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Abstract: Advances in estimating actual evapotranspiration (ETa) with remote sensing (RS) have
contributed to improving hydrological, agricultural, and climatological studies. In this study, we
evaluated the applicability of Vegetation-Index (VI) -based ETa (ET-VI) for mapping and monitoring
drought in arid agricultural systems in a region where a lack of ground data hampers ETa work. To
map ETa (2000–2019), ET-VIs were translated and localized using Landsat-derived 3- and 2-band
Enhanced Vegetation Indices (EVI and EVI2) over croplands in the Zayandehrud River Basin (ZRB)
in Iran. Since EVI and EVI2 were optimized for the MODerate Imaging Spectroradiometer (MODIS),
using these VIs with Landsat sensors required a cross-sensor transformation to allow for their
use in the ET-VI algorithm. The before- and after- impact of applying these empirical translation
methods on the ETa estimations was examined. We also compared the effect of cropping patterns’
interannual change on the annual ETa rate using the maximum Normalized Difference Vegetation
Index (NDVI) time series. The performance of the different ET-VIs products was then evaluated.
Our results show that ETa estimates agreed well with each other and are all suitable to monitor
ETa in the ZRB. Compared to ETc values, ETa estimations from MODIS-based continuity corrected
Landsat-EVI (EVI2) (EVIMccL and EVI2MccL) performed slightly better across croplands than those of
Landsat-EVI (EVI2) without transformation. The analysis of harvested areas and ET-VIs anomalies
revealed a decline in the extent of cultivated areas and a loss of corresponding water resources
downstream. The findings show the importance of continuity correction across sensors when using
empirical algorithms designed and optimized for specific sensors. Our comprehensive ETa estimation
of agricultural water use at 30 m spatial resolution provides an inexpensive monitoring tool for
cropping areas and their water consumption.

Keywords: actual evapotranspiration; enhanced vegetation index; cross-sensor transformation;
harvested area; google earth engine

1. Introduction

Evapotranspiration (ET) is the water flux to the atmosphere through evaporation (E)
from the soil and transpiration (T) from plants. Accurate estimation of ET is needed to
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quantify crop water use and to inform water allocation, irrigation scheduling, drought
monitoring, and regional water management [1–3], especially in arid and semiarid re-
gions where agricultural, industrial, and domestic uses are competing for limited water
resources [4–6]. Numerous methods have been developed to estimate actual ET (ETa).
Ground-based ETa measurements like eddy covariance, lysimeters, and the Bowen ratio are
limited to their associated footprints [7–9]. Indirectly scaling ground-based ET estimates
has benefited from satellite remote sensing (RS) observations of large areas, particularly
in drylands. Empirical RS-based ET approaches provide direct spatial estimates that can
be frequently updated [10] and used across areas where ground measurements are not
available [11]. RS-based approaches are cost-effective and provide more frequent spatial
and temporal coverage [12–14]. Although many applications of RS-based ET estimation
exist, there is no universal standard or accepted approach. Biggs et al. [4] grouped RS-based
approaches of ET estimation into (1) those based on satellite land surface temperature
(LST) [14–16], (2) vegetation-based ET estimations (ET-VI), and (3) triangle or scatterplot
inversion methods [17,18]. LST models like SSEBOp [14] and SEBAL [19] can predict ETa
particularly in semi-arid and arid regions where croplands are irrigated. Nonetheless, they
have limitations owing to the need for parameterization and calibration for each image,
their degree of complexity, their sensitivity when defining the wet and dry conditions
(cold and hot pixels) in each scene [18], and only a few sensors offer open-source thermal
data [20]. Triangle or scatterplot inversion methods are quite site-independent and easy
to calculate; however, they have some disadvantages, such as defining the wet and dry
extremes which can cause user subjectivity in selecting these extremes, difficulty in merging
across scenes [18], and they cannot capture crop water stress [21]. VI-based methods are
simple and more straightforward to apply [11]. Infrared and the reflectance of the visible
bands used to calculate VIs have higher resolution than the thermal band. VIs provide an
integrated measurement of the growing conditions and physiological processes [22]. In
particular, they are useful in regions where water is the main limitation. VI-based methods
also have some drawbacks when applied to estimating ETa, for example, they cannot
properly estimate soil evaporation [23]. So far, VI-based methods have not been applied to
croplands in large irrigation districts.

ET-VI methods establish relationships between one or more VIs and ground-based
measurements of ET to estimate the ETa at the species or plant communities level and
are then scaled, validated, and calibrated over a wide area with similar land cover [24].
ET-VI-based estimates have successfully been used for distinct land cover types such as
agricultural lands [25–27], riparian areas [22,24,28,29], and urban green spaces [5,8,30].
Glenn et al. [11] reviewed different applications of VI methods and reported a range of
10–30% for the root mean square errors (RMSE) in the mean ETa over different biomes.
Widely-tested VIs include the Normalized Difference Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI), the Enhanced Vegetation Index (EVI), and a new two-
band version of the Enhanced Vegetation Index 2 (EVI2) [5,11,22,29,31–33], and modeled
satellite products such as Leaf Area Index (LAI) [34]. Different VI-based algorithms have
been proposed for specific irrigation districts; however, no single ET-VI method has been
systematically assessed across a wide range of irrigation districts [24]. Furthermore, an
appraisal, mapping, and performance analysis of the ETa of major crops across a large irri-
gation district using only localized and scalable VI methods have not been yet conducted.
An objective of our work, therefore, was to assess VI-based methods over a large irrigation
district with a wide range of crops.

ET-VI models share some similarities with empirical methods used by the Food and
Agricultural Organization of the UN (FAO) to compute crop-specific ETa, such as the
widely used FAO56 approach [35]. In the FAO56 method, meteorological data are used to
calculate the ET of a reference crop (well-watered grass of 12 cm height and predefined
roughness and albedo) based on the Penman–Monteith (PM) method. This reference ET
(ETo) is multiplied by a crop coefficient (Kc) which relates the ET of the specific crop to
that of the reference crop and with a coefficient Ks describing the reduction of ET by crop
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drought stress. Ks for well-watered conditions (irrigation) is set to 1. In the ET-VI method,
a VI is used to estimate the product of Kc × Ks [10,24].

Bausch and Neale [25] explored estimating Kc using NDVI in Colorado; they validated
Kc estimated by radiometric measurements of NDVI against lysimeters measurements.
Kc derived from NDVI resembled measured ones using lysimeters. Nagler et al. [36]
developed an empirical method for predicting ETa of riparian plants using remotely sensed
EVI from MODIS and meteorological data and then produced a validated ETa algorithm
using flux towers measurements [36]. This ETa algorithm was then improved with the
use of sap flux data for native cottonwood trees [37], upland shrubs [38], and a non-
native riparian shrub species, tamarisk (Tamarix spp.) [22]. Murray et al. [29] applied
the Nagler et al. [22] method to derive ETa in riparian woodlands of the lower Colorado
River and ETa over the adjacent agricultural areas. Their work showed that ETa estimated
for crops was similar to reported values for the irrigation districts. Nagler et al. [24]
successfully developed a generalized prediction of ETa across crops and riparian zones in
arid climates. The algorithm was calibrated using data from eddy covariance flux towers.
This method was developed using 250 m resolution MODIS imagery and later successfully
scaled to work with Landsat 30 m resolution, achieving the same accuracy [39]. However,
that study [39] focused entirely on riparian zones excluding agricultural sites.

In this study, we assessed the performance of optical RS-based empirical ET-VI meth-
ods and whether they can be applied over large croplands, especially in the absence of
systematic in-situ data. We evaluated an ET-VI method based on Landsat-derived VIs
(EVI and EVI2). Two different RS-based ET-VIs estimations were applied across the Zayan-
dehrud River Basin (ZRB) in Iran as an indicator of agricultural drought. To our knowledge,
this study is the first to assess ETa over cultivated areas of a major irrigation district using
only optical and scalable VI-based methods. Cropped areas tend to show considerable
inter-annual variability, particularly in semi-arid regions such as in Iran, where drought
is a major factor affecting rainfed and irrigated agriculture [40]. Since VIs and associated
ETa are much higher for cropped areas than for fallow lands or grasslands, total ETa and
mean ETa aggregated for larger regions differ depending on whether the cropland extent
interannual dynamic is carefully considered. Not much attention is given to the aspect
of scaling ETa in large irrigation districts. Therefore, in this study, annual changes of
harvested areas were taken into consideration. Moreover, most studies to date focused
only on applying optical-thermal satellite imagery methods to derive ETa in Iran [41,42].

The study investigates several additional and more specific questions, such as, (a) how
to translate and localize MODIS-based EVI (EVI2) and ETa equations, (b) the difference
in ETa caused by using static vs. dynamic harvested areas, (c) how well Landsat VIs and
ETa capture the reported Kc curves and crop evapotranspiration (ETc), respectively, and
(d) how these different ET-VIs empirical methods perform.

2. Materials and Methods
2.1. Study Area

With the second largest population in the Near East and North Africa, 90% of Iran’s
agricultural production depends on irrigation. The central, eastern, and southern parts of
Iran have experienced drought leading to a challenged agriculture sector [43]. This work
looks at a closed river basin, the ZRB, which is located in the arid region of central Iran.
Agriculture is the main use of water and consumes about 80% of the water resources [44].
A long-term record of agricultural water use is lacking but is needed because it plays a key
role in the water management of this region. Apart from the climatological characteristics
of the region, there is a chronic lack of a centrally organized ETa data bank. The need for
accurate and spatially explicit ETa data is critical for water management in this region,
especially considering climate change and reoccurring droughts.

The ZRB covers an area of 26,917 km2 (Figure 1). The main river of the ZRB flows for
350 km from the Zagros Mountains to the Gavkhuni Swamp [45]. The Zayandehrud dam
is the main reservoir and plays a key role in regulating the water supply [46]. Precipitation



Remote Sens. 2021, 13, 5167 4 of 27

data from 53 stations (2003 to 2018, data were obtained from the Islamic Republic of Iran
Meteorological Organization (IRIMO)) demonstrate that the average precipitation varies
from 63 mm in the eastern part to 1281 mm in the western part (Figure 1a). Precipita-
tion occurs mainly from November to April. The mean annual temperature is 14.2 ◦C.
The elevation of the study area varies from 1442 m to 3927 m. According to the Isfahan
Agricultural Organization (IAO), more than 40 different crops are cultivated in the region,
with wheat, barley, alfalfa, maize, potatoes, onions, and rice being the main staple crops.
Owing to the low precipitation in the eastern and central parts of the ZRB, irrigated agricul-
ture is dominant. Water paucity, drought, and low rainfall are the main challenges in the
ZRB, and these have resulted in fewer water releases from the dam downstream of the ZRB.
In this study, downstream refers to the area from the dam to the Gavkhuni swamp, and
from the dam upwards, where it rains more frequently, is referred to as upstream. Twelve
counties cover about 92% of the basin’s area and are mainly located in arid and semi-arid
regions (Figure 1b, Köppen-Geiger climate zones [47]).
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Figure 1. Study area, (a) an overview of the study area: vegetated areas, the aquifer, irrigation networks, and the long-term
mean annual precipitation sum (2003 to 2018). (b) Köppen–Geiger climate zones using the same color, BWh: Arid, desert,
hot; BWk: Arid, desert, cold; BSk: Arid, steppe, cold; Dsa: Cold, dry summer, hot summer; Dsb: Cold, dry summer,
warm summer; counties: 1: Tiran, 2: Freydan, 3: Chadegan, 4: Isfahan, 5: Mobarakeh, 6: Borkhar, 7: Khomeinishahr, 8:
Shahinshahr, 9: Falavarjan, 10: Lenjan, 11: Dehaghan, 12: NajafAbad.

2.2. Localization of MODIS-Based EVI(EVI2) and ETa

Different VIs were calculated using images from Landsat 5, 7, and 8 at a spatial
resolution of 30 m (Figure S1 displays the spatial footprint of Landsat scenes over the
ZRB) and a temporal resolution of 16 days and from MODIS (daily 250 m MOD09GQ
and 500 m MOD09GA land surface reflectance products). Landsat images were processed
using the Google Earth Engine (GEE) platform (https://earthengine.google.com, accessed
on 20 June 2021). GEE is a cloud-based platform for geospatial analysis with massive
computational capabilities and direct access to RS data [48]. MOD09GQ and MOD09GA
products [49] were acquired to derive the transformation equations for EVI and EVI2 across
MODIS and Landsat (Figure 2).

To calculate ETa, ETo was first computed by applying the Global Crop Water Model
(GCWM) using the FAO–PM method [50] and hourly ERA5-reanalysis data with 0.25 degrees
spatial resolution aggregated to daily climate input. The model was executed in daily time
steps with a spatial resolution of 5 arc-minutes (about 8 Km) [51]. Statistical analysis and
visualization of the results were conducted in R [52] and QGIS [53].

https://earthengine.google.com
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2.2.1. Preparation and Generation of MODIS-Like Landsat Images VIs

Landsat surface reflectance images (2000–2019) were corrected for topography and
bidirectional reflectance distribution function (BRDF). Clouds, shadow, snow, water, and
poor-quality pixels were masked out. Landsat 7 missing values due to the Scan Line
Corrector error were simply ignored and only available pixels within the scene were used.
Problems along the edges of Landsat 5 images which resulted in missing data were also
removed by applying an inwards-buffer mask. Furthermore, there were small differences
between the spectral characteristics of Landsat 5, 7, and 8 which created a bias [54]. To
address the first research question regarding translation and localization of MODIS-based
EVI(EVI2) and ET equations, we investigated the differences resulting from the spectral
characteristics of Landsat 5, 7, and 8. We did this by comparing two translations approaches
and their impacts on ETa:

1. Roy et al. [54] developed transformation equations to reduce the effects of these small
differences and produce a sensor-independent, long-time series of Landsat composites.
These functions, which are also available on the GEE platform, were applied on Landsat
images to calculate continuity-corrected Landsat (ccL) VIs and incorporate them into
the ETa equation directly to derive ET-VIs (ET-EVIccL, and ET-EVI2ccL).

2. The ETa equation applied in this study was originally developed using MODIS im-
ages. The second approach to reduce the effects of these differences is to translate
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VIs derived from Landsat images into MODIS-like VIs. For this purpose, MODIS
daily products MOD09GQ (250 m, red (R), near-infrared (NIR)) and MOD09GA
(500 m/L km, blue (B), zenith angle (Vz), and Quality Assessment (QA)) were down-
loaded. MOD09GA was resampled to 250 m to support the generation of a 250 m
spatial resolution data set. EVI and EVI2 were computed after applying cloud and
aerosol filtering. The resulting Landsat data was resampled to MODIS 250 m. A
regression model was then estimated between matching dates to derive four con-
version equations: two for calculating MODIS continuity-corrected Landsat (MccL)
(EVIMccL and EVI2MccL) from Landsat 8, and two for those of Landsat 5 and 7 (data
processing was conducted at the Vegetation Index and Phenology laboratory at the
University of Arizona (https://vip.arizona.edu/, accessed on 17 February 2021). To
characterize these empirical translation methods and their impacts on the derived
ETa, we compared pairs of MODIS ET-VIs (ET-EVIMccL and ET-EVI2MccL) against
non-MODIS-based ET-VIs (ET-EVIccL and ET-EVI2ccL).

2.2.2. Calculation of Vegetation Indices

EVI was developed to address some issues in NDVI, including sensitivity to soil
background, saturation over dense canopies, and sensitivity to the residual atmosphere.
EVI uses the ratio of NIR, R, and B bands to extract canopy greenness (Equation (1)).

EVI = G
NIR − R

L + C1R − C2B + 1
(1)

where G is a gain factor, C1, C2 are the coefficients of the aerosol resistance, which uses the
B band to correct for aerosol effects in the R band, and L functions as the soil adjustment
factor. The values adopted for MODIS are L = 1, C1 = 6, C2 = 7.5, and G = 2.5 [55].

EVI is quite sensitive to variations in the B band reflectance and is useless in sensors
without a blue band, which hampers its consistency across different sensors. EVI2 was in-
troduced to address these challenges and requires only NIR and R bands (Equation (2)) [56].
EVI2 may become slightly susceptible to aerosols due to omitting the B band. However,
modern RS data applies very strict quality assurance to assist with poor-quality data
removal. The differences between EVI and EVI2 were reported to be roughly ±0.02 [31,56].

EVI2 = 2.5
NIR − R

NIR + 2.4 × R + 1
(2)

The following translation and conversion equations were applied to the VIs time series
to generate ET-EVIMccL and ET-EVI2MccL:

EVIMccL (Landsat 8) = 0.848368 × EVI (Landsat 8) + 0.02552 (3)

EVI2MccL (Landsat 8) = 0.848368 × EVI2 (Landsat 8) + 0.02649 (4)

EVIMccL (Landsat 5 and 7) = 0.842328 × EVI (Landsat 5 and 7) + 0.0240124 (5)

EVI2MccL (Landsat 5 and 7) = 0.8990118 × EVI2 (Landsat 5 and 7) + 0.0234406 (6)

To understand how these empirical translation methods applied to Landsat VIs impact
the resulting ETa estimation, VIs were compared before and after applying MODIS-based
equations. Two Landsat scenes (14 June 2002 and 1 August 2008) during the growing season
were selected with maximum coverage of the basin and the least cloud contamination. To
demonstrate the differences between the VIs over the scene, four combinations of pixel-
wise differences were applied between EVIccL and EVI2ccL, EVIMccL and EVI2MccL, EVIMccL
and EVIccL, and EVI2MccL and EVI2ccL.

2.2.3. Calculation of ETa

Nagler et al. [24] developed a MODIS-based ETa algorithm using the Beer–Lambert
Law to express canopy light absorption and EVI replacing leaf area index (LAI). This

https://vip.arizona.edu/
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method was applied over riparian and agricultural areas in the southwestern U.S. and later
adapted to Landsat in urban green spaces [5], riparian zones [39], and, in this study, for the
first time, ET-VIs were developed for croplands at 30 m resolution (considering harvested
areas’ changes) at the basin scale using GEE. The ETa equation:

ETa(mm) = ETo(mm)× [1.65 (1 − e−2.25×VI )− 0.169] (7)

where (1 − e[−b×VI]) is derived from the Beer–Lambert Law to estimate light absorption by
a canopy. Using this ETa equation, four ETa products (ET-EVIMccL, ET-EVI2MccL, ET-EVIccL,
and ET-EVI2ccL) were calculated for all available Landsat images over the study area at an
annual scale.

2.3. Crop Cover Dynamics

To assess the difference in ETa caused by considering a static or dynamic cropping
area, annual maximum NDVI layers were derived from Landsat images for two decades
using GEE. The annual maximum NDVI layers were developed by applying the maximum
value composite (MVC) method, which generates a composite image over a given period
by preserving for each pixel the maximum NDVI value of images. Maxwell et al. [57] used
variable thresholds ranging 0.61 to 0.71 for MVC to detect ever-cropped lands over the
27 years in southwestern Kansas at county-level [57]. To exclude all but cropped lands from
MVC, we excluded all NDVI values using three empirical thresholds less than 0.4, 0.5, and
0.6. After visual inspection and spatial analysis of all MVC layers and comparing croplands
and non-cropland areas using Google Earth maps, we found out that by removing values
less than 0.4 some rangelands remained in the cropland MVC layers, and by using 0.6
some cropping areas were excluded; therefore, 0.5 was used to minimize rangelands and
other covers.

Pixels with high NDVI are agricultural areas. Good and medium rangelands lo-
cated upstream mostly had NDVI values of about 0.5. We also used a land use map
prepared by the Ministry of Energy of Iran (https://moe.gov.ir/?lang=en-US, accessed on
20 February 2021) to evaluate our cropland layers. It depicts fallow land, orchards, rainfed
cropland, spring, and fall irrigated agricultural areas. This land use map was produced
(2015) using an interpretation of Landsat 8 images. Visualizing and overlaying the land
use map on the Google Earth and MVC maps showed that not all green spaces and trees
could be masked out, but the extent of this vegetation was insignificant compared to the
croplands. After the preparation of MVC, annual cropland layers were then used to derive
the ETa over the study period. To examine the impact of cropping areas’ changes on ETa,
we also extracted a static cropping area for the whole study period using MVC to identify
land that was cropped at least once during the study period (ever-cropped land) using the
time series of Landsat satellite imagery. The static layer was used to calculate ETa and was
then compared against ETa derived by considering annual changes of cropping area (i.e.,
dynamic cropping area).

2.4. Comparison of Landsat VIs and ETa with Ground Data

To compare VIs and ET-VIs with in-situ data, estimated ET-VIs were compared to
long-term average ETc values reported by the Isfahan Agricultural and Natural Resources
Research and Educational Center (IANREC) at the county scale for major crops. IANREC
has used the dual crop coefficient approach (Kc = Kcb + Ke) to calculate ETc. The basal
crop (Kcb) and Ks values reported by FAO56 were adjusted based on the methodology
proposed by [35] using ground data, i.e., minimum relative humidity, wind speed, and the
average plant height for the year 2013. The soil evaporation coefficient (Ke) was calculated
considering soil physical properties, irrigation intervals, and irrigation depth. Kcb and Ke
were combined with ETo values to calculate ETc (ETc = (Kcb + Ke) × ETo). The ETc values
obtained from IANREC were only reported as an average value for each crop and the
whole study period. To detect the major crops in each county, annual statistics for crop type,
production, and cultivated area were acquired (https://agri-es.ir/Default.aspx?tabid=1925
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accessed on 1 June 2021). Wheat and barley observations were obtained for the growing
season 2018–2019 from IAO in order to evaluate RS-VIs against typical curves of Kc values
used by FAO. To compare the VIs, monthly VIs were extracted (Equation (8)):

VIscaled = [1.65 (1 − e−2.25×EVI (or EVI2)) − 0.169] (8)

Four scaled VIs (EVIMccL, EVI2MccL, EVIccL, and EVI2ccL) were calculated and com-
pared with FAO-Kc curves. Control points of two crops (wheat and barley) in Isfahan
County, collected over February–March 2019, were used to determine if the estimated
scaled VIs represent reported ones. Kc and VIs are sensitive to LAI and fractional ground
cover (reviewed in [37,38,58]). Their minimum occurs at the early stages of crop cultiva-
tion (initial (ini)), changes with crop development, reaches the maximum at grain filling
(mid-season (mid)), and decreases at the end season (end) [59]. A point-to-pixel method
was applied to extract the corresponding pixel values at each point. Considering the
crop calendar of wheat and barley (November–June), scaled VIs were compared to those
of FAO56.

To assess the performance of scaled VIs against reported FAO-Kc values for wheat
and barley, the RMSE was applied at three quartiles (25, 50, and 75). Also, reported
long-term average ETc values of major crops in each county were compared with the long-
term average of ET-VIs estimates within the counties. ETc was calculated under no-stress
conditions. Local ETc values are the only available ground data at the county level for the
ZRB; therefore, they were used as a proxy for ET-VIs’ performance evaluation.

2.5. Performance Analysis of ET-VIs

ET-VIs were compared using annual average values, minimum and a maximum of
annual ET-VIs, visualization of annual ET-VIs, and ETa anomaly at basin level. In addition,
the pixel-wise spatial correlation was calculated between:

• ET-EVIccL and ET-EVI2ccL;
• ET-EVIMccL and ET-EVI2MccL;
• ET-EVIccL and ET-EVIMccL;
• ET-EVI2ccL and ET-EVI2MccL.

The correlation coefficient (R2) at the pixel level was calculated and used to compare
the differences between ET-VIs. The Mann–Kendall (MK) test was applied to detect the
existence of trends in ETa estimations in each county. MK is a non-parametric test used to
identify monotonic trends present in time series. The null hypothesis considers no trend
among the observations and the alternative hypothesis represents a monotonic trend [60].
Since the MK test cannot provide the slope of the trend (magnitude), the Sen method,
a nonparametric estimator [61], was used to determine the magnitude of the trend [62].
Negative S values show a downward trend and positive values present an upward trend.

3. Results
3.1. Localization of MODIS-Based EVI(EVI2)

Calculated VIs were compared on two dates, 14 June 2002 and 1 August 2008, in four
combinations (EVIccL–EVI2ccL, EVIMccL–EVI2MccL, EVIMccL–EVIccL, and EVI2MccL–EVI2ccL).
Both difference maps and difference frequency histograms of EVIccL and EVIMccL were
higher over dense vegetation (Figure 3). ET-EVI2ccL and EVI2MccL presented slightly lower
values than corresponding EVI values, particularly over bare soil and mountainous regions.
The highest and lowest estimated values belonged to EVIccL and EVI2MccL, respectively,
as evidenced by histograms. The peak of the EVIMccL–EVIccL and EVI2MccL–EVI2ccL his-
tograms shifted to more negative values compared to that of the EVIccL–EVI2ccL and
EVIMccL–EVI2MccL. In some parts of sparsely vegetated areas, the EVI2MccL and EVI2ccL
values were slightly larger than EVI values. While these differences are still well within
the expected noise in the VI dynamic range, [31] explained that EVI2 values are somewhat
higher than EVI values due to the higher ratio of B/R in the EVI equation.
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Figure 3. Maps and frequency graphs of VIs’ differences (a) 14 June 2002 and (b) 1 August 2008. EVI2MccL and EVIMccL: 2-
and 3-band Enhanced Vegetation Index (MODIS continuity-corrected Landsat) respectively; EVI2ccL and EVIccL: 2- and
3-band Enhanced Vegetation Index (continuity-corrected Landsat) respectively.
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3.2. Impacts of the Static and Dynamic Cropping Areas on ETa Estimation

Static cropping areas resulted in the considerable underestimation of mean ETa (mm)
and the overestimation of the total ET (km3) due to the consideration of non-cultivated areas
in ETa derivation over the years (Figure 4). Furthermore, inappropriate NDVI threshold
results in over- or underestimation. By removing values of less than 0.4, some rangelands
remained in the MVC layers, and by using 0.6 some cropped lands were excluded; therefore,
0.5 was used to exclude rangelands from croplands.
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Figure 4. (a) Mean ETa estimated using the distinct VIs in millimeter considering static and dy-
namic harvested areas, (b) Total ETa estimated using the distinct VIs in cubic kilometer considering
static and dynamic harvested areas, (c) red: annual cropland extent vs. blue: static harvested area
(area harvested at least once). ET-EVI2MccL and ET-EVIMccL: ET calculated using 2- and 3-band
Enhanced Vegetation Index (MODIS continuity-corrected Landsat) respectively; ET-EVI2ccL and
ET-EVIccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (continuity-corrected
Landsat) respectively.
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The average difference in mean ET between ET estimated based on static versus dy-
namic cropping area ranges from 221.7 mm (ET-EVI2MccL) to 239.7 mm (ET-EVIccL). When
comparing the volume of ETa in km3 with regard to static cropland, we underestimated
the ETa intensity in mm but we overestimated total ETa in km3 since the area of static
cropland is larger than that of dynamic areas (Figure 4b). To find out to what extent our
method in cropland detection is reliable, we compared our static cropland layer and MVC
of 2015 with the available land use map (Appendix A, Figures A1–A3). This land use map
was generated in 2015 and does not capture recent changes in agricultural areas. About
60 percent of our static layer covered the agriculture land use map. This is due to the
fact that the static layer considers changes in croplands for the whole period (i.e., 2000 to
2019), while the land use map reflects the changes that have happened within a few years
up to 2015. The main discrepancy between the static layer and land use map was over
rainfed areas in the upstream area. Moreover, the MVC of 2015, as expected, showed lower
cultivated areas compared to the agriculture land use map. The reason is that the MVC of
2015 presented only cultivated areas of a given year i.e., 2015.

3.3. Comparing Scaled VIs and ETa with Reported Values
3.3.1. Evaluation of Scaled VIs with FAO-Kc

Kc methods are typically derived from crops grown under optimal conditions, whereas
actual field crops can be subjected to various limitations and water stress [24,63]. The monthly
average of scaled VIs curves versus FAO-Kc at three quartiles for wheat and barley have
relatively close RMSE values (Figure 5).
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Figure 5. Scaled VIs vs. FAO-Kc curves for (a) barley and (b) wheat. RMSE presents the magnitude of the errors
in predictions and ranges from 0 to +∞ where smaller values show a better performance. The RMSE was applied to
three quartiles (25, 50, and 75). EVI2MccL and EVIMccL: 2- and 3-band Enhanced Vegetation Index (MODIS continuity-
corrected Landsat) respectively; EVI2ccL and EVIccL: 2- and 3-band Enhanced Vegetation Index (continuity-corrected
Landsat) respectively.
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EVIccL has the lowest RMSE values at almost all growth stages compared to other
VIs while the highest RMSE belongs to EVI2MccL. The curves of scaled VIs estimates
were almost similar to that of FAO-Kc. The initial stages in the VI- and FAO-based
Kc curves have considerable differences for wheat. Scaled VIs for wheat have larger
RMSE rates at all growth stages, particularly at initial and mid-season stages. All scaled
VIs’ RMSE rates decrease when approaching the end-season. The reason can be the
evaporation after irrigation or rainfall and sensitivity of reflectance to the soil top-layer
wetness, whereas at the end of the season soil evaporation is diminished. The VI method
considers transpiration from green vegetation, and only a small extent of evaporation
from bare soil; therefore, underestimations happen during the initial and developing
stages of the crop cycle.

3.3.2. Evaluation of ET-VIs with ETc

To assess the ET-VIs’ estimates, long-term average ETa estimates were compared
with that of reported ETc values (Table 1). The results show that all ET-VIs exceeded ETc
values. Among ET-VIs, ET-VIMccL and particularly ET-EVI2MccL, showed lower values
than those of others. The maximum differences between ET-VIs and ETc for all ET-VIs
occurred in Khomeinishahr (Figure 1), ranging from 34% (ET-EVIccL) to 24% (ET-EVI2MccL).
The correlation between ET-VIs and ETc values at the county scale ranges from 72% (ET-
EVI2ccL) to 78% (ET-EVIMccL).

Table 1. Long-term average ET-VI and reported ETc, county: 1: Tiran, 2: Freydan, 3: Chadegan, 4: Isfahan, 5: Mobarakeh,
6: Borkhar, 7: Khomeinishahr, 8: Shahinshahr, 9: Falavarjan, 10: Lenjan, 11: Dehaghan, 12: NajafAbad. ET-EVI2MccL

and ET-EVIMccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (MODIS continuity-corrected Landsat)
respectively; ET-EVI2ccL and ET-EVIccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (continuity-corrected
Landsat) respectively.

Long-Term Average ETa Reported Percentage of ETa Difference from ETc

County ET-EVIccL ET-EVI2ccL ET-EVIMccL ET-EVI2MccL ETc ET-EVIccL ET-EVI2ccL ET-EVIMccL ET-EVI2MccL

1 778 772 752 745 602 29 28 25 24
2 645 646 621 621 565 14 14 10 10
3 656 657 632 632 568 15 16 11 11
4 845 812 824 794 774 9 5 6 2
5 792 779 763 751 705 12 11 8 6
6 678 680 673 673 632 7 8 7 7
7 979 945 937 907 732 34 29 28 24
8 666 672 653 658 607 10 11 8 8
9 914 877 877 842 733 25 20 20 15
10 861 837 816 795 691 25 21 18 15
11 672 685 658 670 570 18 20 15 17
12 876 856 844 826 724 21 18 17 14

Basin 778 762 752 738 643 21 19 17 15

To find out how much NDVI thresholds can affect resulting ET-VIs, ET-VIs were
calculated at three thresholds of 0.4, 0.5, and 0.6 (see Section 2.3). Table 2 presents estimated
ET-VIs considering three different MVC thresholds to extract croplands over time. As can
be seen, ET-EVI2MccL and ET-EVIMccL have smaller differences at all MVC thresholds when
compared with ETc values.
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Table 2. Long-term average ET-VI and reported ETc considering different NDVI thresholds. ET-EVI2MccL and ET-EVIMccL:
ET calculated using 2- and 3-band Enhanced Vegetation Index (MODIS continuity-corrected Landsat) respectively;
ET-EVI2ccL and ET-EVIccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (continuity-corrected Land-
sat) respectively.

Long-Term Average ETa Reported Percentage of ETa Difference from ETc

NDVI
Threshold ET-EVIccL ET-EVI2ccL ET-EVIMccL ET-EVI2MccL ETc ET-EVIccL ET-EVI2ccL ET-EVIMccL ET-EVI2MccL

MVC_0.4 715 700 691 678 643 11 9 7 6
MVC_0.5 778 762 752 738 643 21 19 17 15
MVC_0.6 835 818 808 792 643 30 27 26 23

3.4. Performance Analysis of ET-VIs

To compare the performance of the ET-VIs over the ZRB, annual and long-term
averages of ET-VIs were provided (Figure 6). Since the differences between ET-VIs, owing
to the small area of cultivation and close changes of ET-VIs, are not visible in the maps,
we subtracted ET-VIs from the average of all ET-VIs presented in Figure 6a in order to
better visualize the changes of the ETa estimates (Figure 6b). Our results (Figures S2–S5)
demonstrated that all the ET-VIs have lower ETa in the northwestern part of the ZRB
and higher ETa all along the river. Nearly all annual ET-VIs showed that the highest ETa
estimates were recorded from 2004 to 2007 when rainfall was adequate and also much
more water was released from the dam to the lower reaches of the ZRB. All ET-VIs except
ET-EVI2MccL recorded the lowest ETa values over the ZRB in 2002 and 2012. ET-EVI2MccL
recorded the lowest ETa rates over the basin in 2002 and 2011. Also, maximum ET-VIs rates
were observed in 2005 over croplands in the ZRB. The lowest minimum values belong to
ET-EVIMccL and ET-EVI2MccL (Table S1). By contrast, ET-EVIccL and ET-EVI2ccL have the
highest maximum and average numbers in most of the counties (Figure 6b).

Cultivation density should be considered when comparing irrigated and rainfed re-
gions, as irrigated crops mostly have a higher vegetation density. To show the performance
of the ET-VIs over croplands, we selected two counties (Figures S6 and S7): one with the
highest rainfed area in upstream (Chadegan) and one with the highest ETa values in the
ZRB (Khomeinishar). The ETa decreases with the distance from the river, reflecting reduced
access to water.

Performance of the ET-VIs over Chadegan: with a cropping area of 34,000 ha and
a 357 mm average precipitation, Chadegan has rainfed areas with no access to surface
and groundwater. With no supplementary irrigation, precipitation is expected to be
higher than ETa. In this county, ET-EVIMccL and ET-EVI2MccL estimates were lower than
those of ET-EVIccL and ET-EVI2ccL. Although the amount of estimated ETa for all VIs
was higher over irrigated areas than rainfed areas, the ET-VIs exceeded precipitation in
rainfed croplands. The average lowest and highest difference values belong to ET-EVIMccL
(135 mm) and ET-EVI2ccL (156 mm) respectively.

Performance of the ET-VIs over Khomeinishar: with a cropping area of 5000 ha and
a 117 mm average precipitation, Khomeinishar is the smallest county located in the arid
part of the ZRB. Two high consumptive crops, pear, and rice, might be the reason for high
ETa estimates (907–979 mm) over this region. ET-EVIccL resulted in the highest ETa while
ET-EVI2MccL was lower.
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Figure 6. (a) Long-term mean ET-VI, and (b) differences between average of all ET-VIs and ET-VIs.
ET-EVI2MccL and ET-EVIMccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (MODIS
continuity-corrected Landsat) respectively; ET-EVI2ccL and ET-EVIccL: ET calculated using 2- and
3-band Enhanced Vegetation Index (continuity-corrected Landsat) respectively.

A pixel-wise correlation was applied to present the differences between the ET-VIs
across the ZRB. Annual graphs of ET-VIs are also depicted in Figure 7 to appraise the
ET-VIs’ curves. Figure 7 shows that ET-EVIMccL and ET-EVI2MccL perfectly match each other
except in 2011. Although ET-EVIccL often estimated ETa higher than that of ET-EVI2ccL,
ET-VIccL constantly tended to be higher than ET-VIMccL. Figure 7b shows that both ET-VIccL
and ET-VIMccL are strongly correlated at more than 80% over cultivated areas especially
alongside the river and in irrigated areas. The lowest agreement between ET-EVIs and
between ET-EVI2s are observed across areas with lower vegetation cover; that is, lower
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correlation and large scattering between the two ETa products (i.e., ET-VIccL and ET-VIMccL).
As explained by Nagler et al. [24], the applied algorithm was developed for monitoring
dryland irrigation districts and riparian areas and cannot be applied to other landcover
types without accounting for that in the empirical derivation.
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Figure 7. (a) Annual average ET-VIs over the ZRB, (b) Pixel-wise spatial correlation. ET-EVI2MccL

and ET-EVIMccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (MODIS continuity-
corrected Landsat) respectively; ET-EVI2ccL and ET-EVIccL: ET calculated using 2- and 3-band
Enhanced Vegetation Index (continuity-corrected Landsat) respectively.

Figure 8 depicts the boxplots of ET-VIs’ anomalies over two decades. All ET-VIs
showed similar patterns considering inter-annual variations in ET-VIs anomalies with a
capability to capture the drought and shrinkage of agricultural areas.

ETa has a sharp increase in normal to wet years due to sufficient precipitation and
enough available water. From 2000 to 2002, due to drought events [64], negative ET-VIs
anomalies persisted throughout the basin, particularly in rainfed areas (Figures S8–S11). In
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recent years, most rainfed areas have been supplemented with water in the event of water
shortage; therefore, the drought impacts and water shortage are not significant upstream
compared to downstream. All ET-VIs showed a considerable positive ETa anomaly across
the basin from 2004 to 2007 associating with sufficient rainfall and water availability
(Figure 8). In 2008, a drought event occurred in the basin, particularly upstream where the
river originates, and consequently a significant reduction in ET-VIs is apparent. Similarly,
in 2010 and 2017, the amount of precipitation was low and in subsequent years, i.e., 2011
and 2018, a considerable shrinkage in the croplands was conspicuous. It should be noted
that the negative ETa anomalies do not correspond to precipitation reduction over the
annual scale. Since the rainfall deficit means meteorological drought, any drop of ETa
indicates agricultural drought i.e., a decrease in soil moisture. Nevertheless, years with
persistent or severe meteorological drought result in negative ETa anomalies. To illustrate
the existence and magnitude of trends in ET-VIs at basin and county levels, a summary
of trend analysis is presented in Table 3. ET-EVI2MccL in 10 counties had the lowest S
values. As mentioned earlier, ET-EVI2MccL tends to estimate ETa to a lesser degree than
those of other ET-VIs. All products presented a downward nonsignificant trend in Isfahan,
Lenjan, and NajafAbad. This can be due to less water availability and consequently less
soil moisture in the root zone. At the ZRB scale, it was found that the annual ET-VIs,
except ET-EVIccL, decreased. ET-EVIccL presented an upward trend with 0.89 mm/year,
which was not statistically significant. A maximum nonsignificant upward trend based
upon S belongs to Freydan with 3.47 mm/year. NajafAbad has the highest nonsignificant
decreasing trend with 2.46 mm/year. Lenjan is the main rice producer and, due to water
shortages, the cultivation of rice there has decreased. Total rice cultivation in the ZRB is
about 5% of the total cultivated area.
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Table 3. The trend in different counties. The critical Z value at the 5% confidence level is ±1.96, and there is a trend if the
MK’s Z value is greater than the Z critical value. Also, if the p-value is less than the significance level, the null hypothesis is
rejected, meaning that there is a trend in the time series [60]. 1: Tiran, 2: Freydan, 3: Chadegan, 4: Isfahan, 5: Mobarakeh,
6: Borkhar, 7: Khomeinishahr, 8: Shahinshahr, 9: Falavarjan, 10: Lenjan, 11: Dehaghan, 12: NajafAbad. ET-EVI2MccL

and ET-EVIMccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (MODIS continuity corrected Landsat)
respectively; ET-EVI2ccL and ET-EVIccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (continuity-corrected
Landsat) respectively.

ET-EVIMccL ET-EVI2MccL ET-EVIccL ET-EVI2ccL

County Z S P Z S P Z S P Z S P

1 0.56 0.60 0.58 −0.07 −0.20 0.94 1.33 1.40 0.18 0.91 0.75 0.36
2 0.63 2.28 0.53 0.84 1.93 0.40 1.33 3.47 0.18 0.42 0.66 0.67
3 0.91 1.05 0.36 0.63 0.65 0.53 1.47 1.36 0.14 0.84 0.73 0.40
4 −0.98 −1.33 0.33 −1.47 −2.22 0.14 −0.28 −0.34 0.78 −1.12 −1.75 0.26
5 2.24 5.75 0.03 1.47 3.85 0.14 2.73 5.84 0.01 1.61 3.89 0.11
6 3.64 7.90 0.00 3.29 6.76 0.00 3.71 8.79 0.00 3.64 7.74 0.00
7 −0.07 −0.07 0.94 −1.47 −1.92 0.14 0.84 0.95 0.40 −1.05 −1.48 0.29
8 1.75 2.31 0.08 0.70 1.26 0.48 2.17 3.22 0.03 0.70 1.32 0.48
9 1.75 3.74 0.08 1.47 2.40 0.14 2.31 4.58 0.02 1.40 2.52 0.16

10 −0.14 −0.61 0.89 −0.56 −1.07 0.58 0.00 −0.16 1.00 −0.28 −1.02 0.78
11 2.03 3.91 0.04 1.33 3.51 0.18 2.38 4.99 0.02 1.26 3.21 0.21
12 −0.84 −1.40 0.40 −1.33 −2.46 0.18 −0.49 −1.08 0.62 −1.47 −2.19 0.14

Basin −0.07 −0.08 0.94 −0.35 −0.77 0.73 0.35 0.89 0.73 0.00 −0.03 1.00

4. Discussion

In this study, amongst different methods of ETa estimation, the VI-based method (EVI
and EVI2) was applied and assessed to estimate annual ETa in the ZRB. The applicability of
these RS-based ETa models has the potential to facilitate and improve water management
and drought monitoring, where access to in-situ data is constrained. In the ZRB, except a
few short-term [65,66] or coarse-resolution [67] studies, there was no study which assessed
the application of empirical ET-VI methods over croplands at basin scale using Landsat
images. Most studies do not consider changes in croplands’ extent over the years; however,
it is critical to incorporate the impact of fallow and non-cultivated lands on the estimation
of ETa.

Long-term observation of land cover usually results from multiple sensors with dis-
similar characteristics [68–70], making the time series inconsistent and requiring continuity
transformation. Many studies have emphasized the necessity of cross-sensor transforma-
tion [68,71]. We derived translation equations for the MODIS’ EVI and EVI2 and formulated
a MODIS-based EVI and EVI2 for Landsat sensors. We also compared pairs of MODIS-
based ET-VIs against non-MODIS-based ET-VIs that will permit the direct application of
MODIS-VI ETa models. Nevertheless, to the knowledge of the authors, there was no study
on comparison of the impact of applying cross-sensor transformation on ETa estimates
over croplands. Our results showed that ET-VIccL was highly correlated with ET-VIMccL
over croplands. This is in line with the findings of Jarchow et al. [71] and Nagler et al. [39].
In Jarchow et al. [71], they found a high correlation between Landsat-EVI and MODIS-
EVI for agricultural fields. In Nagler et al. [39], a high correlation was reported between
Landsat-EVI (and EVI2) and MODIS-EVI (and EVI2) for riparian reaches of the lower
Colorado river.

Intra-annual variation of the ETa over croplands emphasizes the importance of an
accurate assessment of ET as a water management tool where in-situ data are scarce.
The croplands are inescapably and significantly reliant on irrigation and must compete
with other water users in the region. Maxwell et al. [57] used maximum NDVI composites
to identify ever-cropped lands and to evaluate the inter-and intra-annual dynamics of
cropped and non-cropped lands. Their results indicated that maximum NDVI composites
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were useful for identifying land use changes over time [57]. In line with Maxwell et al. [57],
our findings showed the capability of MVC in capturing cropped and non-cropped lands.
The shrinkage of cropping areas during drought and dry periods is significant, particularly
downstream. This can lead to the underestimation of ETa when a static cropping area is
only considered for ETa prediction.

Data obtained from a time series of VIs helped us to understand the phenological
stages of the crops. We evaluated the phenological behavior of wheat and barley using
scaled-VIs compared with FAO-Kc. The Kcmid and Kcend values extracted for these crops
compared well with reported values by [72]. They collected the applied research on
FAO-Kc and appraised and updated the single Kcmid and Kcend [72]. ET-VIs could capture
the drought, water shortage, and shrinkage of cropping areas, particularly in the lower
reaches of the basin. Various studies have reported a strong correlation between VIs
and ET over a wide variety of biomes [11,22,37,38,73]. Glenn et al. [11] reported that the
difference between empirical methods and measured ETa has a root mean square error of
up to 30% of mean ETa across different biomes. In our study, the comparison of ET-VIs
with long-term averaged ETc values at the basin-scale varied from 14.81% (ET-EVI2MccL)
to 21.11% (ET-EVIccL), and at the county-level this ranged from 2.49% (ET-EVI2MccL) to
33.67% (ET-EVIccL) (Table 1). These differences revealed that all ET-VIs overestimated the
ETa. ET-EVI2 tended to have lower ETa estimates in comparison to their corresponding
ET-EVIs in the majority of the counties. Nouri et al. [5] reached a similar conclusion after
analyzing estimated ETa over urban green spaces using EVI, EVI2, and NDVI from Landsat
and MODIS. Their findings also showed that ET-Landsat (EVI2) and ET-MODIS (EVI2)
consistently had lower estimates compared to that of ET-Landsat (EVI) and ET-MODIS
(EVI). The anomalies’ graphs perfectly depicted that from 2010 onwards the ET-VIs had
negative anomalies mostly in the tail part of the ZRB, showing a decrease in the area of
cultivation. The results on the anomaly of ET-VIs corroborate the study by Sarvari et al. [74].
They demonstrated that in the 2010s, the lower parts of the ZRB dried out due to several
years of water shortage, causing damage to the agriculture sector. The upstream of the
ZRB encounters less water shortage due to better access to blue water resources and
more rainfall. Accordingly, Sharifi et al. [75] claimed that, due to water demand, frequent
droughts, and the transformation of the geographical boundaries (political boundaries
replaced river basin boundaries as the basis for regional water resources management,
2008–2009) of water allocation authorities within the basin, the fulfillment of agricultural
water rights was hindered. Overlooking drought events during 2000 and 2001 and their
impact on cultivated areas, the ET-VIs revealed an expansion of cultivation areas from
2004 to 2007. Sharifi et al. [75] reported that the basin’s total cultivation area peaked at
310,000 ha in 2006. Overall, our findings show that the ET-VIs approach can be utilized not
only for agricultural water management, but also for drought monitoring, mapping, and
water and food security policies.

Main sources of errors and uncertainties in ET-EVI and ET-EVI2 estimation

I. Uncertainties: our ET-VIs’ uncertainties are rooted in (1) errors in the derivation of ETo
(limited access to field observations of ETo and the lack of well-distributed climatic
stations in ZRB hampered the application of PM to estimate ETo for the whole basin;
therefore, alternative climate datasets like the global gridded datasets with coarse
resolution were used in this study to map ETo); (2) errors and uncertainties in ground
measurements of ETc; (3) RS methods are themselves subjected to uncertainty such as
parameterization, cloud cover, errors in scaling approaches, impacts of land cover, and
meteorological forcing [29,76,77]. The major hindrance of applying ET-VIs is that they
cannot capture stress effects or soil evaporation [78]. In the case of the ZRB, due to the
cloud and aerosol contamination, some parts of the ZRB had either excessive missing
images or missing pixel values due to the presence of stripes in Landsat 7 images, for
example. While missing values were reconstructed by averaging introduces some
errors and uncertainties to NDVI, VIs, and ETa (4), our cross-sensor transformation
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and translation equations could also have introduced biases since they are based on
filtered data only.

II. Limitations: the accuracy of the ground data for calibration or validation is the main
constraint. Since ET-VI methods cannot identify early signals of moisture stress, they
are therefore not useful for real-time irrigation planning. Nevertheless, on monthly
time steps, they can help relate crop water requirements to crop growth and develop-
ment [11]. The validation of the ETa estimates produced in this paper is hampered
by the scarcity of good quality spatial data on the availability of ground truth data
like observed ETa estimates, Kc values, data on agricultural water consumption from
surface and groundwater, and a precise land use map to exclude trees, green spaces,
and rangelands. We assume that the current modified rainfed map, as being valid for
only rainfed areas over other years, could result in some misclassification of irrigated
and rainfed fields, as some irrigated lands may have been converted to rainfed, while
rainfed areas may have experienced irrigation expansion. Missing images in 2003 also
made us exclude this year from our evaluations.

III. Recommendation: RS-based approaches have the potential to be used for national and
provincial water management projects, such as drought mitigation in fulfilling food
security at a national scale and, on a smaller scale, irrigation management of different
counties. Considering cross-sensor differences, transformation methods should be
applied before ETa calculation in order to reduce the impacts of these disparities
on ETa estimates. Certain spatial characteristics may be lost due to the aggregation
method, such as cropping practices and rotations. Furthermore, an accurate pro-
jection of the water consumption of crops during the growing season, along with
images with the finer temporal and spatial resolution are both needed. Apart from
reliable field measurements and crop-specific comparisons of ET-VIs to improve the
accuracy and spatiotemporal resolution of ETa estimations, further studies should
evaluate hybrid approaches combining different ETa methods by considering their
corresponding advantages and limitations. We recommend comparing ET-VIs with
other VI and energy balance methods as well as available RS-based ETa products,
such as Operationalized Simplified Surface Energy Balance (SSEBOp) [14] or Water
Productivity through Open access of Remotely sensed derived data (WaPOR) [79].

5. Conclusions

The development of RS-based ETa can provide an effective tool for fast hydrological
monitoring, agricultural management, and climate change studies.

Vegetation-index-based ETa estimation provides robust results for agricultural crops
grown in arid regions and may therefore play a key role in informing land and water
management in regions lacking in-situ data. ETa calculation is improved by applying
cross-sensor transformation equations before calculating ETa. Interannual variability in
cropland extent affects ETa considerably; therefore, the use of static cropland extent cannot
be recommended. Further research is still needed to evaluate how ET-VIs perform at
seasonal and monthly scales and to compare them to alternative methods, such as energy-
balance based indices. Future studies should evaluate the performance of these empirical
RS-based ET-VIs at different time scales and especially for rainfed systems.
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10: Lenjan, 11: Dehaghan, 12: NajafAbad; ET-EVI2MccL and ET-EVIMccL: ET calculated using 2- and
3-band Enhanced Vegetation Index (MODIS continuity corrected Landsat) respectively; ET-EVI2ccL
and ET-EVIccL: ET calculated using 2- and 3-band Enhanced Vegetation Index (continuity-corrected
Landsat) respectively.
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