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Abstract. Multi-view anomaly detection (Multi-view AD) is a challenging prob-
lem due to the inconsistent behaviors across multiple views. Meanwhile, learning
useful representations with little or no supervision has attracted much attention in
machine learning. There are a large amount of recent advances in representation
learning focusing on deep generative models, such as Variational Auto Encoder
(VAE). In this study, by utilizing the representation learning ability of VAE and
manipulating the latent variables properly, we propose a novel Bayesian genera-
tive model as a semi-supervised multi-view anomaly detector, called MultiVAE.
We conduct experiments to evaluate the performance of MultiVAE on multi-
view data. The experimental results demonstrate that MultiVAE outperforms the
state-of-the-art competitors across popular datasets for semi-supervised multi-
view AD. As far as we know, this is the first work that applies VAE-based deep
models on multi-view AD.
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1 Introduction

Anomaly Detection (AD) algorithms [3] aim to identify data points that are signifi-
cantly different from the remaining data. While the traditional problem setting focuses
on data of single-view, we have to deal with data of multiple views in many practical
scenarios. For example, social media content usually contains texts, images and user
behavior features that provide complementary information of the same items from dif-
ferent perspectives. Consequently, multi-view anomaly detection emerges as a crucial
research problem that finds many real-world applications such as purchase behavior
analysis [6], malicious insider detection [14], and disparity management [5].

Following the terminology proposed in [19] and [13], multi-view anomalies can be
grouped into three categories: 1) Attribute anomalies, which refer to instances that ex-
hibit abnormal behaviours in each view. For example, given the data of two views in
Figure 1, the yellow triangles represent an attribute anomaly because it behaves differ-
ently from other instances in each view. 2) Class anomalies, which refer to instances
that exhibit inconsistent characteristics across different views. Such instances behave
normally in each view. However, if multiple views are considered collectively, the in-
stances show inconsistent properties. For example, the red squares in Figure 1 represent
a class anomaly. Even though it appears to be normal by falling into a cluster in each
view, it is similar to different sets of instances in different views. 3) Class-attribute
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Fig. 1. Three classes of Multi-view anomaly.

anomalies, which are instances having characteristics of attribute anomalies in some
views and properties of class anomalies in the other views. The purple circles in Fig-
ure 1 correspond to a class-attribute anomaly.

Existing multi-view AD algorithms have their respective limitations in detecting
the three types of anomalies simultaneously. For example, clustering-based algorithms,
such as HOrizontal Anomaly Detection (HOAD) [6] and Affinity Propagation (AP)
[15], become less effective when there is no clear tendency of clusters in the data; while
other modals, such as Probabilistic Latent Variable Model (PLVM) [8], Latent Dis-
criminant Subspace Representatio (LDSR) and the recent Hierarchical Bayesian Model
(HBM) [17], assume there exists a linear transformation between instances and a com-
mon latent variable shared by all views. However, it fails to capture the nonlinearities
and impairs the detecting capability for complex data distributions. Moreover, it is risky
to assume all the views share a same latent variable, especially for complicated data dis-
tribution. Therefore, more advanced algorithms are desired for multi-view AD.

Most existing anomaly detection methods are unsupervised, having access to un-
labelled data including both normal and anomalous instances. In real practices, how-
ever, it is easy to obtain labeled normal samples because anomalies are defined to be
rare [17]. Therefore, it is practically meaningful to develop semi-supervised anomaly
detection algorithms trained on labeled normal data, which is supposed to have better
performance as the trained model can capture characteristics of normal data better than
those trained on polluted data.

In this paper, we propose a Bayesian generative model for semi-supervised multi-
view anomaly detection, called MultiVAE. In order to learn the correlation between
views directly and detect the inconsistency existing in aforementioned three types of
anomalies, we leverage the representation learning ability of VAE to learn a latent dis-
tribution for each view, which is then used to reconstruct other views of the same in-
stance. Three types of multi-view anomalies are detected by an anomaly score based on
cross-view reconstruction losses. Further, we propose an importance weighted version
of reconstruction loss to achieve higher accuracy and stability. Noticing that many real
applications of multi-view AD involve data of discrete values, we introduce a Categori-
cal distribution as the likelihood in the decoder of MultiVAE. To enable gradient-based
optimization of the model, the Gumbel-softmax [10] technique is utilized to approxi-
mate the Categorical distribution.
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2 Preliminaries

As a directed probabilistic graphical model (DPGM), a Variational Auto-encoder (VAE)
[12] aims to learn a Bayesian latent variable model by maximizing the log-likelihood of
the training data {x(i)}Ni=1 via variational inference. It introduces a distribution qφ(z|x)
to approximate the intractable true posterior p(z|x). Mean and variance vectors µv and
σv are estimated by the encoder, and the latent variable zv is sampled via reparameteri-
zation trick [12]. Then, the decoder takes zv as input to generate X ′v as a reconstruction
for Xv . VAE is trained by maximizing the following Evidence Lower Bound (ELBO):

L = Ez∼qφ(z|x(i))[log pθ(x
(i)|z)]−DKL(qφ(z|x(i))||p(z))

The importance weighted autoencoder (IWAE) [2] is an important variant of the
vanilla VAE. IWAE computes a tighter lower bound through appropriate weighting of
a multi-sample estimator, as

LIWAE = Ez1:K∼qφ(z|x)[logΣK
k=1

1
K pθ(x|z

k)]−DKL(qφ(z|x)||pθ(z))

3 Methodology

3.1 Problem Setting and Proposed Framework

Suppose that we are givenN instances {X1, ..., Xn}withD views.Xn = (x(1), ...,x(D))
is a set of multi-view observation vectors for the n-th instance, and x(d) ∈ RMd is the
observation vector of the d-th view where Md is the corresponding dimensionality. The
objective of semi-supervised multi-view AD is to find anomalous instances that have
inconsistent characteristics or behaviors across multiple views (i.e., the three types of
anomalies discussed in Section 1). The training set includes only normal instances while
the testing set contains both normal and anomalous instances. For simplicity, we focus
on the situation whenD = 2. However, as will be discussed, our model can be extended
to handle more views straightforwardly.

Fig. 2. Architecture of MultiVAE. The model aims to learn cross-view dependency by cross re-
construction.
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As mentioned above, multi-view anomalies show inconsistencies between views.
That is, if a data point is anomalous, it is likely that its cross-view dependency is
lower than that of normal data points. Given a data instance X of two views, we
model the cross-view dependency using the conditional distribution between two views,
p(X(2)|X(1)) and p(X(1)|X(2)). Then, given a normal instance Xi = [X

(1)
i , X

(2)
i ] and

an anomalous instanceXj = [X
(1)
j , X

(2)
j ] (being a class anomaly, an attribute anomaly,

or a class-attribute anomaly), we have the following assumption:

p(X
(2)
i |X

(1)
i ) + p(X

(1)
i |X

(2)
i ) > p(X

(2)
j |X

(1)
j ) + p(X

(1)
j |X

(2)
j )

Based on the cross-view dependency assumption, we propose MultiVAE which gen-
erates one view from the other. For example, as shown in Fig 2, the model utilizes the
input of view 1 to estimate the latent variable z(1)v and generate output for view 2. In the
same time, view 2 is used to generate view 1. The model can be expressed as follows:

µ(1) = fφ1
1
(X(1)), σ(1) = fφ1

2
(X(1));µ(2) = fφ2

1
(X(2)), σ(2) = fφ2

2
(X(2))

z(1)v ∼ Gaussian(µ(1), σ(1)), z(2)v ∼ Gaussian(µ(2), σ(2))

X
′(2)
v ∼ pθ2(X|z(1)v ), X

′(1)
v ∼ pθ1(X|z(2)v )

The parameters of model is set {φ11, φ12, φ21, φ22, θ1, θ2}. f is a function parameter-
ized by NN serving as the encoder, p is a predefined distribution serving as the decoder.
Note that, similar to VAE, we can seek help from amortized variational inference to
estimate the parameters of the model.

Our framework can be extended straightforwardly to handle more views with lin-
ear time complexity with respect to the number of views. Suppose there are n views
where n > 2, we can concatenate all the n − 1 views except view i to generate view
i. Regarding the time complexity, suppose each encoder or decoder is implemented by
Multilayer perceptron that has time consumptionO(1) for feed forward of one instance.
Given n training instances, D encoders and D decoders, the overall time complexity is
O(nD) for training phase, O(D) for detecting a single instance in testing phase.

3.2 Loss function deduction

For simplification, we denote X(1)
v = X1, X(2)

v = X2. Under the maximum likelihood
estimation (MLE) framework, it would be complicated to directly maximize p(X1, X2).
Hence, we infer the parameters of the model in the way similar to the variational infer-
ence used in VAE. We derive an Evidence Lower Bound (ELBO) to approximate the
log likelihood of p(X1, X2), which can be formulated as follows:

log p(X1, X2)

≥ Eq(z1,z2)
[
log

p(X1, X2, z1, z2)

q(z1, z2)

]
(Jensen’s inequality)

≈ Eq(z1|X1)q(z2|X2)

[
log

p(X2|z1)p(X1|z2)p(z1)p(z2)
q(z1|X1)q(z2|X2)

]
(mean-field approximation)

= −LC −DKL(qφ(z1|X1)||p(z1))−DKL(qφ(z2|X2)||p(z2))
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where LC represents the reconstruction error, DKL represents Kullback-Leibler di-
vergence between two distributions, p(z1) and p(z2) can be isotropic multivariate Gaus-
sian. In practice, we adopt the importance weighted ELBO as the training objective to
obtain tighter lower bound and less variance:

LMultiV AE = Ez1:K1 ∼qφ(z1|X1)[logΣ
K
k=1

1
K pθ(X2|zk1 )]−DKL(qφ(z1|X1)||pθ(z1)) +

Ez1:K2 ∼qφ(z2|X2)[logΣ
K
k=1

1
K pθ(X1|zk2 )]−DKL(qφ(z2|X2)||pθ(z2))

3.3 Categorical ditribution for discrete data

Discrete data (e.g., categorical data) frequently appears in many real AD applications.
VAE-based models usually use Gaussian or Bernoulli distribution as p(x|z) for gen-
erating instances, which performs poorly on discrete data. In order to alleviate this
issue, we assume that discrete data are generated from categorical distribution. We in-
troduce a K dimensional categorical distribution Cat(π1, π2...πk) as p(x|z) and as-
sume K dimensional one-hot instance vector x sampled from the generative process:
x ∼ p(x|z) = Cat(π1, π2...πk) where Cat(x = i|π1, π2...πk) = πi and

∑K
i=1 πi = 1.

However, this sampling process is not differentiable and the model cannot be optimized
by gradient-based methods. We thus apply the Gumbel-Softmax re-parameterization
trick [10] to approximate the sampling process and make it to be differentiated. The
element i of vector x can be approximated as:

xi =
exp((log(πi) + gi)/τ)

ΣK
j=1exp((log(πj) + gj)/τ)

for i = 1, 2...K

where πi is estimated by neural network in decoder, τ > 0 is an adjustable hyper-
parameter which controls how closely the samples approximate discrete values. A smaller
τ means a closer approximation. g ∼ Gumbel(0, 1) are i.i.d. samples from standard
Gumbel distribution.

3.4 Semi-supervised Multi-view Anomaly Detection Score Design

To detect the three types of multi-view anomalies, we compute an anomaly score for
each instance. We analyze the behaviour of normal and abnormal data during the testing
phase as follows:

For normal instances, since the correlation between views accords with normal
training data, it’s easy to reconstruct one view from another view. This gives rise to
a smaller cross reconstruction error LC . For Class anomalies, since different view be-
longs to different class, it is inconsistent cross multiple views, making it difficult to re-
construct one view from another. The cross reconstruction error LC should be high. For
Attribute anomalies, since views belong to distribution different from that of the train-
ing data, the correlation between views is different from what the model has learned
during training, which also leads to a high LC . For Class-Attribute anomalies, the situ-
ation is similar to attribute anomalies so that this type of anomalies can be detected by
high LC as well.

Overall, it is expected that the cross-view reconstruction error LC for a normal in-
stance is less than that of an anomalous instance, including Class anomaly, Attribute
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anomaly and Class-attribute anomaly. Therefore, we use LC as the anomaly score for
an instance xi as follows (K is the number of importance weighted sampling):

SMultiVAE(xi) = LC = −(Ez1:K1 ∼qφ(z1|x(1)
i )

[logΣK
k=1

1

K
p(x

(2)
i |z

k
1 )]+

E
z1:K2 ∼qφ(z2|x(2)

i )
[logΣK

k=1

1

K
p(x

(1)
i |z

k
2 )]) (1)

As SMultiVAE measures the reconstruction error, a higher score indicates a larger proba-
bility of an instance being anomalous.

4 Experiments

We compare our method with the HOrizontal Anomaly Detection (HOAD) [6], Affinity
Propagation (AP) [15], the Probabilistic Latent Variable Model (PLVM) [8], the Latent
Discriminant Subspace Representation (LDSR) [13] and the state-of-the-art Hierarchi-
cal Bayesian Model (HBM) [17] to evaluate performance of MultiVAE. Seven datasets,
including Thyroid, Annthyroid, Forestcover, Vowels, Pima, Wine and Glass, from the
ODDS library [16] are used. We follow the same experimental setting in [17] for fair
comparison. Three types of multi-view anomalies are generated in the same way de-
scribed in previous works [17,13]. We use the area under the ROC curve (AUC) as the
evaluation measure. The higher the AUC is, the better the approach performs.

Table 1 shows the average AUCs achieved by the comparing models on the 7 datsets
of the training data (Some results of the baselines are from [17]). It demonstrates the
advantage of our proposed approach for multi-view AD clearly, where MultiVAE con-
sistently outperforms the other models on most datasets. This can be explained by the
capability of capturing the correlation among multiple views via multiple latent vectors,
supported by the non-linear learning ability of neural networks together with cross-view
reconstruction.

(c) Class-attribute anomaly(b) Class anomaly(a) Attribute anomaly

Fig. 3. The curves of AUC W.R.T anomaly rate in Pima dataset.

To investigate how the anomaly rate affects the performance of different models,
we experiment on data polluted by an increasing percentage of outliers. Fig 3 shows
the variation of AUCs on data set pima with outlier ratio of 2%, 5%, 10%, 15%, 20%,
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Model Thyroid Annthyroid ForestCover Vowels Pima Wine Glass

A

HOAD .5202±.0864 .5078±.0724 .6801±.0866 .8540±.0691 .5921±.0768 .6503±.1574 .7083±.1410
AP .6737±.1164 .5747±.0669 .6774±.0739 .7062±.1125 .9376±.0293 .6947±.1078 .7497±.1117
PLVM .8989±.0091 .8904±.0363 .4870±.0126 .5481±.0067 .9086±.0083 .4058±.0481 .4087±.0246
LDSR .9751±.0074 .9876±.0022 .9983±.0005 .9181±.0153 .9858±.0057 .9932±.0009 .9940±.0040
HBM .9877±.0056 .9979±.001 .9995±.0027 .9875±.0071 .9877±.0044 .9417±.0450 .9530±.0292
MultiVAE .9991±.0005 .9996 ±.0001 .9998±.0001 .9988±.0010 .9964±.0030 .9658±.0316 .9824±.0165

C

HOAD .5393±.0303 .5849±.0348 .6872±.0337 .3818±.0384 .5557±.0310 .7124±.0638 .4277±.0932
AP .5847±.0227 .5265±.0350 .7906±.0332 .7520±.0513 .5659±.0365 .5629±.0933 .5576±.0518
PLVM .5676±.0090 .4087±.0176 .6035±.0044 .5479±.0282 .5425±.0138 .4860±.0040 .5433±.0104
LDSR .8631±.0217 .7128±.0418 .7551±.0293 .9245±.0173 .5924±.0543 .5889±.0916 .7098±.0498
HBM .8744±.0205 .7383±.0450 .8672±.0197 .9360±.0158 .6354±.0400 .8373±.0424 . .7613±.0570
MultiVAE .9678±.0144 .7891±.0819 .9814±.0118 .9711±.0132 .6562±.0670 .9068±.0794 .7698±.1490

C-A

HOAD .4934±.0270 .4976±.0311 .4342±.0468 .5994±.1342 .4181±.0260 .5798±.0615 .5598±.0652
AP .6380±.0723 .5647±.0819 .8054±.0373 .8511±.0713 .7916±.0555 .5481±.1173 .7308±.0676
PLVM .7122±.0191 .8933±.0134 .8184±.0087 .6390±.0223 .8249±.0063 .7094±.0145 .9555±.0092
LDSR .9344±.0179 .9122±.0220 .9845±.0049 .9642±.0064 .9315±.0146 1±0 .9900±.0026
HBM .9863 ±.0075 .9842±.0076 .9857±.0095 .9757±.0082 .9510±.0169 .9201±.0470 .9984±.0023
MultiVAE .9930±.0057 .9943±.0054 .9989±.0012 .9937±.0045 .9571±.0232 .9018±.0872 .9456±.0300

Table 1. AUC values (mean±std) of semi-supervised multi-view AD on seven datasets with
anomaly rate = 0.05. (A:Attribute anomaly; C:Class anomaly; C-A:Class-Attribute anomaly)

25% and 30% for three types of outliers. We see that, in general, as the anomaly rate
increases, the performance decreases. And the proposed method is comparatively robust
compared with the other methods.

To evaluate the situation when there are more than two views of the data (i.e., n >
2), we run the comparative methods on the WebKB dataset [1], which has been widely
used for evaluating multi-view learning algorithms. We use its Cornell subset in our
experiment, which contains 195 webpages over 5 labels. Each webpage is described
by four views: content, inbound link, outbound link and cites. Table 2 shows the AUC
values of all compared methods on the dataset with outlier ratio of 5% and 10%. It
can be observed that MultiVAE again achieves higher AUC than its competitors, which
demonstrates the strength of our Bayesian detector.

HOAD AP LDSR HBM MultiVAE
5 % anomalies 0.811 0.755 0.672 0.930 0.942
10 % anomalies 0.769 0.715 0.647 0.922 0.934

Table 2. AUC values of competitors on 4-view WebKB dataset.

5 Conclusion

We propose a VAE-based deep framework for multi-view AD. Under the framework,
MultiVAE is developed to model the dependency between views for semi-supervised
AD. Our experimental results on benchmark data and real-world data demonstrate the
effectiveness of MultiVAE as the first effort that leverages variational auto-encoder in
multi-view anomaly detection, by exploiting the cross-view reconstruction loss.

Acknowledgement. This work has been partially supported by ARC DP180100966.



8 Shaoshen Wang , Ling Chen, Farookh Hussain, and Chengqi Zhang

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceed-
ings of the eleventh annual conference on Computational learning theory. pp. 92–100 (1998)

2. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519 (2015)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv.
41, 15:1–15:58 (2009)

4. Das, S., Matthews, B.L., Srivastava, A.N., Oza, N.C.: Multiple kernel learning for hetero-
geneous anomaly detection: algorithm and aviation safety case study. In: Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining. pp.
47–56. ACM (2010)

5. Duh, K., man Au Yeung, C., Iwata, T., Nagata, M.: Managing information disparity in mul-
tilingual document collections. ACM Trans. Speech Lang. Process. 10, 1:1–1:28 (2013)

6. Gao, J., Fan, W., Turaga, D., Parthasarathy, S., Han, J.: A spectral framework for detect-
ing inconsistency across multi-source object relationships. In: 2011 IEEE 11th International
Conference on Data Mining. pp. 1050–1055. IEEE (2011)

7. Huang, F., Zhang, X., Li, C., Li, Z., He, Y., Zhao, Z.: Multimodal network embedding via
attention based multi-view variational autoencoder. In: Proceedings of the 2018 ACM on
International Conference on Multimedia Retrieval. pp. 108–116. ACM (2018)

8. Iwata, T., Yamada, M.: Multi-view anomaly detection via robust probabilistic latent variable
models. In: Advances In Neural Information Processing Systems. pp. 1136–1144 (2016)

9. Janeja, V.P., Palanisamy, R.: Multi-domain anomaly detection in spatial datasets. Knowledge
and information systems 36(3), 749–788 (2013)

10. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144 (2016)

11. Kawachi, Y., Koizumi, Y., Harada, N.: Complementary set variational autoencoder for su-
pervised anomaly detection. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 2366–2370. IEEE (2018)

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

13. Li, K., Li, S., Ding, Z., Zhang, W., Fu, Y.: Latent discriminant subspace representations for
multi-view outlier detection. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

14. Liu, A.Y., Lam, D.N.: Using consensus clustering for multi-view anomaly detection. In: 2012
IEEE Symposium on Security and Privacy Workshops. pp. 117–124. IEEE (2012)

15. Marcos Alvarez, A., Yamada, M., Kimura, A., Iwata, T.: Clustering-based anomaly detection
in multi-view data. In: Proceedings of the 22nd ACM international conference on Informa-
tion & Knowledge Management. pp. 1545–1548. ACM (2013)

16. Rayana, S.: Odds library (2016)
17. Wang, Z., Lan, C.: Towards a hierarchical bayesian model of multi-view anomaly detection.

In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
(2020)

18. Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., Liu, Y., Zhao, Y., Pei, D., Feng, Y., et al.:
Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web appli-
cations. In: Proceedings of the 2018 World Wide Web Conference. pp. 187–196 (2018)

19. Zhao, H., Fu, Y.: Dual-regularized multi-view outlier detection. In: Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (2015)

https://orcid.org/0000-0003-3898-9558

	Semi-supervised Variational Multi-view Anomaly Detection

