm = trE

{[
m+1
©

i=1
(�i ⊗ Iaux) ◦ Si

]
ρ ⊗ ψ⊗m+1

}
, (2)
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FIG. 1. A non-Markovian noisy RB sequence as a process-
tensor contraction. An initial system-environment (SE) state ρ
is acted on with a random Clifford element G1 on S alone, induc-
ing a noise map �1 on SE, followed by a random Clifford G2
inducing noise �2, and so on until the undo map Gm+1 is applied
with some noise �m+1. Finally, a POVM element M is applied
on S and the environment is traced out (grounding symbol). This
can be described by the contraction of a tensor ϒm (upper box)
comprising the initial state together with the noise process, with
a tensor Cm describing the sequence of applied Clifford gates, all
followed by applying M.

where Iaux is an identity map on an auxiliary space aux =
A1B1 · · · Am+1Bm+1 � S⊗2(m+1) composed of m + 1 pairs
of S systems, Si is a swap gate between S and one of these
pairs in the ith auxiliary space, say Ai, and ψ := ∑ |ii〉〈jj |
is an unnormalized maximally entangled state; on the other
hand, for the gate sequence [48],

Cm = 1S ⊗
[

m+1⊗
i=1

(
IAi ⊗ Gi

)]
ψ⊗m+1. (3)

Detail about the definitions in Eqs. (2) and (3) can be con-
sulted in Appendix A; we highlight, however, that we do
not require the physical construction of these tensors nor
access, e.g., to the space aux or the states ψ , but rather
they are part of the theoretical framework that will let us
study the RB protocol when the �i maps are temporally
correlated by means of the environment E. More broadly,
the process-tensor framework generalizes the notion of a
stochastic process to the quantum domain in a fully con-
sistent way [49,50], resolving problems such as the initial
correlation and not-CP problems, and fully accounting for
memory effects [34].

The notion of Markovianity is formalized in the process-
tensor framework through a proper operational Markov
condition [38] as an independence of past observations,
in turn containing the classical definition of Markovianity
and unifying all quantum Markov conditions that had been
proposed thus far [34,38,51]. Markovianity, and hence the
absolute absence of temporal correlations in a process
tensor, implies that no information is passed through E
between time steps. This is mathematically manifest in the
Choi state, which takes the form of a product of individ-
ual Choi states of quantum channels joining each step,
as for Cm in Eq. (A8). That is, temporal correlations in
the process tensor correspond to spatial correlations in the

Choi-state representation, and more precisely then, a pro-
cess tensor ϒ(M )

m will contain only Markovian noise if and
only if there are noise maps �(M )

i acting solely on S such
that

ϒ(M )

m = ρS ⊗
[

m+1⊗
i=1

(
�
(M )

i ⊗ IBi

)]
ψ⊗m+1. (4)

Non-Markovianity can then naturally be quantified by
means of any operationally meaningful distinguishability
measure D with

N := min
ϒ
(M )
m

D
(
ϒm,ϒ(M )

m

)
, (5)

where the choice of such a distance measure is rather
a matter of practicality, as the minimization over all
Markovian processes will often make the computation of
N unfeasible. This can be alleviated either by choos-
ing a measure D such as relative entropy, where the
min argument is just a product of marginals, ϒ(M )

m =
ρS
⊗m+1

i=1 tri:i−1 [ϒm], where trj :i means trace over all
except between steps i to j , or otherwise placing rele-
vant bounds on N for Schatten-norm measures, as done
in Ref. [52,53] to study some statistical properties of non-
Markovian processes. Here, we care about quantifying
how non-Markovian a RB experiment is, which will boil
down to quantifying how distinguishable a non-Markovian
ASF is from a sensible Markovian counterpart.

We can now write the probability with m noisy gates as
per step 4 of the RB protocol, fm = tr [MSm(ρ)], in terms
of the process tensor with

Sm(ρ) = trE

{[
m+1
©

i=1
�i ◦ (IE ⊗ Gi)

]
ρ

}

= trS

(
ϒmCT

m

)
, (6)

where trS here means a partial trace over all intermediate
input and output systems except the final S and T denotes a
transpose. Computing the ASF, Fm, then amounts to com-
puting the average of CT over the applied gates, Gi. This
is a simplification allowing us to deal with the average
over gates separately from the underlying noise. Further-
more, given that here we deal with the Clifford group, as
explained in Sec. II, we can replace averaging over Clif-
ford gates with averaging over the unitary group with the
uniform Haar measure. To finally obtain Fm, we have to
contract the average gate sequence tensor with the noise
tensor ϒm, which will contain the noise inherent to the
RB sequence, and, in particular, can be labeled as non-
Markovian if the individual noise is correlated between
time steps or Markovian otherwise.

We now present a general expression for the ASF Fm for
RB of the Clifford group under non-Markovian noise and
explore some of its consequences.
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IV. AVERAGE SEQUENCE FIDELITY FOR
NON-MARKOVIAN NOISE

Given a RB sequence with m Clifford gates affected
by non-Markovian noise, we can construct the noise and
gate-sequence process tensors, compute the average gate
tensor, and contract with the noise tensor to get the average
sequence fidelity. This yields the following:

Theorem: Let ρ be the initial state of a system-
environment, SE, composite with dSdE = dim(SE). Let
Sm(ρ) describe a randomized benchmarking sequence of
length m over Clifford gates with the CP map�n acting on
SE being the associated noise at the nth time step. Then,
the average sequence fidelity Fm with a POVM element
M is given by

Fm = tr{M E[Sm(ρ)]}
= tr [M trE ◦�m+1 ◦ (Am + Bm) ρ] , (7)

where E denotes average over Clifford gates, ◦ denotes
composition of maps, and

Am(ρ) :=
m
©

n=1

(
$�n −��n

)⊗ IS(
dS

2 − 1
)m

(
ρ − ρE ⊗ 1

dS

)
, (8)

Bm(ρ) :=
(

m
©

n=1
��n

)
ρE ⊗ 1

dS
, (9)

with ρE := trS(ρ) being the reduced initial state in E; here
$�n ,��n are maps acting solely on E as defined by

$�n(ε) :=
dS∑

s,s′=1

〈s|�n(ε ⊗ |s〉〈s′|)|s′〉 (10)

��n(ε) := trS

[
�n

(
ε ⊗ 1

dS

)]
, (11)

for any operator ε acting on E.

The proof can be found in full in Appendix C.
As stated before, this amounts to writing the average
sequence fidelity as the contraction of tensors Fm =
tr
{
M trS

[
ϒm E

(
CT

m

)]}
, where the average E

(
CT

m

)
can be

evaluated via the second moment of the unitary group with
the Haar measure, given that the Clifford group constitutes
a unitary 2-design.

We first notice that in the strict noiseless limit, �1 =
�2 = . . . = �n = I , we recover Fm → tr[M ρS], where
here ρS = trE(ρ), so that indeed Eq. (7) is bounded by one.
For the ideal case of SE being a closed system, each �n
is a unitary. If there is no external time dependence on the
noise and all temporal correlations are described by E, then
�n = � for all n.

The two relevant terms to gain some insight about
Eq. (7) are Am and Bm in Eqs. (8) and (9), respectively,
where the depolarizing effect of the noise on S is manifest,
with Am being partially depolarizing in S and Bm com-
pletely depolarizing in S. The action of Bm, in particular,
is independent of the initial state on S and picks up noise
solely over E. Furthermore, if the initial state is uncorre-
lated, the effect of averaging a sequence of m gates in S is
to totally decouple S from E, so that both Am and Bm give
a product state, with E carrying all the noise factors. Finally
upon applying trE ◦�m+1 on Am, this would render a factor
analogous to a product of noise strengths p1p2 · · · pm.

The notation we use for A and B, which here are quan-
tum maps, is suggestive in that these reduce to the corre-
sponding Apm and B, respectively, in the time-independent
Markovian limit. In a Markovian scenario the environ-
ment is superfluous and we would have �n → IE ⊗�(M )

n
together with ρ → ρE ⊗ ρS, i.e., the noise at each step is a
CP map acting on S alone and the initial state on SE is com-
pletely uncorrelated. Then, if the noise is trace preserving
as well, Eq. (7) reduces to the Markovian time-dependent
ASF derived in Ref. [9],

F (M )

m = p1 · · · pmA + B, (12)

where,

pn = tr
[
�(M )

n

]− 1

dS
2 − 1

, (13)

A = tr
[
M�

(M )

m+1

(
ρS − 1

dS

)]
, B = tr

[
M�

(M )

m+1

(
1

dS

)]
.

(14)

That is, we get Am(ρ) → p1 · · · pm (ρ − 1/dS) and
Bm(ρ) → 1/dS in this limit, which makes it clear
that B renders only SPAM and non-Markovian noise
contributions. Here tr

[
�(M )

n

] = ∑
μ | tr λ(M )

μ |2 where λ(M )
μ

are the Kraus operators of �(M )
n . Furthermore, despite

being complicated in the general case [54], the map
$
�
(M )
n

simply picks up a noise multiplicative factor,
$
�
(M )
n
(ε) = tr

[
�(M )

n

]
ε and �

�
(M )
n

becomes an identity
map, �

�
(M )
n
(ε) = ε, in this limit. Finally, Eq. (12) implies

that we recover the decaying exponential in Eq. (1)
for time-independent Markovian noise. The recovery of
the standard ASF in this limit is shown in detail in
Appendix D.

On the other hand, a unique feature when consider-
ing non-Markovian noise is initial correlations [55,56];
these could be particularly relevant in a non-Markovian
RB experiment because the averaging over S gates depo-
larizes only the noise in S after the first gate is applied,
but does nothing to correlations in the initial state. Further-
more, as pointed out before, if the initial state is uncor-
related, the ASF reduces to a quantity of the form Fm →
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tr
[
M trE ◦�m+1

(
σ
(m)
E ⊗ σ

(m)
S

)]
, and tracing the environ-

ment part would give a term analogous to a product of
noise strengths p1p2 · · · pm. This implies that, in general,
when benchmarking non-Markovian errors with RB, the
impact of SPAM errors could potentially be relevant, in
general, in the error rates if such errors are large and gen-
erate initial correlations. In principle, the presence of such
errors could also be diagnosed by an offset in the aver-
age sequence fidelity Fm, as we exemplify numerically in
Appendix G.

Finally, nonexponential decays in RB have often
been attributed to non-Markovianity [27–29,32]: by mere
inspection, setting �n = � on all steps n, we get
©m

n=1($�n −��n) = ($� −��)
©m, which will generally

not render an exponential decay in the ASF. It is impor-
tant to point out that while non-Markovianity generally
leads to nonexponential decays, there can also be other
contextual factors [57], such as gate dependence or other
rather arbitrary external time dependence leading to such
behavior.

V. QUANTIFYING NON-MARKOVIANITY IN
RANDOMIZED BENCHMARKING

Non-Markovianity in a quantum process can encom-
pass both classical and quantum correlations; the latter
is manifest in the Choi state of a process tensor when-
ever its components are entangled [58,59]. As examples
of classical correlations, in Appendix F we reproduce the
ASF of the model in Ref. [30], where classical temporal
correlations are modeled via dephasing noise determined
by a classical stochastic process; this effectively renders
an ASF analogous to one that is Markovian time depen-
dent with the noise parameter being a random variable.
We also illustrate this via a shallow pocket model [34,60–
62], where the time dependence in the ASF is explicit but
the treatment as a Markov ASF decay remains the same.
These examples suggest that while the general measure of
non-Markovianity N for a process tensor in Eq. (5) is sen-
sitive to any sort of temporal correlation, this might not
necessarily be the case for the ASF.

A RB experiment could be blind to non-Markovianity
in the sense of producing equivalent data of some Marko-
vian noise model. It is, of course, a possibility for there
to be a subclass of time-independent non-Markovian
processes leading to exponential or almost exponential
behavior, although as mentioned above, in general a time-
independent noise does not lead to an exponential behavior
unless the environment is superfluous. In Appendix G we
exemplify this numerically with a spin interaction as the
source of non-Markovian noise. Whether, in general, there
exists a whole class of non-Markovian processes that can
be classified as RB blind, together with criteria to decide

FIG. 2. A Markovianized counterpart of a non-Markovian
RB sequence. Given a non-Markovian RB sequence with a noise
process ϒm, a Markovianized counterpart ϒ(M ) can be given
by one where the information carried in E is dissipated or lost
between each step. The corresponding RB sequence has Marko-
vian noise given by the CP maps �(M )

n acting as �(M )
n (σ ) =

trE ◦�n(εn ⊗ σ) for any pure state εn on E.

RB blindness, is an open question that could potentially be
addressed in the near future.

There could be instances where having a non-Markovian
noise process and being able to quantify its general non-
Markovianity N with Eq. (5), we really only care about
how much its associated ASF for the Clifford group devi-
ates from a Markovian one. As, in principle, the set of
possible Markovian processes to compare with would be
restricted to a class specific to the given device to be bench-
marked, ideally, we would look for a direct Markovian
counterpart of the original non-Markovian noise process
that we have. Thus, we propose to look at deviations from
the ASF generated by the Markovianized process ϒ(M )

where each noise map in the original non-Markovian noise
�n at time step n dissipates its E part: this amounts to
taking a Markovian process with the initial state being
uncorrelated ρ → ρE ⊗ ρS, and with dynamics at each step
being given by the CP map �(M )

n on system S acting as
�(M )

n (σ ) = trE ◦�n(εn ⊗ σ) for an arbitrary pure state εn.
This is depicted in Fig. 2.

Definition: Let Fm be the average sequence fidelity of
a randomized benchmarking experiment over the Clifford
group with gate-independent non-Markovian noise. We
define the RB non-Markovianity as

NFm
q := ∥∥Fm − F (M )

m

∥∥
q

=
(

m∑
n=1

∣∣tr {M trS

[(
ϒn −ϒ(M )

n

)
E
(
CT

n

)]}∣∣q
)1/q

,

(15)

where F (M )
m is the ASF of the Markovian noise

process associated to ϒm, given by ϒ(M )
m := ρS ⊗
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[⊗m+1
i=1

(
�
(M )

i ⊗ IBi

)]
ψ⊗m+1, where

�(M )

n (σ ) := trE ◦�n(εn ⊗ σ), (16)

for any σ acting on S and an arbitrary pure state εn on E.

The measure NFm
q boils down to how well the

POVM element M can distinguish trE ◦� ◦ Am(ρ)

from pm�(M )(ρS − 1/dS), as well as trE ◦� ◦ B(ρ) from
�(M )(1/dS) for CPTP noise. Generic bounds can also
potentially become possible with this non-Markovianity
quantifier. Of course, the RB non-Markovianity measure
in Eq. (15) also already makes it manifest that if an under-
lying noise process in a RB sequence is Markovian, then
NFm

q = 0. The converse, however, might not necessarily
be true or deviations could be negligible in practice [63],
as we exemplify below numerically.

There could be several scenarios where Eq. (15) could
be computed or estimated. One might be where either the
full Markov process ϒ(M )

m , or just an error rate is known,
but once the RB experiment is run, deviations from F (M )

m
are observed, which most plausibly could be explained by
non-Markovianity. This means we could actually compute
NFm

q directly from the experimental data and, e.g., analyze
the observed ASF as a time-dependent RB decay. On the
other hand, another scenario could be that we have a plau-
sible model for the non-Markovian noise process ϒm, and
thus know the expression for the non-Markovian ASF Fm
in Eq. (7). Then we may construct the Markovian counter-
part F (M )

m = p1 · · · pmA + B of the ASF, compute NFm
q in

Eq. (15) and compare with the actual RB data.
Perhaps the most common case, however, will be that

a RB experiment is run without a priori knowledge of a
model for the noise and a nonexponential curve for the
ASF is observed. At the same time, the observed statistics
for a given physical process often depend only on a portion
of their history rather than on their full past, implying that
the relevant temporal correlations in the noise would likely
be manifest in RB only over a finite sequence length. This
notion of a finite memory within the noise will allow us to
estimate, in practice, the amount of non-Markovian effects
that are being observed in a RB experiment, as well as to
operationally construct an analog of a Markovianized ASF,
F (M )

m , to estimate deviations from Markovianity in RB.

VI. MODELS OF FINITE NON-MARKOVIAN
NOISE

A possible scenario is to have an underlying noise pro-
cess that is non-negligibly non-Markovian up to a given
finite sequence length, with the remaining noise being
effectively almost Markovian. This is related to the notion
of finite quantum Markov order [45,64,65], which similar
to the classical concept of finite Markov order, describes a
quantum process where future statistics depend only on a

finite number of the previous operations on the system and
its outcomes. We have then the following.

Corollary 1: (Initial non-Markovian noise). Let ρ be an
initial state on a system-environment, SE, composite and
let S
:1m (ρ) describe a RB sequence of length m with noise
described by CP maps �n on SE for all n up to a sequence
length 
 < m, with the rest of the sequence having noise
CPTP maps �(M )

ñ on S and associated noise strengths pñ.
Then the average sequence fidelity upon acting with a
POVM element M is given by

Fm = tr{M E[S
:1m (ρ)]}
= p
+1 · · · pm tr

[
M�

(M )

m+1 ◦ trE ◦A
(ρ)
]

+ B tr [B
(ρ)] , (17)

where B = tr
[
M�

(M )

m+1 (1/dS)
]

and An, Bn are defined in
Eqs. (8) and (9), respectively.

This implies that after a sequence length 
, non-
Markovian noise will be manifest in an RB experiment as
SPAM errors and not affect the subsequent decay, which
for time-independent noise, would remain exponential.
The assumption that the noise suddenly stops acting jointly
on SE is at best an approximation, but one that can effec-
tively be used whenever the non-Markovian noise effects
are relevant only over some finite sequence length 
.

The main reason why this is important is twofold: first,
detecting non-Markovian effects with a RB experiment
will most likely be efficient for short sequence lengths, in
the sense of requiring a small amount of fidelity samples,
since there is no compounding error, so for small 
 any
significant non-Markovian noise effects can be resolved
through RB; and second, the time scale of the memory
effects displayed by the noise, i.e., the length 
 inherent
in the noise process, can then potentially be determined
through a RB experiment. This would also be related to
determining the order of a finite quantum Markov order
process [66].

In Sec. VIII we show one such example where the
sequence length 
 of non-Markovian noise can be esti-
mated from a RB experiment’s data alone, and where
a sensible time-independent Markovianized ASF, F̃ (M )

m ,
can be constructed so as to operationally estimate non-
Markovian deviations in such an experiment. This follows
by noticing the following. Whenever we have finite non-
Markovian noise, say over an initial sequence length 
,
described by CPTP maps �n, and an initial uncorrelated
state, by choosing to fix 
− 1 Cliffords after the first one
to be identities, by Eq. (17), we get a Markovian decay
with

Fm = p
+1 · · · pm(p
:1A)+ B, (18)
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FIG. 3. Determining time scales of finite non-Markovian
noise. A noise process with initial finite non-Markovian noise
over a sequence length 
 = 5 will decay as described by a
Markovian ASF after such a step, with the non-Markovian part
contributing as SPAM error factors. By fixing to identity the
gates of at least time steps, steps 2 and 3, the decay of the ASF
corresponding to such a sequence becomes entirely Markovian;
this allows us to operationally determine the time scales of finite
non-Markovian noise as well as to construct sensible Marko-
vian ASFs to quantify RB non-Markovianity, as exemplified in
Sec. VIII.

where,

p
:1 := tr
[
�
(M )


:1

]− 1

dS
2 − 1

,

�
(M )


:1 (·) := trE

[


©

n=1
�n (ρE ⊗ · )

]
, (19)

that is, the initial block of finite non-Markovian noise looks
like a single noise map �(M )


:1 if we randomize over a sin-
gle Clifford within this block, with the remaining ones set
to identities. This is more clearly seen in Fig. 3. This is,
again, at best an approximation, but one that serves effec-
tively to estimate the time scales for non-Markovian noise
in a RB experiment. Of course, presumably, in realistic
cases this would be more complicated and possibly all
of the noise process be time dependent, albeit with small
non-Markovianity effects.

Another scenario could be to have an almost Marko-
vian noise initially, up to a sequence length 
, after which
non-Markovianity turns significant. Then we have the
following.

Corollary 2: (Late non-Markovian noise). Let ρ be an ini-
tial state on a system-environment, SE, composite and let
Sm:
+1

m (ρ) describe a RB sequence of length m with noise
described by CPTP maps �(M )

n on S and noise strengths pn
for all n up to a sequence length 
 < m, with the rest of the
sequence having noise CP maps �ñ on SE. Then the aver-
age sequence fidelity upon acting with a POVM element
M is given by

Fm = tr{M E[Sm:
+1
m (ρ)]}

= p1 · · · p
 tr[M trE ◦�m+1 ◦ Am:
+1(ρ)]

+ tr[M trE ◦�m+1 ◦ Bm:
+1(ρ)], (20)

where

Am:k(ρ) :=
m
©

n=k

(
$�n −��n

)⊗ IS

(
dS

2 − 1
)m−k+1

(
ρ − ρE ⊗ 1

dS

)
,

(21)

Bm:k(ρ) := m
©

n=k
��n(ρE)⊗ 1

dS
, (22)

with $�n and ��n defined in Eqs. (10) and (11), respec-
tively.

This case might be relevant in practice whenever the
sequence length 
 is relatively small, both because non-
Markovian noise would affect relevant computations and
because the onset of such non-Markovian deviations could
be resolved by a RB experiment.

Furthermore, in the middle of these two cases, we
have the possibility of noise being intermittently non-
Markovian, i.e., being displayed significantly over blocks
of some finite sequence length. We have then the
following.

Corollary 3: (Blocks of finite non-Markovian noise). Let
ρ be an initial state on a system-environment, SE, com-
posite and let S{m:
+1,
:1}

m (ρ) describe a RB sequence of
length m with noise given by CP maps �n on SE for all
n up to a sequence length 
 < m, then at the 
th step by
�
(·) → ε ⊗ trE ◦�
(·) for some E state ε, and with the
rest of the sequence having noise CP maps�ñ on SE. Then
the average sequence fidelity upon acting with a POVM
element M is given by

Fm = tr
{
M E

[
S{m:
+1,
:1}

m (ρ)
]}

= tr
{
M trE ◦�m+1 ◦ Am:
+1 [ε ⊗ trE ◦A
(ρ)]

}

+ tr [B
(ρ)] tr
{
M trE ◦�m+1 ◦ Bm:
+1

(
ε ⊗ 1

dS

)}
,

(23)

with A
:k and B
:k defined as in Corollary 2.

This turns into a much more complicated ASF, but
in essence any other combination considering finite non-
Markovian noise can be considered. Of course, experimen-
tally, there would be other challenges involved to study
these more complicated finite non-Markovian noise pro-
cesses, such as being restricted to short sequence lengths
and/or requiring a larger amount of observations.

All cases in Corollaries 1, 2, and 3, are derived in
detail in Appendix E. We now turn to study two numerical
examples of non-Markovian RB.
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VII. NUMERICAL MODEL: TWO-QUBIT FULLY
NON-MARKOVIAN SPIN NOISE

As a proof of principle, we now test Eq. (7) with
a qubit in S subject to time-independent unitary noise
�(·) = λ(·)λ†, where λ = exp(−iδH), due to interaction
with another qubit, identified as E, where H given by the
two-spin interaction

H = J X1X2 + hx(X1 + X2)+ hy(Y1 + Y2), (24)

with Xi, Yi being Pauli matrices acting on the ith site. Even
though we use this as a simple theoretical construction
and illustration, similar noise dynamics, albeit with many
more considerations, come upon in real spin qubit quantum
computers, e.g., as undesired crosstalk [67].

We take J = 1.7, hx = 1.47, and hy = −1.05 arbitrar-
ily, for which we compute the ASF Fm as a function of
m, both by numerical averaging and employing Eq. (7)
with δ = 0.029 475. We take ρ = |00〉〈00| and M = |0〉〈0|
and ignore SPAM errors. We display the results in Fig. 4
together with its Markovianized ASF, F (M )

m , whereby the
time-independent noise is modeled as a CP map given by
�(M )(·) = trE ◦�(ε ⊗ ·); specifically there we perform the
numerical average over 50 samples of numerical sequence
fidelities computed by sampling Haar random one-qubit
unitaries, with the bars denoting the standard deviation of
the mean.

We can verify that Eq. (7) effectively predicts the cor-
rect ASF, which is a rather complicated decaying function
of m, clearly nonexponential. The numerical data remains
reasonably well around the analytical prediction, with
deviations becoming apparent for larger sequence lengths,
which can be understood as compounded error. Despite
these deviations being relatively small, they are signifi-
cant enough that they can be probed numerically with a
reasonable sample size for small sequence lengths, say
for at least m � 50. This also makes manifest that for
larger sequence lengths, many more sample runs would
be needed to reveal non-Markovianity deviations. The RB
non-Markovianity, NFm

q with respect to the Markovian
counterpart can also be swiftly computed through the sum
of absolute values of the differences between Fm and F (M )

m ;
in particular, in Fig. 4 the RB non-Markovianity is not par-
ticularly high (between NF100

1 ≈ 2.1 and NF100∞ ≈ 0.04)
but it is enough to be distinguished numerically for small
sequence lengths.

Let us now consider the effect of SPAM errors. Sup-
pose the initial state ρ is affected by the same � error
for some small δ = �1, and that M is slightly rotated
via exp(−i�2Y) for a small �2. In Fig. 5 we show
examples for both mild,�1 = 0.04232 and�2 = 0.09321,
and much stronger noise with, �̃1 = 0.2932 and �̃2 =
0.10321.
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FIG. 4. Average sequence fidelity for time-independent
unitary non-Markovian noise and deviations from its Marko-
vianized counterpart. We consider the noise model described
by the two-spin interaction of Eq. (24) with δ ≈ 0.03, J = 1.7,
hx = 1.47, and hy = −1.05, for a single qubit as system S. We
take ρ = |00〉〈00| and M = |0〉〈0|. Top: the continuous (red)
line denotes the analytical ASF given by Eq. (7), with each
point joined for clarity, the dots denote the numerical average
of the ASF over 50 samples, with bars being the standard devi-
ation of the mean (uncertainty of the numerical mean from the
true mean), and the dashed (blue) line denotes the analytical
ASF of the Markovianized process with time-independent noise
�(M )(·) = trE ◦�(ε ⊗ · ), here with ε = |0〉〈0|. Bottom: devia-
tions of the ASF by both the analytical data (continuous red line)
and numerical data produced by Eq. (7), from the Markovianized
ASF, F (M )

m (dashed blue line).

In Appendix G, we also show the case where the prepa-
ration affects only S by some rotation exp(−iγX ) with
a small γ , but somehow does not generate correlations
with E. Similar to Markovian noise models, add an off-
set to the average fidelities. In the non-Markovian case,
however, the error rates do seem to be affected, presum-
ably mainly because of the initial correlations induced by
the preparation errors, as argued before in Sec. IV. This is
still an aspect that would need to be examined closely, as
when SPAM errors are significant, the offset also appears
larger in the non-Markovian case, making it more difficult
to distinguish non-Markovian errors from Markovian ones
numerically.

We also notice in Appendix G that the non-Markovian
effect of deviating from an exponential seems to fade in
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FIG. 5. Effect of SPAM errors in the two-qubit spin noise
in Eq. (24). We consider the noise model described by the two-
spin interaction of Eq. (24) with δ ≈ 0.03, J = 1.7, hx = 1.47,
and hy = −1.05, for a single qubit as system S. On both plots,
the continuous (red) line denotes analytical ASF in Eq. (7),
with each point joined for clarity, dots denote numerical aver-
age of the ASF over 150 samples, with bars being the standard
deviation of the mean (uncertainty of the numerical mean from
the true mean), and the dashed (blue) line denotes the analyt-
ical ASF of the Markovianized process. Top: the initial state
ρ = |00〉〈00| is affected by the sequence noise� ∼ exp(−i�1H)
for a small �1 ≈ 0.04 and M = |0〉〈0| is slightly rotated via
� ∼ exp(−i�2Y) with a small �2 ≈ 0.09. Bottom: �̃1 ≈ 0.29
and �2 ≈ 0.10 are increased considerably, amounting to large
SPAM errors. In all cases the sample size is 100.

increasing E qubits; this is expected but this too would
need to be thoroughly studied in realistic scenarios where
the dimension of the environment is effectively finite
[68,69]. On the other hand, we notice as well that an
XX -spin chain displays practically no deviations from an
exponential ASF decay presumably because of the absence
of the external field, i.e., while the noise is non-Markovian,
N �= 0, RB displays only minimal deviations, NFm

q ≈ 0,
and the behavior is almost exponential for all sequence
lengths.

While this is mainly a numerical test of our main result,
we now show an example and propose how to analyze
a plausible realistic scenario for a RB experiment dis-
playing finite non-Markovian noise, and having no prior
knowledge of a model for such noise.

VIII. NUMERICAL EXAMPLE: NOISE MEMORY
TIME SCALES, MARKOVIANIZED AVERAGE

SEQUENCE FIDELITY, AND COHERENT NOISE

Consider now again a pair of qubits that up to some
sequence length 
 display an ASF that is mostly non-
Markovian and subsequently turns almost Markovian.
Here we model the underlying noise with

�(
)
n = qn−
�+ (1 − qn−
)�(M ), (25)

where qn−
 = [1 + exp(n − 
)]−1 and both �, �(M ) are
determined as in the previous example with Eq. (24) with
the same constants, J = 1.7, hx = 1.47, and hy = −1.05,
but we now fix δ ≈ 0.03 for � and δ(M ) = 2.5δ for �(M ).
In particular, we notice that qk converges rapidly to 1
for k < 0, i.e., for a sequence lengths m < 
, similarly
converges rapidly to 0 for the remaining k > 0, meaning
sequence lengths m > 
, and finally qk = 0.5 at k = 0, i.e.,
for a sequence length m = 
.

Henceforth we assume that an experimenter would not
know both what the noise maps�(
)

n are, nor what the non-
Markovian finite sequence length 
 is. Given Corollary
1, however, we know that whenever we have finite time-
independent non-Markovian noise, within the Markovian
part the decay will be practically exponential with the non-
Markovian part acting as SPAM errors. Specifically, here
we would get an ASF of the form of Eq. (18) for almost
time-independent noise (i.e., with almost equal noise
strengths p
+1 ≈ . . . ≈ pm) after such sequence length 
.
Our expression assumes that the transition to Markovian
noise occurs from step to step, however, even if dissipa-
tion occurs smoothly and non-Markovianity never entirely
fades, we can still estimate at which sequence length the
memory of the noise stops being relevant by identify-
ing exponential decays. This also allows identification of
a Markovianized time-independent ASF with which the
experimenter can estimate the impact of non-Markovian
errors.

A way to achieve this in practice is by fixing Clifford
gates to identity wherever the decay appears nonexpo-
nential; this will give an exponential decay of the ASF
whenever there is at most one random Clifford within
the non-Markovian sequence. In Fig. 6 we display the
ASF, Fm, both analytical and numerical, for a finite
noise memory process with noise modeled by Eq. (25),
again taking ρ = |00〉〈00| and M = |0〉〈0|. We also dis-
play numerical ASFs, denoted Fm/{i,...,j }, with fixed identi-
ties at sequence lengths i, . . . , j . The corresponding ASFs
Fm/{i,...,j } will normally be decreasing as Fm > Fm/{1} >
Fm/{1,2} > · · · > Fm/{1,2,...,10} given that fixing identities at
subsequent steps is equivalent to set compounding error
over such steps, which can be thought of simply as leaving
the noise as a dynamical process to accumulate in time.

The non-Markovian sequence length can be identified
by matching approximately the decay rate pm/{i,...,j } of one
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FIG. 6. Determining the sequence length of finite non-
Markovian noise. Top: a RB experiment might display devia-
tions from an exponential over a finite sequence length, as shown
by the first ASF from the top, with the continuous red line denot-
ing the underlying analytical ASF, Fm. Such non-Markovian
noise sequence length can be determined experimentally by fix-
ing Cliffords to identities, running corresponding RB protocols
to obtain ASFs Fm/{i,...,j }, where {i, . . . , j } denotes steps taken
to identity (shown joined in the plot for clarity), fitting expo-
nentials to these, and approximately matching their decay rates
pm/{i,...,j } with the one in the manifestly exponential part in the
original data. Bottom: the non-Markovian noise sequence length
is determined to be 
 ≈ 9; the dot-dash purple line denotes the
curve with the decay rate pm/{1,...,8} and constants A, B of the fit-
ted exponential of the original data starting at m = 9. Once 
 is
determined, a sensible Markovianized ASF, shown as a dashed
blue line, can be taken with p = pm/{1,...,8} and reasonable crite-
ria for fixing A, B; here we choose A ≈ B assuming low SPAM
errors. The analytical Markovianized time-independent ASF of
the form we propose in Sec. V is shown with orange dots just as
a comparison.

of these sequences Fm/{i,...,j } with the corresponding one of
the manifestly Markovian part in the full sequence. Once
the decay rate is determined, a sensible time-independent
Markovianized ASF, F̃ (M )

m , can be constructed by mak-
ing reasonable assumptions for the SPAM factors A and
B. Detail of this process is shown in Appendix G. For the
case of the RB experiments in Fig. 6, the non-Markovian
noise sequence length is determined to be 
 ≈ 9 by approx-
imately matching pm/1,...,8 with the corresponding one for
the exponential fit between sequence lengths 15 ≤ m ≤ 30
of the original data. Notice that in our model in Eq. (25),

at sequence length m = 9 the noise still has half probabil-
ity of acting jointly on SE; the found 
 ≈ 9 just says that
after such sequence length the decay turns mostly expo-
nential. We then finally constructed a Markovianized ASF
with F̃ (M )

m = Apm/{1,...,8} + B with A ≈ B supposing SPAM
errors to be small; we compare this with a Markovianized
construction as proposed in Sec. V, with time-independent
noise given throughout by �(M ).

This practical approach can work reasonably well, as
we show in this example, and allow us both to determine
the amount of memory within the noise, i.e., for how long
the noise is being meaningfully non-Markovian, as well as
to operationally construct a time-independent Markovian-
ized ASF with which the impact of non-Markovianity in
the noise can be quantified. The approach is consistent as
well, in the sense that applying it to an exponential decay
yields 
 = 1 and at most a numerical error due to fixing an
identity on the first step.

There are, however, two apparent downsides to this
approach, one is having to run another set of experiments
requiring a higher amount of samples, given that the noise
accumulates and makes it harder to get reliable data, and
the second is that the ASFs with fixed identities Fm/{i,...,j }
can eventually get too low if the noise memory is too high
and not provide useful information. These are issues that
could be resolved easily or otherwise depending on the
particular case at hand.
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FIG. 7. Diagnosing coherent non-Markovian noise. Inter-
leaving identities can allow determination of whether non-
Markovian noise is coherent: in a continuous red line we show
the analytical ASF with the same model of Eq. (24), with ρ ∼
|00〉, M ∼ |0〉, and same parameters as displayed in Fig. 4, with
numerical data displayed by teal points with bars denoting uncer-
tainty around the mean; in circles and triangles are shown numer-
ical ASFs Fm/{i,...,j } with Cliffords at time steps {1, 3, 5, . . .} and
{1, 2, . . . , 6, 8, 9, . . . , 13, 15, 16, . . .} set to identity, respectively.
Here we show only two examples of Fm/{i,...,j }, not describing an
exponential decay, for clarity, but similar behavior occurs inter-
leaving identities at any set of steps. Numerical averages are done
with 200 sequence fidelity samples.
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Finally, while this approach cannot be used generally
on fully non-Markovian noise, i.e., one over all sequence
lengths, to determine operationally a sensible Markovian-
ized ASF F̃ (M )

m , it can nevertheless tell us whether the
non-Markovian noise we are dealing with is coherent.
This is important because whenever coherent noise can
be diagnosed and characterized, e.g., with via unitarity
measures [8,24,70,71] or otherwise, in principle, it could
be addressed and calibrated if we have access to the E
qubits. Precisely then, we may tell if the noise is uni-
tary over the whole SE if we get a general nonexponential
behavior described by Eq. (7) no matter how many iden-
tities we fix, or if some dissipation is occurring and we
rather have a scenario closer to that of Corollary 3 of finite
non-Markovian blocks of noise. We use the model of the
previous section in Eq. (24) to exemplify this, as shown
in Fig. 7. The way we can proceed is to run RB experi-
ments with a given number of identities interleaved; if the
deviations from an exponential disappear, or fade consid-
erably, this might point out to some dissipation, otherwise
we would be able to identify the noise as highly coher-
ent. Here once again the challenge is rather with numerical
precision and compounded error, as interleaving identities
highly degrades the ASF.

IX. CONCLUSIONS AND DISCUSSION

We have, (i) derived a general analytical expression
for the average sequence fidelity of a randomized bench-
marking experiment with the Clifford group subject to
gate-independent non-Markovian noise, (ii) proposed a
theoretical measure to quantify non-Markovian deviations
in an ASF, (iii) derived the ASF for the case of finite non-
Markovian noise, allowing us to operationally estimate
both non-Markovian noise time scales and the measure
of deviations from Markovianity, and (iv) exemplified
all these with two proof-of-principle numerical examples.
Along the paper we also discuss the effect of state prepa-
ration and measurement errors in RB with non-Markovian
noise, as well as the case of classical correlations, which
we argue can be treated as a Markovian time-dependent
problem, and more generally the idea of RB blindness to a
subclass of non-Markovian noise processes.

The ASF in our main result makes the depolarizing
effect of averaging over Clifford gates on the system of
interest manifest, while taking all of the noise in the
sequence to the environment. The reduction of our main
result to the standard Markovian gate-independent sce-
nario is then straightforward with the trace over the envi-
ronment giving rise to the noise strength and the SPAM
error constants, and similarly one may consider cases
where non-Markovian noise is finite over a subset of
sequence lengths. Our main result also makes it clear that,
in general, non-Markovian noise will display nonexpo-
nential behavior, although we point out that there could

be a subclass of non-Markovian models that do display
an almost exponential decay that in practice would be
almost impossible to resolve. We exemplify numerically
how for small sequence lengths, deviations from Marko-
vianity can be observed efficiently, as well as how the
relevant time frames for finite non-Markovianity can be
operationally determined and non-Markovian deviations in
the ASF quantified.

We highlight as well that the methods to quantify
non-Markovian effects, determine memory time scales,
and diagnose coherence of non-Markovian noise, could
be implemented beyond the randomized benchmarking
framework on other noise benchmarking, characterization
or mitigation approaches whenever temporal correlations
should be taken into account, e.g., for crosstalk or leakage
errors [72–74], similar to how it is done within the frame-
work of resource theories in Ref. [75] with the notion of
temporal coarse graining.

Needless to say, there are countless ways to move
forward in the study of time-correlated errors in quan-
tum computing. Arguably, the clearest ones arising from
our paper within the RB procedure, would be to have a
model-independent ASF, similar to the Markovian case, to
benchmark other experimentally relevant groups or more
generally arbitrary gate sets, to study context-dependent
errors, with one possible way being the one we propose
in Fig. 8, or to incorporate non-Markovianity in the gen-
eral RB framework carefully constructed in Ref. [6]. All
of these extensions have already been studied in quite
some depth for Markovian errors and doing the same for
the non-Markovian case would be a natural step forward.
Other than this, there are questions that still would need
to be understood such as the impact of non-Markovianity
in decay rates as a function of sequence length, or explic-
itly how a higher or lower amount of non-Markovianity
affects the average gate fidelity. More generally, there is

FIG. 8. A circuit describing both gate-dependence and
non-Markovianity. The full system consists of a SE system
in state ρ and classical registers [x], [a] and [r]. The π oper-
ations are permutations, R are randomizing operations and R
are reset operations. Vertical lines joining with • denote control
with the corresponding classical register: essentially the CNOT
gates (control with ⊕ in the [x] extreme) will carry the depen-
dence from the applied gates at every step. Finally in RB the
inverse operation (with an associated error) would be applied and
a measurement in S would be performed.
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still a need to deeply understand errors arising from tem-
poral correlations, and our result represents a step in this
direction.
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APPENDIX A: THE PROCESS TENSOR OF THE
NOISE AND GATE SEQUENCES

The process tensor is a multilinear map taking CP maps
as the input and giving a single quantum state as the output.
The operational scenario is the following: an initial quan-
tum state ρ on the joint SE composite is acted on with an
operation G1 solely on system S, which, in general, is given
by a CP map; subsequently the whole composite evolves
unitarily through a unitary map U1, after which an opera-
tion G2 is performed on S, then the whole evolves unitarily
under a unitary map U2, and so on, until an intervention Gk,
followed finally by a unitary map Uk. This means the final
state in system S will be given by

ρ
(k)
S = trE

[(
k
©

i=1
Ui ◦ Gi

)
ρ

]
, (A1)

where here we implicitly write G
 for IE ⊗ G
. The process
tensor is thus a map Tk:1 : B(HS)

⊗2k → B(HS), where
B(H ) means space of bounded linear operators over the
Hilbert space H , taking k CP maps as arguments and
giving a quantum state as the output at time step k, i.e.,

Tk:1

[ �Gk:1

]
= ρ

(k)
S , (A2)

where �Gk:1 = (G1,G2, . . . ,Gk). Such operations Gi are said
to form an intervention and belong to an instrument, which
can be understood as a generalization of a POVM, and
the particular outcomes of each intervention yield a joint
probability distribution describing a stochastic process.

The generalization of a Choi state, as given by the Choi-
Jamiołkowski isomorphism [47,76], for a k-step process
tensor follows by introducing k maximally entangled states
ψAiBi ∈ B(HAi ⊗ HBi), where HAi

∼= HS and similarly
for B, and letting half of each (that is, the part of either
subspace Ai or Bi) act as an input at every step by swapping
the input spaces with the corresponding auxiliary space.
This is more clearly illustrated in Fig. 9.

FIG. 9. The Choi-state representation of a k-step process
tensor, denoted ϒk:1, can be obtained by swapping out the sys-
tem, Si with half a maximally entangled state, ψAiBi , at each step
i. The final state is an unnormalized many-body state acting on a
d2k+1

S -dimensional system.

Specifically, the Choi-state of the process tensor takes
the form

ϒk:1 = trE

[(
k
©

i=1
Ui ◦ Si

)
ρ ⊗ ψ⊗k

]
, (A3)

where here we are implicitly writing Ui for Ui ⊗ IA1B1···AkBk
andψ⊗k = ψA1B1 ⊗ · · · ⊗ ψAkBk . The generalized swap Si
between system S and an auxiliary space Ai at time step i
is defined by Si(·) := ςi(·)ςi, where here

ςi :=
dS∑


,j =1

IE ⊗ |
〉〈j | ⊗ IA1B1···Ai−1Bi−1 ⊗ |j 〉〈
|

⊗ IBiAi+1Bi+1···AkBk . (A4)

Similar to the case of quantum channels, the isomorphism
between the action of the process tensor and its Choi
representation is manifest [77] through the relationship

Tk:1

[ �Gk:1

]
= trS

[
ϒk:1

(
1S ⊗ YT

k:1

)]
, (A5)

where here

Yk:1 =
(

k⊗
i=1

1Ai ⊗ Gi

)
ψ⊗k, (A6)

is the Choi state for the operations �Gk:1, the notation trS
stands for partial trace over all except output in S, and T
denotes a transpose.

The tensor Yk:1 is an example of a Markovian process
tensor in the sense that it does not have any temporal corre-
lations and thus assumes a product form. For a Markovian
dynamical k-step process, ϒ(M )

k:1 = ⊗k
i=1�i:i−1 ⊗ ρS, the

Choi states �j :i can either correspond to a closed sys-
tem dynamics between steps i and j , or in general to
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FIG. 10. Process tensor for a Markov process ϒ(M )

k:1 , having
no temporal correlations, can be described by the Choi stateϒ(M )

k:1
taking a product of Choi states �j :i connecting adjacent time
steps i to j . Each �j :i corresponds to a CP map describing the
(open) system evolution between time step i and j .

a CP dynamics, e.g., that of an open system, where the
environment is discarded between each step and no infor-
mation passes on to the next step, as shown in Fig. 10. The
order of the spaces will be relevant whenever two tensors
are contracted and can be written generally through swaps
with auxiliary spaces and half maximally entangled states.

In this paper we describe a noise RB sequence as a
process tensor with the dynamics being described by the
noise at each step, Ui → �i. Explicitly, in the main text
we denote the tensor Choi state for a m + 1-step process
for the noise as

ϒm = trE

{[
m+1
©

i=1
(�i ⊗ Iaux) ◦ Si

]
ρ ⊗ ψ⊗m+1

}
, (A7)

where Iaux is an identity map on an auxiliary space aux =
A1B1 · · · Am+1Bm+1 � S⊗2(m+1) composed of m + 1 pairs
of S systems, Si is a swap gate between S and one of these
pairs in the ith auxiliary space, say Ai, and ψ := ∑ |ii〉〈jj |
is an unnormalized maximally entangled state. The ten-
sor state for the gate sequence, on the other hand, can be
defined simply

Cm = 1S ⊗
[

m+1⊗
i=1

(
IAi ⊗ Gi

)]
ψ⊗m+1, (A8)

where strictly speaking, here we are defining Cm = 1 ⊗
Am, where Am is the Choi state of the sequence of gates
Gi, and Gi can be defined to act on either auxiliary space
Ai or Bi, the choice only depends on what auxiliary space
the swap Si on the definition ofϒm swaps with, so that the
contraction ϒmCT

m contracts the correct spaces.

APPENDIX B: AVERAGE GATE SEQUENCE

Representing the noise and gate sequences as process
tensors implies that computing the ASF just requires com-
puting the average gate sequence, E

(
CT

m

)
.

Whenever the gates entering this sequence belong to
at least a unitary 2-design, we can simply replace the
average over gates by that over unitaries distributed uni-
formly, i.e., according to the Haar measure, say μ, over
the dS-dimensional unitary group, which we denote U(dS).
The Haar measure is the unique measure on U(d) satis-
fying invariance under left and right multiplication, i.e.,
it is invariant under arbitrary rotations. Specifically, given
a subset V ⊆ U(d), we have μ(W) = ∫

W
dμ(U) for the

Haar measure, μ, with the (left-right invariance) property

μ(W)=μ(VW)=
∫
W

dμ(VU)=
∫
W

dμ(UV)=μ(WV),

(B1)

for any fixed V ∈ U(d). For any quantity f depending on a
unitary U ∈ U(d), we denote integration over such unitary
by E[f (U)] and refer to it as the Haar or uniform average
of f .

Let the action of the unitary maps Gi be given by Gi(·) =
Gi(·)G†

i , then let us compute

E
[
C†

m

] = 1S

m+1⊗
i=1

dS∑

i,ki=1

∫
U(dS)

(
|
i〉〈ki| ⊗ G†

i |
i〉〈ki|Gi

)

× dμ(G1) · · · dμ(Gm), (B2)

where crucially, Gm+1 = G†
1G†

2 · · · G†
m. This means that we

need to be able to compute integrals with two pairs of Gi

and G†
i terms. One way to do this is by employing the 2-

moment of U(d), given by [78,79]

∫
U(d)

Uv1u1U∗
v′1u′

1
Uv2u2U∗

v′2u′
2

dμ(U)

=
∑
σ ,τ∈S2

δu1u′
σ(1)
δu2u′

σ(2)
δv1v

′
τ(1)
δv2v

′
τ(2)

Wg(τσ−1, d),

(B3)

where here the subindices v1u1, v′
1u′

1, v2u2, v′
2u′

2 refer to
components of the same matrix U (with U∗ denoting com-
plex conjugate), with the extra subindices 1, 2 being mere
labels, and where S2 is the symmetric group on two ele-
ments. The symbol Wg is the Weingarten function, which
here takes the values

Wg[(1)(2), d] = 1
d2 − 1

, Wg[(1, 2), d] = − 1
d(d2 − 1)

,

(B4)

on the two possible permutations τσ−1 ∈ S2.
Then we can let G
 = ∑

Gv(
)u(
) |v(
)〉〈u(
)| for each G


and employ the 2-moment above; let us take the integral
over G1 first,
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E
[
C†

m

] = 1S ⊗
dS∑

u,v=1

∑
σ ,τ∈S2

Wg(τσ−1, dS)|v′(1)
1 u′ (1)

1 〉〈v′ (1)
τ (1)u

′ (1)
σ (1)|

m⊗

=2

∑
i
,j


∫
U(d)

(
|i
〉〈j
| ⊗ G†


|i
〉〈j
|G


)
⊗ |v′ (1)

τ (2) 〉〈v′ (1)
2 | ⊗ Gm · · · G2|u′ (1)

σ (2)〉〈u′ (1)
2 |G†

2 · · · G†
m dμ(G2) · · · dμ(Gm), (B5)

then we can do similarly with all remaining unitaries by also labeling each permutation mapping σ
 and τ
 for the
corresponding integral over each G
, i.e.,

E
[
C†

m

] = 1S ⊗
∑

Wg1 · · · Wgm|v(1)1 u(1)1 · · · v(m)1 u(m)1 u(m)σm(2)v
(1)
τ1(2)

〉〈v(1)τ1(1)u
(1)
σ1(1)

· · · v(m)τm(1)u
(m)
σm(1)u

(m)
2 v

(1)
2 |

δ(u(1)2 , v(2)2 ) · · · δ(u(m−1)
2 , v(m)2 ) δ(u(1)σ1(2)

, v(2)τ2(2)) · · · δ(u
(m−1)
σm−1(2)

, v(m)τm(2)), (B6)

where for easiness of notation we dropped the primes and
denoted Wg
 := Wg(τ
σ−1


 , dS), where a sum is implicit
over basis vectors and permutations on S2, and where
δ(a, b) stands for the usual Kronecker δab. We finally notice
that E

[
C

†
m

]
= E

[
CT

m

]
.

APPENDIX C: AVERAGE SEQUENCE FIDELITY

The Markovian case. As a first case let us verify that
the average gate sequence given by Eq. (B6) reproduces an
ASF described by a decaying exponential in the number of
gates when the noise is Markovian.

Consider first a single gate, m = 1. We have

E
[
CT

m

] = 1S ⊗
∑

Wg|v1u1uσ(2)vτ(2)〉〈vτ(1)uσ(1)u2v2|,
(C1)

where Wg implicitly depends on τσ−1, with each τ and σ
being summed over the symmetric group S2, and with an
implicit sum over each u and v.

For the Markovian process tensor, we consider noise
described by some dS-dimensional CP map �(M )

n at time
step n with Kraus representation �(M )

n (·) = ∑
i λ

(M )

in (·)λ(M )

in ,
so that

ϒ
(M )

1 = (�
(M )

2 ⊗ I) ◦ S2 ◦ (�(M )

1 ⊗ I) ◦ S1
(
ρ ⊗ ψ⊗2)

=
∑

(λ
(M )

i2 ⊗ 1)ς2(λ
(M )

i1 ⊗ 1)ς1(ρ ⊗ ψ⊗2)ς
†
1 (λ

(M ) †
i1 ⊗ 1)ς

†
2 (λ

(M ) †
i2 ⊗ 1)

=
∑

λ
(M )

i2 |α2〉〈β2|λ(M )

i1 |α1〉〈β1|ρ|δ1〉〈γ1|λ(M ) †
i1 |δ2〉〈γ2|λ(M ) †

i2 ⊗ |β1α1β2α2〉〈δ1γ1δ2γ2|. (C2)

Let us simply denote dS as d, as there is no environment to care about. Then we obtain the average sequence

E[S1(ρ)] = trS

{
ϒ
(M )

1 E
[
CT

m

]}
= �

(M )

2

[∑
Wg|v2〉〈u2|λ(M )

i1 |uσ(1)〉〈vτ(1)|ρ|v1〉〈u1|λ(M ) †
i1 |uσ(2)〉〈vτ(2)|

]

= �2

⎡
⎢⎢⎢⎢⎣

1
d2 − 1

⎛
⎜⎜⎜⎜⎝ tr

(∑
i

λ
†(M )

i1 λ
(M )

i1

)
1

︸ ︷︷ ︸
σ=τ=1

+
∑

i

tr(λ(M )

i1 ) tr(λ(M ) †
i1 ) ρ︸ ︷︷ ︸

σ=τ=(1,2)

⎞
⎟⎟⎟⎟⎠

− 1
d(d2 − 1)

⎛
⎜⎜⎜⎜⎝ tr

(∑
i

λ
†(M )

i1 λ
(M )

i1

)
ρ

︸ ︷︷ ︸
σ=1, τ=(1,2)

+
∑

i

tr(λ(M )

i1 ) tr(λ(M ) †
i1 ) 1︸ ︷︷ ︸

σ(1,2), τ=(1)(2)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦
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= �2

⎡
⎣d tr

(∑
i λ

†(M )

i1 λ
(M )

i1

)
−∑

i | tr(λ(M )

i1 )|2
d2 − 1

(
1

d

)
+

d
∑

i | tr(λ(M )

i1 )|2 − tr
(∑

i λ
†(M )

i1 λ
(M )

i1

)
d(d2 − 1)

ρ

⎤
⎦ . (C3)

Now, if the noise is trace-preserving as well, we have
tr
(∑

i λ
†(M )

i1 λ
(M )

i1

)
= tr(1) = d. Then we get

E[S1(ρ)] = �
(M )

2 ◦ Dp(ρ), (C4)

where we define Dp(X ) := pX + (1 − p)1/d as a depo-
larizing map with the so-called noise strength,

p :=
∑

i | tr(λ(M )

i1 )|2 − 1

d2 − 1
∈ [0, 1], (C5)

which has to be constrained to [0, 1]. If we denote the
noise map �(M )

n = ∑
i λ

(M )

in ⊗ λ
(M ) †
in , with the Kraus oper-

ators acting on the respective system S Hilbert space and
conjugate space, respectively, we can simply write

p = tr
[
�
(M )

1

]− 1
d2 − 1

. (C6)

The noise strength can be shown to be related to the gate
fidelity of �1 with respect to the identity [28], i.e., f�1,I =∫

dψ〈ψ |�(M )

1 (|ψ〉〈ψ |)|ψ〉, as p = df�1,I − 1/d − 1. This
is the relevant parameter, which in practice can be recov-
ered by running several sequences for different lengths and
averaging the resulting probabilities.

To generalize to an arbitrary number of time steps, we
now use the fact that the action of the depolarizing channel
can be written as

Dp(X ) =
∑

Wg|v2〉〈u2|λ(M )

i |uσ(1)〉〈vτ(1)|X |v1〉
× 〈u1|λ(M ) †

i |uσ(2)〉〈vτ(2)|, (C7)

for any X , which follows from Eq. (C3). This then implies
that for an arbitrary sequence length,

E [Sm(ρ)] = trS

{
ϒ(M )

m E
[
CT

m

]}
= �m+1 ◦ Dpm ◦ · · · ◦ Dp1(ρ)

= p1p2 · · · pm �
(M )

m+1

(
ρ − 1

d

)
+�

(M )

m+1

(
1

d

)
,

(C8)

where here now pn := tr[�(M )
n ] − 1/dS

2 − 1, as expected.
The case p1 �= p2 �= · · · �= pm corresponds to the Marko-
vian time-dependent noise case as in Ref. [9]. When the
noise strengths are the same this gives the usual fitting
model for the average probabilities

Fm = pm tr
[
M�

(M )

m+1

(
ρ − 1

d

)]

+ tr
[
M�

(M )

m+1

(
1

d

)]
:= Apm + B, (C9)

with A := tr
[
M�(M ) (ρ − 1/d)

]
and B := tr

[
M�(M )

(1/d)], which relate to state preparation and measurement
errors.

General non-Markovian gate-independent noise. We now consider the general situation where the noise is corre-
lated across each step through an external environment as depicted in Fig. 1. Let us take first the simplest case m = 1;
the process tensor for the noise sequence is

ϒ1 = trE
[
�2 ⊗ I) ◦ S2 ◦ (�1 ⊗ I) ◦ S1

(
ρ ⊗ ψ⊗2)]

= trE

[
(λ2 ⊗ 1)ς2(λ1 ⊗ 1)ς1(ρ ⊗ ψ⊗2)ς

†
1 (λ

†
1 ⊗ 1)ς

†
2 (λ

†
2 ⊗ 1)

]

= trE

[
λ2ζα2β2λ1ζα1β1ρ ζδ1γ1λ

†
1ζδ2γ2λ

†
2

]
⊗ |β1α1β2α2〉〈δ1γ1δ2γ2|, (C10)

where here ζab := 1E ⊗ |a〉〈b|, hence we get

E [S1(ρ)] = trS

{
ϒ1E

(
CT

1

)}
= trE

{
�2

[∑
Wg ζv2u2λi1ζuσ(1)vτ(1)ρ ζv1u1λ

†
i1ζuσ(2)vτ(2)

]}
. (C11)
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Let us write the Kraus operators of the nth noise map, �n, as

λin :=
dE∑

e(′)n =1

dS∑
s(′)n =1

L
ene′

n
sns′n
in |ensn〉〈e′

ns′
n|, (C12)

where the e and s indices refer to systems E and S, respectively; the subindex n is simply a label for the nth Kraus operator.
Then

E [S1(ρ)] =
∑

L

e1e′
1

s1s′1
i1 L

∗ ε1ε
′
1

ζ1ζ
′
1

i1 Wg trE

{
�2

[(|e1〉〈e′
1| ⊗ |v2〉〈u2|s1〉〈s′

1|uσ(1)〉〈vτ(1)|
)
ρ
(|ε′

1〉〈ε1| ⊗ |v1〉〈u1|ζ ′
1〉〈ζ1|uσ(2)〉〈vτ(2)|

)]}
,

(C13)

and let us now similarly write the initial state as

ρ =
dE∑

e,e′=1

dS∑
s,s′=1

χ
ee′
ss′ |es〉〈e′s′|, where

∑
χ

ee
ss = 1, (C14)

then also

E [S1(ρ)]

=
∑

L

e1e′
1

s1s′1
i1 χ

ee′
ss′ L

∗ ε1ε
′
1

ζ1ζ
′
1

i1 trE

{
�2

[
|e1〉〈e′

1|e〉〈e′|ε′
1〉〈ε1| ⊗

∑
Wg|v2〉〈u2|s1〉〈s′

1|uσ(1)〉〈vτ(1)|s〉〈s′|v1〉〈u1|ζ ′
1〉〈ζ1|uσ(2)〉〈vτ(2)|

]}

:=
∑

L
e1e
s1s′1
i1 χ

ee′
ss′ L

∗ ε1e′
ζ1ζ

′
1

i1 trE
{
�2
[|e1〉〈ε1| ⊗�s1ζ1(|s〉〈s′|)]}

=
∑

L

e2e′
2

s2s′2
i2 L

e1e
s1s′1
i1 χ

ee′
ss′ L

∗ ε1e′
ζ1ζ

′
1

i1 L
∗ ε2ε

′
2

ζ2ζ
′
2

i2 tr
[|e2〉〈e′

2|e1〉〈ε1|ε′
2〉〈ε2|

] |s2〉〈s′
2|�s1ζ1(|s〉〈s′|)|ζ ′

2〉〈ζ2|

=
∑

L
e2e1
s2s′2
i2 L

e1e
s1s′1
i1 χ

ee′
ss′ L

∗ ε1e′
ζ1ζ

′
1

i1 L
∗ e2ε1
ζ2ζ

′
2

i2 〈s′
2|�s1ζ1(|s〉〈s′|)|ζ ′

2〉 |s2〉〈ζ2|, (C15)

where the second line follows by Eq. (C7) and by defining

�snζn(X ) := dS δsns′nδζnζ ′
n − δsnζnδs′nζ ′

n

dS(dS
2 − 1)

X + dS δsnζnδs′nζ ′
n − δsns′nδζnζ ′

n

dS
2 − 1

(
1S

dS

)
. (C16)

Now let

αs(′)n ζ
(′)
n

:= dSδsns′nδζnζ ′
n − δsnζnδs′nζ ′

n

dS(dS
2 − 1)

, βs(′)n ζ
(′)
n

:= δsnζnδs′nζ ′
n

dS
− αsnζn (C17)

so that

�snζn(X ) = αs(′)n ζ
(′)
n

X + βs(′)n ζ
(′)
n

(
1S

dS

)
= αs(′)n ζ

(′)
n

(
X − 1S

dS

)
+ δsnζnδs′nζ ′

n

dS

(
1S

dS

)
. (C18)

Now, we can also define

E (2)
s(′)ζ (′) :=

dλ∑
i=1

dE∑
e=1

L
e4e2
s2s′2
i2 L

e2e0
s1s′1
i1 χ

e0e1
ss′ L

∗ e3e1
ζ1ζ

′
1

i1 L
∗ e4e3
ζ2ζ

′
2

i2

=
∑

〈e4s2|λi2 |e2s′
2〉〈e2s1|λi1 |e0s′

1〉〈e0s|ρ|e1s′〉〈e1ζ
′
1|λ†

i1 |e3ζ1〉〈e3ζ
′
2|λ†

i2 |e4ζ
′
2〉

= tr
[
(1E ⊗ 〈s2|)λi2(1E ⊗ |s′

2〉〈s1|)λi1(1E ⊗ |s′
1〉〈s|)ρ(1E ⊗ |s′〉〈ζ ′

1|)λ†
i1(1E ⊗ |ζ1〉〈ζ ′

2|)λ†
i2(1E ⊗ |ζ ′

2〉)
]

, (C19)
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where summation is over all i1, i2,. . . and e0, e1,. . . , and which contains all information about the noise
within the whole SE and the correlations in between the two. We can simply write this as E (2)

s(′)ζ (′) =
tr
[
〈s2|λi2 |s′

2〉〈s1|λi1 |s′
1〉〈s|ρ|s′〉〈ζ ′

1|λ†
i1 |ζ1〉〈ζ ′

2|λ†
i2 |ζ ′

2〉
]

as in the main text, where an identity on E is implicit. With this we
can write Eq. (C15) as

E [S1(ρ)] =
∑

E (2)
s(′)ζ (′)

[
αs1ζ1

(
δss′2δs′ζ ′

2
−
δss′δs′2ζ

′
2

dS

)
+
δs1ζ1δs′1ζ

′
1

dS

(
δss′δs′2ζ

′
2

dS

)]
|s2〉〈ζ2|. (C20)

In general, for an arbitrary sequence length, we have

E (m)
s(′)ζ (′) :=

∑
e,ε

χ
ee′
ss′ tr

⎡
⎣
⎛
⎝ 1∏
η=m

L

eηe′
η

sηs′η
iη |eη〉〈e′

η|
⎞
⎠ |e〉〈e′|

⎛
⎝ m∏

n=1

L
∗ εnε

′
n

ζnζ ′
n

in |ε′
n〉〈εn|

⎞
⎠
⎤
⎦

=
dλ∑

i=1

tr

[(
1∏

η=m

〈sη|λiη |s′
η〉
)

〈s| ρ |s′〉
(

m∏
n=1

〈ζ ′
n|λ†

in |ζn〉
)]

, (C21)

so that,

E [Sm(ρ)] =
∑

E (m+1)
s(′)ζ (′) 〈s′

m+1|�smζm ◦ · · · ◦�s1ζ1(|s〉〈s′|)|ζ ′
m+1〉 |sm+1〉〈ζm+1|. (C22)

The sequential application of � maps is given by

�smζm ◦ · · · ◦�s1ζ1(X ) := α
(m)
s,ζ

(
X − 1

dS

)
+ �

(m)
s,ζ

1

dS
, (C23)

where

α
(m)
s,ζ :=

m∏
n=1

αs(′)n ζ
(′)
n

, (C24)

and �
(m)
s,ζ is a sum of all m-term product combinations of αs(′)1 ζ

(′)
1

, . . . ,αs(′)m ζ
(′)
m

and βs(′)1 ζ
(′)
1

, . . . ,βs(′)m ζ
(′)
m

, that is,

�
(1)
s,ζ ∼ α1 + β1, (C25)

�
(2)
s,ζ ∼ α1α2 + α1β2 + β1α2 + β1β2, (C26)

�
(3)
s,ζ ∼ α1α2α3 + α1α2β3 + α1β2α3 + α1β2β3 + β1α2α3 + β1α2β3 + β1β2α3 + β1β2β3,

... (C27)

where αi = αs(′)i ζ
(′)
i

and similarly for βi; in general, there are 2m of these summands on �
(m)
s,ζ . However, notice that as

βi ∼ 1/dSδsiζiδs′iζ ′
i
− αi, every term simplifies to products of deltas, i.e.,

�
(1)
s,ζ ∼

δs1ζ1δs′1ζ
′
1

dS
, �

(2)
s,ζ ∼

δs1ζ1δs′1ζ
′
1
δs2ζ2δs′2ζ

′
2

dS
2 , · · · , �(m)

s,ζ ∼
∏m

i=1 δsiζiδs′iζ ′
i

dS
m . (C28)

Thus we can rewrite Eq. (C22) as

E [Sm(ρ)] =
∑

E (m+1)
s(′)ζ (′)

[
α
(m)
s,ζ

(
δss′m+1

δs′ζ ′
m+1

−
δss′δs′m+1ζ

′
m+1

dS

)
+ �

(m)
s,ζ

(
δss′δs′m+1ζ

′
m+1

dS

)]
|sm+1〉〈ζm+1|, (C29)
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and so for a measurement M, on average,

Fm =
dS∑

s,ζ ,s′,ζ ′=1

E (m+1)
s(′)ζ (′)

(
A(m+1)

s(′)ζ (′) + B(m+1)
s(′)ζ (′)

)
, (C30)

where

A(m+1)
s(′)ζ (′) := α

(m)
s,ζ

(
δs′m+1sδs′ζ ′

m+1
−
δss′δs′m+1ζ

′
m+1

dS

)
〈ζm+1|M|sm+1〉, B(m+1)

s(′)ζ (′) := �
(m)
s,ζ

(
δss′δs′m+1ζ

′
m+1

dS

)
〈ζm+1|M|sm+1〉.

(C31)

This expression contains 4dS(m + 1) terms, and could potentially be useful whenever the underlying noise model is not
known, as all this information will be contained solely on the factors E (m+1)

s(′)ζ (′) .
We can, however, write this expression in a more succinct way. We have

dS∑
s,ζ ,s′,ζ ′=1

E (m+1)
s(′)ζ (′)A

(m+1)
s(′)ζ (′) =

∑
tr

⎡
⎣
⎛
⎝ 1∏
η=m+1

〈sη|λiη |s′
η〉
⎞
⎠ 〈s| ρ |s′〉

(
m+1∏
n=1

〈ζ ′
n|λ†

in |ζn〉
)⎤
⎦
⎛
⎝
∏m

N=1

(
dSδsN s′N δζN ζ ′

N
− δsN ζN δs′N ζ ′

N

)
dS

m(dS
2 − 1)m

⎞
⎠

(
δs′m+1sδs′ζ ′

m+1
−
δss′δs′m+1ζ

′
m+1

dS

)

〈ζm+1|M|sm+1〉, (C32)

so now let us define the following. Let

$�n(ε) :=
dλ∑

i=1

trS(λin) ε trS(λ
†
in), (C33)

��n(ε) := trS

[
�n

(
ε ⊗ 1

dS

)]
, (C34)

for any operator ε acting on E. Then we notice that

1
dS

m

∑(
1∏

η=m

〈sη|λiη |s′
η〉
)

〈s|ρ|s′〉
(

m∏
n=1

〈ζ ′
n|λ†

in |ζn〉
)

m∏
N=1

(
dSδsN s′N δζN ζ ′

N
− δsN ζN δs′N ζ ′

N

)

= 1
dS

m

∑(
2∏

η=m

〈sη|λiη |s′
η〉
)(

dS trS(λi1)〈s|ρ|s′〉 trS(λ
†
i1)− trS[�1(〈s|ρ|s′〉 ⊗ 1)]

)( m∏
n=2

〈ζ ′
n|λ†

in |ζn〉
)

m∏
N=2

(
dSδsN s′N δζN ζ ′

N
− δsN ζN δs′N ζ ′

N

)

= 1
dS

m−1

∑(
2∏

η=m

〈sη|λiη |s′
η〉
) (

$�1 −��1

) 〈s|ρ|s′〉
(

m∏
n=2

〈ζ ′
n|λ†

in |ζn〉
)

m∏
N=2

(
dSδsN s′N δζN ζ ′

N
− δsN ζN δs′N ζ ′

N

)

...

=
[

m
©

n=1

(
$�n −��n

)] 〈s|ρ|s′〉, (C35)
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where as before there are implicit identities, which should be clear by context, i.e., for example, trS(λi)means trS(λi)⊗ 1S.
Then this means that

dS∑
s,ζ ,s′,ζ ′=1

E (m+1)
s(′)ζ (′)A

(m+1)
s(′)ζ (′) =

tr
{
M trE ◦�m+1

[
m
©

n=1

(
$�n −��n

)⊗ IS

] (
ρ − ρE ⊗ 1

dS

)}

(dS
2 − 1)m

, (C36)

where ρE := trS(ρ). Now for the second term, similarly (again we omit implicit identity operators),

dS∑
s,ζ ,s′,ζ ′=1

E (m+1)
s(′)ζ (′)B

(m+1)
s(′)ζ (′)

= 1
dS

m+1

dS∑
s,s′=1

dλ∑
i=1

tr

[
〈sm+1|λim+1 |s′

m+1〉
(

1∏
η=m

〈sη|λiη |s′
η〉
)

〈s| ρ |s〉
(

m∏
n=1

〈s′
n|λ†

in |sn〉
)

〈s′
m+1|λ†

im+1
|ζm+1〉

]

〈ζm+1|M|sm+1〉 = tr
[
(1E ⊗ M) ◦�m+1 ◦

(
m
©

n=1
��n ⊗ IS

)(
ρE ⊗ 1

dS

)]
. (C37)

Thus we can finally write

Fm = tr [M trE ◦�m+1 ◦ (Am + Bm) ρ] , (C38)

where

Am(ρ) :=
m
©

n=1

(
$�n −��n

)⊗ IS(
dS

2 − 1
)m

(
ρ − ρE ⊗ 1

dS

)
, (C39)

Bm(ρ) := m
©

n=1
��n (ρE)⊗ 1

dS
, (C40)

with $�n and ��n defined in Eqs. (C33) and (C34), respectively.

APPENDIX D: MARKOVIAN LIMIT

For the Markovian limit we take �n → IE ⊗�(M )
n and ρ = ρE ⊗ ρS. First, let us notice that, assuming �(M )

n are CPTP,

$
�
(M )
n
(ε) = tr

[
�(M )

n

]
ε, �

�
(M )
n
(ε) = tr

[
�(M )

n

(
1

dS

)]
ε = ε, (D1)

for any operators ε acting on E and σ on S. Then this implies that

trE ◦Am(ρE ⊗ ρS) → trE ◦
m
©

n=1

(
$
�
(M )
n

−�
�
(M )
n

)
(
dS

2 − 1
)m (ρE)⊗

(
ρS − 1

dS

)

= tr
[
�
(M )

1

]− 1(
dS

2 − 1
)m trE ◦

[
m
©

n=2

(
$
�
(M )
n

−�
�
(M )
n

)]
(ρE)⊗

(
ρS − 1

dS

)

...

=
∏m

n=1

(
tr
[
�(M )

n

]− 1
)

(
dS

2 − 1
)m

(
ρS − 1

dS

)

= p1 · · · pm

(
ρS − 1

dS

)
, (D2)
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where here as well pn := tr
[
�
(M )
n

]
−1

dS
2−1

is the noise strength of
�(M )

n , and

trE ◦Bm(ρE ⊗ ρS) → trE
m
©

n=1
�
�
(M )
n
(ρE)⊗ 1

dS
= 1

dS
,

(D3)

which implies that Fm → p1 · · · pm tr[M �m+1(ρ −
1/dS)] + tr[M �m+1(1/dS)] under Markovian noise.

APPENDIX E: FINITE NON-MARKOVIAN NOISE

Initial non-Markovian noise. Suppose a quantum noise
process ϒ̂m is non-Markovian up to some time step 
 < m
and almost Markovian in the remaining steps, i.e., ϒ̂m �
ϒ
 ⊗ ϒ

(M )

m:
+1, where ϒ(M )

m:
 is a Markov process from time
step 
+ 1 to time step m. This effectively would mean that
E is traced at the 
th step and the remaining noise maps act
only on S. We can describe this by replacing the action of
the noise map at the 
th step as�
(X ) → ε ⊗ trE[�
(X )],
where X is the joint SE state at such a step, and where ε is
some fiducial state of E. The remaining noise maps will be
given by �n → IE ⊗�(M )

n for 
 < n ≤ m + 1 with some
CPTP maps �(M )

n . This implies that

trE ◦Am(ρ)

→ trE ◦
m
©

n=1

(
$
�
(M )
n

−�
�
(M )
n

)
⊗ IS(

dS
2 − 1

)m

(
ρ− ρE ⊗ 1

dS

)

= p
+1 · · · pm trE ◦A
(ρ), (E1)

and also trE ◦Bm(ρ) = trE ◦B
(ρ) = tr [B
(ρ)]1/dS. In
particular, if the final noise were trace-preserving, we
would have tr [B
(ρ)] = 1. In general, however, this
implies

Fm → p
+1 · · · pm tr
[
M�

(M )

m+1 ◦ trE ◦A
(ρ)
]

+ tr [B
(ρ)] tr
[
M�

(M )

m+1

(
1

dS

)]
with 
 < m,

(E2)

where here again pn = tr
[
�(M )

n

]− 1/dS
2 − 1 is the noise

strength corresponding to �(M )
n .

This means, as one would expect, that in such a case
if non-Markovian noise cannot be resolved with a RB
sequence length 
, it would amount to SPAM errors, with
any subsequent ASF decay being Markovian. Notice, how-
ever, that for short sequence lengths, non-Markovian noise
could be resolved on average with a few runs of the
RB protocol; as explained in the main text, this would
allow estimation of the degree of non-Markovianity in the
underlying process.

Late non-Markovian noise. Now consider the oppo-
site, where the noise process is initially Markovian but
somehow E stops being superfluous after some time step

 < m, i.e., ϒ̂ � ϒ

(M )


 ⊗ ϒm:
+1. Now we have

Am(ρE ⊗ ρS)

→
m
©

n=1

(
$�n −��n

)⊗ IS(
dS

2 − 1
)m

[
ρE ⊗

(
ρS − 1

dS

)]

= p1 · · · p
 Am:
+1(ρE ⊗ ρS), (E3)

where here we define

Am:k(ρ) :=
m
©

n=k

(
$�n −��n

)⊗ IS

(
dS

2 − 1
)m−k+1

[
ρ − ρE ⊗ 1

dS

]
,

(E4)

whilst now Bm(ρE ⊗ ρS) = Bm:
+1(ρE ⊗ ρS), where sim-
ilarly, Bm:k(ρ) := ©m

n=k��n(ρE)⊗ 1/dS. Thus

Fm → p1 · · · p
 tr[M trE ◦�m+1 ◦ Am:
+1(ρ)]

+ tr[M trE ◦�m+1 ◦ Bm:
+1(ρ)] with 
 < m,
(E5)

so we get a similar behavior, but in this case, as we
have seen, it would generally be harder to resolve non-
Markovian effects in RB if these occur at longer sequences.

Blocks of finite non-Markovian noise. Now we may
consider the case when the noise process is split in
two non-Markovian processes, i.e., the first noise process
somehow approximately resets the environment at step 

and the remaining noise process is also non-Markovian
until step m, i.e., ϒ̂m � ϒ
 ⊗ ϒm:
+1. Now the only dif-
ference from a standard non-Markovian ASF is that at the

th step we have �
(X ) → ε ⊗ trE ◦�
(X ), where again
ε is some fiducial state of E and X is the state of SE at the

th step. This means we can write

Am(ρ) → Am:
+1 [ε ⊗ trE ◦A
(ρ)]

=
m
©

n=
+1

(
$�n −��n

)
(ε)

(
dS

2 − 1
)m−
 ⊗ trE ◦A
(ρ), (E6)

whilst now,
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Bm(ρ) =
(

m
©

n=
+1
��n

)(


©

n=1
��n

)
ρE ⊗ 1

dS

=
(

m
©

n=
+1
��n

)
trS

[
�n

{(

−1
©

n=1
��n

)
ρE ⊗ 1

dS

}]
ρE ⊗ 1

dS

= tr
[
�n

{(

−1
©

n=1
��n

)
ρE ⊗ 1

dS

}](
m
©

n=
+1
��n

)
ε ⊗ 1

dS

= tr [B
(ρ)] Bm:
+1(ε ⊗ 1/dS), (E7)

so we may write

Fm → tr
{
M trE ◦�m+1 ◦ Am:
+1 [ε ⊗ trE ◦A
(ρ)]

}+ tr [B
(ρ)] tr
{
M trE ◦�m+1 ◦ Bm:
+1(ε ⊗ 1/dS)

}
with 
 < m.

(E8)

This is a much more complicated behavior, but notice that similarly now after a sequence length 
, the first block of non-
Markovian noise will be manifest only as SPAM errors. Also, now in essence any other possible mixture of Markovian
and non-Markovian noise can be considered, e.g., if there is Markovian noise in-between this would give rise to p factors
within the first summand of Eq. (E8) containing A , and tr[B(ρ)] factors in the second summand.

In particular, suppose we have two blocks of finite non-Markovian noise, first one of length k < 
, and then a second
block of length 
 < m. Then we get a recursive expression for the ASF of the form

Fm → tr
{
M trE ◦�m+1 ◦ Am:
+k+1 [ε
 ⊗ trE ◦A
:k+1 [εk ⊗ trE ◦Ak(ρ)]]

}
+ tr [Bk(ρ)] tr [B
:k+1(εk ⊗ 1/dS)] tr

{
M trE ◦�m+1 ◦ Bm:
+k+1(ε
 ⊗ 1/dS)

}
with k < 
 < m. (E9)

If moreover the initial state is uncorrelated, ρ = ρE ⊗ ρS, we get

Fm →
tr
[

k
©

n=1

(
$�n −��n

)
(ρE)

]
tr
[



©

n=k+1

(
$�n −��n

)
(εk)

]

(dS
2 − 1)


tr
{
M trE ◦�m+1 ◦ Am:
+k+1 [ε
 ⊗ ρS]

}

+ tr [Bk(ρE ⊗ ρS)] tr [B
:k+1(εk ⊗ 1/dS)] tr
{
M trE ◦�m+1 ◦ Bm:
+k+1(ε
 ⊗ 1/dS)

}
with k < 
 < m. (E10)

This then generalizes to blocks with finite non-Markovianity �
n = 
n − (
n−1 + 
n−2 − · · · − 
1), where 
1 < 
2 <

· · · < 
n < m are sequence lengths.

APPENDIX F: CLASSICAL NON-MARKOVIAN
NOISE

Classical dephasing noise. For the case of classical cor-
relations we now exemplify how we may describe these
through a classical memory specified by an external clas-
sical stochastic process whose outputs control the noise�i
at every step i. We can depict a circuit for the RB sequence
as in Fig. 11(a). Here we focus on the model by Ref. [30]
and verify that we obtain the same behavior for the ASF.

In particular, such a model takes a qubit system with
errors �

(C)
i (·) = λi(·)λ†

i , where λi = exp (−iδi ⊗ Z) =
exp (−iδiZ), where Z = diag(1, −1) and with δi is a ran-
dom variable determined by the classical external control;
such variables are randomly sampled but then fixed for the
whole RB experiment. Thus a sequence of length m can be
treated as a Markovian time-dependent decay E [Sm(ρ)] =
p1 · · · pm �

(C)
m+1(ρ), where knowing the Kraus operators λ,

we can compute for small δ

pi =
| tr
(

e−iδiẐ
)

|2 − 1

dS
2 − 1

= 4 cos2 δi − 1
3

. (F1)

Letting the classical memory be a normally distributed dis-
crete stochastic process Xi ∼ N (μ = 0, σ 2) with mean
μ = 0 and variance σ 2, the so-called Markovian scenario
considers the control operations at step i giving a realiza-
tion Xi = xi and setting δi = xi. That is, all errors being
independent of each other. Ignoring SPAM errors, suppose
ρ = M = |0〉〈0|, so that

FC-Mark
m = tr {ME [Sm(ρ)]} =

m∏
i=1

(
4 cos2 δi − 1

3

)
.

(F2)
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FIG. 11. Classical non-Markovian noise. (a) A RB sequence with classical non-Markovian noise for an initial state ρS, gates {Gi}
and final measurement M. Correlations are determined by a classical stochastic process [x], whose output at each step i controls the
corresponding error map �i on S giving some other map �(C)

i . We reproduce the ASF in Ref. [30] for classical dephasing noise in the
cases of (b) classical Markovian noise and (c) classical dc noise with a standard deviation σ = 0.015; in both cases (teal) dots represent
numerical averages over 100 samples and the solid (red) curve is the analytical ASF.

The other extreme scenario is when all noise random vari-
ables are identical so that δi = δ, so-called dc noise; here
the control should measure a realization with probability p
and update the memory with a PDF of the form

∑
i P(X =

xi)�(δ − xi), where here � is a Dirac delta distribution.
Then E [Sm(ρ)] = pm e−iδẐρ eiδẐ , which similarly for ρ =
M = |0〉〈0| becomes simply

FC-dc
m = tr {ME [Sm(ρ)]} =

(
4 cos2 δ − 1

3

)m

. (F3)

For both extreme cases we see that we effectively repro-
duce the behavior described in Ref. [30], in particular, for
the average sequence fidelity. Here we still have to average
over the classical random variable:

〈
FC-Mark

m

〉 =
[∫ ∞

−∞

(
exp

(
δ2/2σ 2

)
σ
√

2π

)(
4 cos2 δ − 1

3

)
dδ

]m

,

〈
FC-dc

m

〉 =
∫ ∞

−∞

(
exp

(
δ2/2σ 2

)
σ
√

2π

)(
4 cos2 δ − 1

3

)m

dδ.

(F4)

For the Markovian case, the average can be carried out to
obtain a decay

〈
FC-Mark

m

〉 = Pm, where here P is the true
error rate together with the classical noise. For a standard
deviation of σ = 0.015, this gives

〈
FC-Mark

m

〉 ≈ (0.9997)m.
The dc case, as expected is more complicated, and one pos-
sibility is to expand the cosine function around δ = 0 to
analyze the average fidelity, similar to how it is done in
Ref. [30] with contributions up to δ2. The final behavior
of
〈
FC-dc

m

〉
differs both from an exponential and a simple

product of noise-strengths. We show plots for the aver-
age fidelities in both cases with a standard deviation of
σ = 0.015 in Figs. 11(b) and 11(c).

The shallow pocket model. We now consider a similar
model for a qubit S coupled to degree of freedom (DOF) on
a real line, which acts as an environment. This is labeled

a shallow pocket model because such DOF cannot store
energy internally. This is an interesting model for several
reasons, but here mainly because it leads to completely
positive and divisible dynamics of S but it is nevertheless
non-Markovian [34,62]. For RB, however, the nature of
classical correlations is what leads to a treatment of the
ASF as a time-dependent Markovian one.

The shallow pocket model now considers �(C)
n (·) =

λn(·)λ†
n with λn = exp(−iτn x̂n ⊗ Z) = exp(−iτn xn Z),

where x̂n is a position operator at time step n and τn are
time intervals representing evolution time of the nth step.
This immediately implies that the average sequence is
of the form E [Sm(ρ)] = p1 · · · pm �

(C)
m+1(ρ), where ρ =

ρS ⊗ |ψ〉〈ψ |. The initial state of the environment DOF is
taken as |ψ〉 such that 〈ψ |x1〉 = √

γ /π /(x1 + iγ ). Now
tracing out the environment at the end of the process is
equivalent to integrating x over the reals with a factor
〈ψ |x〉〈xm|ψ〉δxx2δx2x3 · · · δxmxm+1 . Thus we can think of the
external DOF as a classical dc noise distributed with a
probability density function |〈ψ |x〉|2.

That is, now we have

pτn(xn) =
| tr
(

e−iτn xn Ẑ
)

|2 − 1

dS
2 − 1

= 4 cos2(τn xn)− 1
3

.

(F5)

Notice that all p’s have to be constrained to [0, 1], so to
have a meaningful ASF the equivalent of our distribution,
namely |〈ψ |x〉|2, has to contain a low enough equivalent
of a variance, which amounts to choosing an appropriate
value for γ . Hence, now taking ρ = |0〉〈0| ⊗ |ψ〉〈ψ | and
M = |0〉〈0|, we get

F shallow
m = tr{M E[Sm(ρ)]} = γ

π

∫ ∞

−∞

pτ1,x · · · pτm,x

x2 + γ 2 dx,

(F6)
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which is somewhat harder to evaluate given that expand-
ing around small x is not a viable option. Regardless, the
point we make here is that classical correlations such as
the one before of dephasing noise or the shallow pocket
model can be treated on RB with a standard Markovian
time-dependent approach.

APPENDIX G: NUMERICAL CALCULATIONS

SPAM errors. As in the main text, here we consider
a qubit subject to time-independent unitary noise �(·) =
λ(·)λ† on a full N -qubit system, where λ = exp(−iδH)
with H given by the N -site Ising spin chain

H =
N∑

i=1

(
J
2

XiXi+1 + hxXi + hyYi

)

=

⎛
⎜⎝

0 hx − ihy hx − ihy J
hx + ihy 0 J hx − ihy
hx + ihy J 0 hx − ihy

J hx + ihy hx + ihy 0

⎞
⎟⎠ , (G1)

with Xi, Yi being Pauli matrices acting on the ith site. We
take a closed chain so that XN+1 := X1. In particular, in the
main text we take only N = 2 qubits, with site i = 1 being
system S.

Here we pick the values J = 1.7, hx = 1.47, and hy =
−1.05, fixing δ = 0.029 475. To take into account SPAM
errors numerically, suppose the initial state ρ is previously
affected by the same � error for some small δ = �1, and
that M is slightly rotated via exp(−i�2Y) for a small �2.
In Fig. 12 we show examples for both mild,�1 = 0.04232

and �2 = 0.09321, and much worse, �1 = 0.2932 and
�2 = 0.10321. We also consider the case where the prepa-
ration affects only S by some rotation exp(−iγX ) with a
small γ , but does not generate correlations with E.

In all cases SPAM makes it harder to numerically
resolve non-Markovian effects. Similar to the Markovian
case, SPAM errors generate an offset of the ASF, but in
general they also affect the decay rate of the errors. This
can be argued to be mainly due to the correlating effect of
errors but changes in the decay rates can also be seen when
the preparation does not generate correlations with E. The
impact of SPAM in the characterization of non-Markovian
noise with RB is thus an issue that still has to be studied in
greater detail.

Absence of nonexponential behavior. We notice that
for a similar noise model for a couple of qubits,

H = JxX1X2 + JyY1Y2

=

⎛
⎜⎝

0 0 0 Jx − Jy
0 0 Jx + Jy 0
0 Jx + Jy 0 0

Jx − Jy 0 0 0

⎞
⎟⎠ , (G2)

essentially no deviation from an exponential is seen.
We look again at time-independent noise given by
λ = exp(−iHδ) with small δ = 0.029 475 and take ρ =
|00〉〈00|, where one of the qubits is identified as system
S and the other one as the environment E, and take M =
|0〉〈0|. We show the corresponding ASF in Fig. 13 for the
arbitrary choices Jx = 1.2, Jy = −2.7.
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FIG. 12. Effect of SPAM errors in the two-qubit spin noise in Eq. (24). In the non-Markovian case, SPAM errors result in an
offset but also appear to affect the error rates. In (a) and (b) the initial state is affected by the same sequence noise with � exp(−i�1H)
for different values of �1 and M is slightly rotated via exp(−i�2Y) with a small �2. In (c) the initial state is only affected on system
S with a rotation exp(−iγX ) and a relatively large γ . In all cases the sample size remains fixed at 100 samples.
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FIG. 13. RB non-
Markovianity blindness
on an XX -spin chain.
Despite being generically
non-Markovian, the noise
model of Eq. (G2) displays
virtually no deviations from
a Markovian noise model
when J = 1.2, Jy = 2.7.

Notice that small deviations do occur at very short
sequence lengths, although they are practically negligi-
ble. While of course, we are not quantifying the non-
Markovianity of the model, and also different choices of
the couplings might display larger deviations, the point we
want to make is that there are going to be models that
are blind, or at least myopic, to non-Markovianity when
employing RB, and the circumstances when this occurs are
still to be better understood.

Increasing environment dimension. We now look at
the effect of increasing the number of qubits in E; notice-
ably the environment dimension does not show up explic-
itly in the main ASF in Eq. (7). We now employ similar
conditions on the Hamiltonian in Eq. (G1) for a changing
value of N . In Fig. 14 we show the deviations from RB
non-Markovianity for up to five environmental qubits, and
notice that the nonexponential deviations get effectively
damped, albeit slowly and for longer sequence lengths
first. This is expected behavior, but nevertheless it is still
a question what is exactly the dependence of the general
non-Markovian ASF in environment dimension.

Finite non-Markovian sequence lengths and non-
Markovian deviations. Whenever we have finite non-
Markovian noise, say over an initial sequence length
approximately 
, described by the CP maps�1,�2, . . . ,�
,
and an uncorrelated input state, by choosing to fix 
− 1
Cliffords after the first one to be identities, by Eq. (E2), we
get a Markovian decay with Fm � p
:1p
+1 · · · pm A + B,
where

p
:1 := tr
[
�
(M )


:1

]− 1

dS
2 − 1

, (G3)

with

�
(M )


:1 (·) := trE[�
 ◦�
−1 ◦ · · · ◦�1(ε ⊗ ·)], (G4)

with each �n in terms of Kraus operators λin acting on SE
spaces and co-spaces as �n := ∑

i λin ⊗ λ
†
in .

That is, the initial block of finite non-Markovian noise
looks like a single noise map �
:1 if we randomize over a

FIG. 14. Behavior of the ASF in environment dimension for an Ising spin chain as time-independent noise. We take as time-
independent noise Eq. (G1) for a single qubit in S and a variable number of qubits in E, with site i = 1 being system S. For all we pick
J = 1.7, hx = 0.9, and hy = −1.05, fixing δ = 0.029 475 and take ρ = |0〉〈0|⊗3 and M = |0〉〈0|, ignoring SPAM errors.
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single Clifford within this block, with the remaining ones
set to identities.

While this is an idealized scenario, we can use it to
estimate sequence lengths at which non-Markovian noise
effects are relevant in a RB experiment. In the main text
we model such a noise process with a noise map at the nth
step given by

�(
)
n := qn−
�+ (1 − qn−
)�(M ), where

qn := 1
1 + exp(n − 
)

, (G5)

where here again� = λ⊗ λ† with λ = exp(−iδH), where
H is given by Eq. (G1) and �(M ) acts on S as �(M )(·) =
ε ⊗ trE[�(·)]. In the main text we also fix the values J =
1.7, hx = 0.5, and hy = −1.05 and set δ ≈ 0.03, although
we now pick a δ(M ) = 2.5δ for �(M )

n . This implies that the
noise acts jointly over the whole SE throughout the full
process, but it acts almost fully as � for m < 
, whilst it
turns almost to act solely on S with �(M ) for m > 
.

In the top figure of Fig. 6 in the main text, we display the
ASFs for a set of RB experiments with ρ = |00〉〈00| and
M = |0〉〈0| for different sets of fixed identities at sequence
lengths 1, 2, . . . , 8. We fix 
 = 9 and we describe the way
in which an experimenter can estimate this value of 

from the data of the experiments alone, as well as con-
struct a sensible time-independent Markovian ASF with
which they can quantify the amount of non-Markovian
deviations; this is shown in the bottom panel of the same
figure.

The procedure is the following given a single ASF, Fm,
displaying a nonexponential decay over a finite sequence
length:

1. Fix identities at sequence lengths of Fm manifestly
displaying deviations from an exponential decay
and run RB experiments for each of them, obtain-
ing corresponding ASFs Fm/{i,...,j }, where i, . . . , j
are sequence lengths at which identities are fixed.

2. Identify the section of the original Fm manifestly
displaying exponential behavior and extract the
noise rate p at such a section.

3. Fit an exponential to each Fm/{i,...,j }; Eq. (E2)
implies that the curve with an exponential rate
pm/{i′,...,j ′} closest to p will indicate the length at
which the noise turns almost Markovian (or where
non-Markovian effects become negligible).

4. Finally, a Markovianized ASF can be constructed
with rate pm/{i′,...,j ′} and at least two reasonable con-
straints for the SPAM constants, such as A + B = 1
and A ≈ B if the SPAM errors are assumed low and
the decay rate is not too high, p ≈ 1.

For the particular example in the main text, step 1 is
displayed in the top panel of Fig. 6, each over 150 samples.

For step 2, we took points {m,Fm} from m = 12
to m = 30, which more manifestly display an expo-
nential decay. These are fitted to an exponential fm ≈
(0.7847)(0.9325)m + 0.4915, i.e., we extract p � 0.9325.

For step 3, we identify the closest decay rate to p
occurred for Fm/{1,...,8}, with pm/{1,...,8} � 0.9278. This indi-
cates that 
 ≈ 9. Since we fix 
 = 9, this procedure is
essentially identifying that the non-Markovian effects of
the noise on the ASF become negligible at sequence
length m = 9; notice that at this length q0 = 1/2, i.e.,
�
(9)
9 = 1

2

(
�+�(M )

)
so that the noise will still act jointly

on SE with at least half probability. In this sense 
 is
just approximated numerically. In the bottom panel of
Fig. 6, the dot-dashed line displays the curve given by
f̃m � (0.7847)pm

m/{1,...,8} + 0.4915, showing the slight offset
due to this numerical estimation.

Finally, at step 4 we simply fix A ≈ B in F (M ) =
Apm

m/{1,...,8} + B assuming low spam errors; in Fig. 6 we
specifically take A = 0.5085 and B = 0.4915 with the
demand that B converges to the same value as in fm and
f̃m for m → ∞. As is the case for RB, this Markovianized
ASF curve at most informs us about the gate fidelity with
respect to the identity of the Markovianized noise through
pm/{1,...,8}.
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