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Abstract—The multiple-preys pursuit (MPP) is the adversarial
game between predators and preys. If the capture of a prey is
defined as that it cannot move anymore due to the surrounding
of predators, there are two kinds of task allocations. One is about
assigning which prey to which group of predators so that all preys
can be captured. The other is about assigning which capturing
position to which predator to encircle the prey simultaneously.
In this paper, the MPP is modeled as a dynamic optimization
problem and each its time step is solved in two stages. Firstly, the
first kind of task allocation problem is modeled as the biquadratic
assignment problem (BiQAP) and a MPP fitness function is
proposed for the evaluation of such BiQAP task allocations.
In this way, the MPP is transformed to several single-prey
pursuit (SPP) problems. Secondly, for each SPP, we extend the
coordinated SPP strategy CCPSO-R (cooperative coevolutionary
particle swarm optimization for robots) to its parallel version
as PCCPSO-R to enable the parallel implicit capturing position
allocating by parallel observation, decision making, and moving
of predators. Through experiments of the current BiQAP solvers
on the task allocation, we improve the best one of them in statistic
based on the domain knowledge. Moreover, the advantages of
PCCPSO-R in the capturing efficiency over CCPSO-R is testified
in the MPP experiments.

Index Terms—multiple-preys pursuit, biquadratic assignment
problem (BiQAP), cooperative coevolutionary algorithm

I. INTRODUCTION

The pursuit, or predator-prey domain is the game between
two groups of agents. Typically, one group is called the
predators or pursuers, and the other is called the preys or
targets. As its name tells, the pursuit domain is about the
story that predators want to capture the preys while the preys
want to evade from predators. Based on their capabilities, the
intelligence can occur between two adversarial groups or just
among one group. Under different game setups, variants of
the game have different applications and specific challenges to

Corresponding author: Yuhui Shi.
The work is supported by the Science and Technology Innovation Commit-

tee Foundation of Shenzhen under Grant No.: ZDSYS201703031748284 and
JCYJ20200109141235597, National Science Foundation of China under Grant
No.: 61761136008, Australian Research Council (ARC) under discovery grant
DP180100670.

be coped with, and “many multi-agent systems (MAS) issues
arise” in instances of the pursuit domain [1].

The pursuit domain is originally proposed by Benda et al.
[2] and studied by successive work [3], [4] as a testbed for the
optimal cooperation by correlating the organization structure
of agents with the intelligence of the system. One of their
conclusions is that the organization structure among agents
is a crucial hyperparameter, the selection of which influences
the selections of others, such as the coordination strategies.
Afterwards, most work have used the pursuit domain as the
testbed for the multi-agent coordination strategies design, in
addition to the organization structure itself. One class of
such work tries to implement the coordination with a group
of independent agents that only considers two things: the
agent itself and its own task, such as [5]–[7]. Although such
implicit cooperation is simpler for the rules generation since
the partnership is not incorporated in the design, i.e., no
perception of other partners, nor communications, agents may
fail to cope with many conflict scenarios and thus the final
cooperation performances are not satisfactory.

Another class of work focuses on the strategies design for
a group of cooperative agents. Tan [8] specially compared the
performances of cooperative agents with that of independent
agents, which had 2 main results that provide a direct motiva-
tion for the coordination strategies development of cooperative
agents rather than independent agents. One is that for both
normal tasks that can be accomplished by a single agent and
joint tasks that need more than one agents, perception cooper-
ation can help improve the efficiency in accomplishing tasks
compared with a group of independent agents. The other is that
sharing learned policies or experiences speeds up learning but
does not influence the final task accomplishing performance.
More successive work tried to answer the questions like what
cooperative methods to use or how to be cooperative. For
example, the game theoretic techniques used by Levy et al.
[9], the case learning [10], the path planning methods [11],
the reinforcement learning (RL) approaches [12]–[15], and the
evolutionary computation (EC) [7], [16].



Besides, another similar game to the pursuit domain is the
pursuit-evasion game where agents have different names under
different backgrounds. For example, a predator may be called
a lion, a cop, a hunter, or a searcher, while a prey may be
called a man, a robber, a rabbit, or a target, etc. As for their
origins, the lion-and-man game was invented by R. Rado [17]
where a lion wants to capture an evading man in a bounded
circular arena. Then Parsons [18] studied the pursuit-evasion
on graphs based on the application that searchers need to find
a lost spelunker in a cave whose behavior is unpredictable, and
claimed that the problem was raised by Richard Breisch. As
for the pioneer work of the cops-and-robbers game, according
to [19], it was investigated by Quilliot [20] and independently
investigated by Nowakowski et al. [21]. A detailed survey on
the pursuit-evasion can be seen in [22].

However, the pursuit domain primarily occurs in the grid
world where the attention of researchers are mainly paid on
the development of coordination strategies and results are
empirical; while the pursuit-evasion game primarily occurs on
a graph, or in an environment with some analyzable geometric
properties where researchers concern more on the theoretical
analyses and seek performance guarantees. In particular, there
are many NP-hard problems in such theoretical analyses. For
example, as shown in [19], [23], the determination of the
minimum number of cops needed to win the game is NP-hard.

In this paper, we specially investigate the coordinated
multiple-preys pursuit (MPP) problem, which is more chal-
lenging than the general studied single-prey pursuit (SPP)
domain, with real-world applications such as sources of gas
contamination clearance [22]. The game occurs in a finite grid
world with 5 possible actions (moving one grid in the north,
west, south, east, and keeping still) of agents. The capture of
a prey is defined as that the prey is surrounded by predators
such that it cannot move any more. So, generally, 4 predators
are needed in capturing a prey, as shown in Fig. 1. The contri-
butions of this paper are as follows. The MPP is modeled as a
dynamic optimization problem and each its time step is solved
by the proposed two-stage approach. Firstly, the task allocation
problem of assigning each prey to 4 predators is modeled as
the biquadratic assignment problem (BiQAP), and a multiple-
preys pursing fitness function is proposed based on the single-
prey pursuing function proposed in [16] to evaluate the multi-
tasks coordination of agents in the BiQAP task allocation. In
this way, the application of BiQAP is extended to the multiple
robots systems (MRS) or multi-agent systems (MAS), and
the MPP is transformed to several SPPs. Secondly, for each
SPP, we modify the single-prey pursuing algorithm CCPSO-R
(cooperative coevolutionary particle swarm optimization) [16]
to allow the parallel observation, decision-making, and move
of agents to further facilitate the MAS efficiency.

The rest of the paper is organized as follows. First, the
BiQAP problem and the SPP strategy CCPSO-R are intro-
duced in Section II. Then the proposed multiple-preys pursuing
solution is described in Section III. Experimental results and
discussions are presented in Section IV. Finally, conclusions,
limitations, and future researches are given in Section V.

Fig. 1. Illustration of the surrounding based capture [16].

II. RELATED WORK

A. Biquadratic assignment problem (BiQAP)

The biquadratic assignment problem (BiQAP) [24]–[26] of
size n is a combinatorial optimization problem, whose solution
is typically represented as the permutation ϕ, which is the
the bijective mapping between two sets A = {1, ..., n} and
B = {1, ..., n}, with the objective being

min
ϕ∈S

n∑
i=1

n∑
j=1

n∑
k=1

n∑
o=1

ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o), (1)

where S is the set of all permutations of {1, 2, ..., n}, ϕ(i) ∈
{1, 2, ..., n} is the i-th dimension of the permutation, and
ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o) ∈ <n8

is the cost of assigning the
numbers i, j, k, o to ϕ(i), ϕ(j), ϕ(k), ϕ(o), respectively.

In particular, BiQAP is an nonlinear assignment problem, a
special case of M -adic assignment problem when M = 4,
and a generalization of the quadratic assignment problem
(QAP). First, Burkard et al. [24] investigated BiQAP motivated
by the problem in the VLSI synthesis, which, to the best
knowledge of authors, is the only one published application of
BiQAP so far. Meanwhile, they proposed the first method for
generating BiQAP benchmarks with known optimal solutions.
Afterwards, since BiQAP is NP-complete [24], [25], heuristic
methods are pursued and reported in literature. In [27], three
deterministic improvement methods, i.e., the first improvement
method (FIRST), the best improvement method (BEST), and
the Heider’s improvement method (HEIDER); three simulated
annealing algorithms (SIMANNs); one taboo search method;
and one hybrid of taboo search and SIMANN were proposed.
Then, in [28], a greedy randomized adaptive search procedure
(GRASP) was proposed, one iteration of which first greedily
constructs an initial solution and then FIRST is applied as the
local search method.

According to the experimental results of [26]–[28] on
benchmarks generated by the method in [24], HEIDER is
the best among the deterministic methods in terms of the
tradeoff between the solution quality and the computational
cost, and GRASP is the only one algorithm that finds optimal
solutions for all test instances 100% with the cost of more
computations. However, for real-world applications like the
MPP BiQAP task allocation, GRASP may be not the first-
class choice, and the simpler the solver is the better, as will
shown by the experimental results of Section IV.



B. Cooperative coevolutionary particle swarm optimization
for robots (CCPSO-R)

In a single-prey pursuit, the fitness function for the j-th
predator of the i-th subpopulation is designed in [16] as

f ij = f ijrepel · (f
ij
closure + f ijexpanse + f ijuniformity) (2)

where

f ijrepel =

{
e−c·(NNDij−Dmin), if NNDij < Dmin

1, else
(3)

penalizes the fitness if the predator’s nearest neighbor distance
NNDij is smaller than the specified minimum secure distance
Dmin with c being a constant;

f ijclosure = inconv( pprey,

conv(p11robots, ..., p
ij
robots, ..., p

N1
robots))

(4)
evaluates whether the prey locates in the convex hull conv(·)
shaped by the predators group: 0 if inside, 0.5 if on the edge,
and 1 if outside (details see [16]);

f ijexpanse =
1

N
(

N∑
k=1,k 6=i

|pk1robots − pprey|+ |p
ij
robots − pprey|)

(5)
is the group expanse of predators in terms of the prey; and

f ijuniformity = std

([
N11 N12

N21 N22

])
, (6)

or
f ijuniformity = std([N12, N21, N23, N32])

+std([N11, N13, N31, N33]).
(7)

evaluates the uniformity of predators’ space distribution with
respect to the prey by standard deviation std(·) where Nij in
the set {N11, N12, N21, N22} or {N11, N12, N13, ..., N33} is
the number of predators in the (i, j)-th space bin divided by
different schemes (details see [16]).

Algorithm 1: CCPSO-R [16]

1 Initialization.
2 while the termination conditions are not satisfied do
3 for each subpopulation do
4 Re-evaluate the subpopulation due to the

environmental changes.
5 Update each virtual predator robot.
6 Update the real predator robot.
7 Real robot deadlock detection and processing.

8 Predator swarm deadlock detection and processing.

Based on the fitness function Eq (2), real predators pursue
the prey without fixed behavior rules yet under the immediate
guidance of the fitness function in CCPSO-R (Algorithm 1)
[16]. That is, for one single prey pursuit with N predators,
there are N subpopulations. In each subpopulation, the first
individual is one distinct real predator, while all the others

are virtual robots distributed in the vicinity of the real one.
Under the scheme of cooperative coevolution (CC), robots
evaluate the positions using Eq (2) in terms of all the other
real predators of the other subpopulations such that the global
benefit of the swarm is considered. Under the guidance of
particle swarm optimization (PSO), virtual robots sample the
vicinity and update their positions. Finally, the corresponding
real robot chooses its locally optimal action based on the
results of virtual robots that involve the global benefit of the
whole swarm. The game continues until the maximum time
limit is reached or the prey is captured.

III. THE PROPOSED METHOD

A. The proposed solution for the multiple-preys pursuit

The multiple-preys pursuit (MPP) occurs in a finite grid
world where 5 possible actions of agents: moving north, west,
south, and east one step away, and staying still. The capture
of a prey is defined as that the prey cannot move any more
due to the surrounding of predators, as illustrated in Fig. 1.
So, in general, 4 predators are needed for the capture of one
prey. Once a prey is captured, it will not disappear. The MPP
is said to be a success if all the preys are captured.

Fig. 2. An example multiple-preys pursuit scenario.

Algorithm 2: Proposed two-stage approach to MPP

1 Initialize the environment.
2 for each time step do
3 for each prey do
4 Observe, make decision, and take one action.

5 The central virtual predator observes and makes the
BiQAP task allocation decision by Algorithm 4.

6 All the real predators concurrently observe, make
decision, and take one action by PCCPSO-R.

7 if termination conditions are satisfied then
8 The game is terminated.

For one time step in MPP, as shown in Fig. 2, firstly,
tasks need to be allocated that each prey is assigned to each
4 predators and the MPP problem is transformed to several
single-prey pursuit (SPP) problems. Due to the evaluation of
such a task allocation involves the assignments between a prey
and 4 predators, it can be naturally modeled as the biquadratic
assignment problem (BiQAP). Secondly, all the predators will
concurrently cooperate with their group members to capture



the assigned prey where a distributed coordinated single-prey
pursuit strategy CCPSO-R [16] will be modified to its parallel
version PCCPSO-R to improve the scalability. As the time
goes, both preys and predators move, the environment changes,
and thus both each single-prey pursuit fitness and the task
allocation fitness change. So, for the MPP game, it is in fact a
dynamic optimization problem that the centralized BiQAP task
allocation and decentralized PCCPSO-R are conducted every
time step due to the past environmental changes, until all preys
are captured or time limit is reached. As a whole, the proposed
two-stage approach to MPP is described in Algorithm 2, which
will be introduced in detail in Section III-B and III-C.

B. BiQAP task allocation in the dynamic optimization

For the MPP, a central virtual predator is designed
to allocate each 4 predators to the pursuit of each
prey. Specially, if the set of predators is represented by
PREDATORS = {1, 2, .., n}, and the set of preys is
represented by PREY S = {1, 2, ...,m} with n = 4m,
then the mapping from PREDATORS to PREY S is a
biquadratic semi-assignment problem (semi-BiQAP) [25], [29]
since 4 predators will be assigned to the same prey.

Equivalently, the semi-BiQAP between PREDATORS
and PREY S can be transformed to the BiQAP
between PREDATORS and PREY S by repeating
each prey 4 times, i.e., PREY S = {1, ..., n} =
{1, 1, 1, 1, ...,m,m,m,m}. Futher, since the mapping
between PREDATORS and PREY S is bijective, the
problem is equivalent to the BiQAP between PREY S and
PREDATORS with the objective (1) which is rewritten
here for convenience.

min
ϕ∈S

n∑
i=1

n∑
j=1

n∑
k=1

n∑
o=1

ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o). (8)

Moreover, for the practical application of MPP, the matrix
[ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o)] is sparse that

ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o)

{
6= 0, if (i, j, k, o) ∈ K1,

= 0, otherwise
(9)

where K1 = {C(w,w+1, w+2, w+3)|w ∈ {1, 5, ..., n−3}}
and C(·, ·, ·, ·) is all the combinations of the 4 numbers.
For example, when w = 1, K1 = {C(0, 1, 2, 3)} =
{(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 3, 1), ..., (3, 2, 1, 0)} and |K1| =
24. Therefore, the objective (8) can be simplified as

min
ϕ∈S

∑
(i,j,k,o)∈K1

ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o). (10)

Further, since each prey is repeated 4 times in PREY S, the
cost is the same for all (i, j, k, o) ∈ C(w,w + 1, w + 2, w +
3) for any fixed w. So, the matrix [c] is symmetric and the
optimization problem of (10) is equivalent to

min
ϕ∈S

∑
(i,j,k,o)∈K2

ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o), (11)

where K2 = {(w,w+ 1, w+ 2, w+ 3)|w ∈ {1, 5, ..., n− 3}}.

So, when the permutation ϕ is given, (i) due to the sparsity
of the matrix [ci,j,k,o,ϕ(i),ϕ(j),ϕ(k),ϕ(o)], only |K1| = 4!·n/4 =
O(n) non-zero elements need to be considered , among which
only |K2| = n/4 elements are distinguished due to the matrix
symmetry; (ii) to evaluate a solution ϕ, n/4 additions of the
cost coefficients ci,j,k,m,ϕ(i),ϕ(j),ϕ(k),ϕ(o) will be needed.

As for the cost coefficient, we have c = f i, where f i is the
fitness function for the i-th single-prey pursuit. Therefore, we
propose the fitness function for the MPP as

f =
∑

i∈{1,2,...,n/4}

f i, (12)

and the MPP BiQAP task allocation (11) is equivalent to

min f. (13)

In a summary, the one time step task allocation problem of
assigning each prey to 4 predators is modeled as the BiQAP,
which is an optimization problem with the objective (13).
According to the convention in solving BiQAP, a solution is
represented as a permutation of {1, 2, ..., n}. As for the MPP, it
is a dynamic optimization problem where the fitness function
Eq (12) changes every time step since the agents (predators
and preys) are moving. To solve such dynamic optimization
problem, based on the domain knowledge, we propose a
scheme to greedily construct an initial good solution based on
the space distributions of agents in Algorithm 3. However, note
that, this procedure is conducted only once at the beginning
of the game, while for successive time steps, since the MPP
is a slow-changing dynamic optimization problem, the best
solution found in the last time step is used as the initial
solution for the task allocation of the current time step.

Algorithm 3: Greedy inidividual construction scheme

1 M ← pairwise distances between preys and predators.
2 for each prey do
3 Assign the nearest 4 predators to the prey.
4 Delete these 4 predators from M .

For solving the BiQAP task allocation, we modify HEIDER
as HEIDER-Random to stochastically improve the solution’s
quality and the algorithm’s efficiency by two tricks in the line
2 of Algorithm 4: (i) randomize the neighborhood searching
order in I; (ii) remove the ineffective neighborhood searching
and name it as the semi-neighborhood searching due to the
inherent semi-assignment nature of the MPP. That is, we do not
search the neighbor derived from interchanging the i-th and j-
th positions of the current solution when the conditions i, j ∈
{1, ..., n}, i < j,mod(i, 4) 6= mod(j, 4) are not satisfied. This
is because interchanging the relative orders of two predators
assigned to the same prey in the permutation solution does
not change the single-prey pursuit fitness f i and thus the task
allocation fitness f .



(a) Example scenario 1. (b) Case 1. (c) Case 2. (d) Case 3. (e) Case 4.

(f) Example scenario 2. (g) Case 5. (h) Case 6. (i) Case 7. (j) Case 8. (k) Case 9. (l) Case 10. (m) Case 11. (n) Case 12.

Fig. 3. The local capture patterns in the repair stage of PCCPSO-R.

Algorithm 4: HEIDER-Random [27]

1 Construct an initial solution by Algorithm 3 as the
current solution and set the flag converged as False.

2 Generate the two-positions interchanging set I =
{(i, j)|i, j ∈ {1, ..., n}, i < j,mod(i, 4) 6= mod(j, 4)}
and randomize its elements order for the
semi-neighborhood searching.

3 while not converged do
4 Set the flag neighborhood exhausted as False.
5 while not neighborhood exhausted do
6 Find the next neighbor by exchanging the i-th

and j-th positions of the current solution
where (i, j) is the next element of I in the
cyclic way.

7 if the neighbor’s fitness is better than the
current solution then

8 neighborhood exhausted← True.
9 The current solution ← the neighbor.

10 else if I is traversed then
11 neighborhood exhausted← True.
12 converged← True.

13 Output the current solution and its fitness.

C. Parallel CCPSO-R (PCCPSO-R)

As shown in Algorithm 1 and mentioned in [16], the
sequential scheme in the observation, decision making, and
moving of real predators limits the scalability of CCPSO-R.
Therefore, we propose a parallel version of CCPSO-R, which
is named as PCCPSO-R, by parallelizing the subpopulation-
by-subpopulation procedure of the for loop in Algorithm 1 in
the following ways.

First, the single-prey pursuit function Eq (2) is modified as

f ij = f ijrepel−prey · f
ij
repel−predator

·(f ijclosure + f ijexpanse + f ijuniformity)
(14)

where f ijrepel−prey and f ijrepel−predator have the same form of
Eq (3) yet with different meanings of NNDij and different
values of the Manhattan distance Dmin. For f ijrepel−prey ,
NNDij is the nearest distance to prey agents and the secure
distance Dmin is set as 1, while for f ijrepel−predator, NNDij

is the nearest distance to predator agents and Dmin is 2. How-
ever, note that, the function Eq (14) is for a predator’s fitness
in capturing a prey, while to evaluate the capturing fitness f i of
the whole predator swarm, f ijrepel−prey = f ijrepel−predator = 1.

Second, a repair stage is added when the predator swarm
and their assigned prey is close enough in a limited area such
that strong and obvious capturing patterns can be matched and
more effective simple rules can be applied. In particular, for
scenarios like that shown in Fig. 3a, 4 local capture patterns
Fig. 3b to Fig. 3e are extracted, while for scenarios like that
shown in Fig. 3f, 8 patterns Fig. 3g to Fig. 3n are extracted.
In these pattern cases, the red pentagram is the prey, the
blue square with an moving direction arrow is the current
predator, the grey square is also a predator that will prevent the
current predator from moving to the next capturing position
according to the configurations in Eq (14), and the shallow
blue and shallow green filled cells represent the potential
positions that a one-step away predator may locate for each
distinct capturing position. Therefore, once a predator detects
a matched local capturing pattern, it will enter the repair stage
and behave according to the pointed moving direction such
that all predators will move according to the rules to capture
the prey without collisions.

IV. EXPERIMENTS

A. BiQAP solver for the task allocation

For the comparison of BiQAP solvers, test instances are
randomly generated in a 40 × 40 grid world with different
problem sizes, which is the length of a permutation solution,
i.e., the number of predators, or 4 times of the number
of preys. For each test instance, an initial good solution is
constructed using the method in Algorithm 3 whose fitness
value is evaluated by the MPP fitness function Eq (12) and



TABLE I
SOLUTIONS QUALITIES OBTAINED BY DIFFERENT ALGORITHMS ON THE BIQAP TASK ALLOCATION PROBLEMS OVER 50 RUNS

Size Instance Initialization FIRST BEST HEIDER GRASP SIMANN3 HEIDER-Random
best avg. best avg. best avg.

12

1 56.984 47.080 47.419 47.080 47.080
(0.300)

47.424
(0.318)

47.083
(0.020)

48.697
(0.491)

47.080
(0.260)

47.364
(0.274)

2 54.900 49.375 48.376 49.375 48.376
(0.640)

48.735
(0.480)

49.985
(1.000)

49.985
(0.000)

48.376
(0.660)

48.715
(0.473)

3 58.935 53.614 53.614 53.614 53.614
(0.920)

53.692
(0.266)

54.596
(1.000)

54.596
(0.000)

53.614
(0.680)

53.810
(0.393)

4 56.641 54.336 54.336 54.336 54.336
(1.000)

54.336
(0.000)

54.344
(0.020)

54.713
(0.053)

54.336
(1.000)

54.336
(0.000)

5 58.213 45.297 45.297 45.297 45.297
(1.000)

45.297
(0.000)

45.297
(0.060)

48.891
(0.939)

45.297
(1.000)

45.297
(0.000)

16

1 72.757 55.380 55.380 55.380 - - 60.876
(0.020)

64.701
(0.546)

54.745
(0.760)

54.898
(0.271)

2 77.096 60.922 60.922 60.922 - - 70.776
(0.100)

71.709
(0.311)

60.689
(0.600)

60.792
(0.129)

3 71.025 64.225 64.225 64.225 - - 65.746
(0.060)

66.349
(0.152)

64.225
(0.200)

64.225
(0.000)

4 56.182 46.444 45.958 46.444 - - 48.256
(0.020)

48.451
(0.028)

45.958
(0.140)

46.251
(0.183)

5 59.543 50.753 50.753 50.753 - - 52.562
(0.020)

58.874
(1.127)

50.118
(0.220)

50.575
(0.285)

Mean rank 1.53 1.67 1.6 1 2.4 1

TABLE II
NO. OF MPP FITNESS EVALUATIONS (12) OF ALGORITHMS ON THE BIQAP TASK ALLOCATION PROBLEMS OVER 50 RUNS

Size MaxIter Instance FIRST BEST HEIDER GRASP SIMANN3 HEIDER-Random
best avg. best avg. best avg.

12 333

1 221 193 87 1632.667
(0.020)

1736.367
(62.261)

694
(1.000)

694
(0.000)

68
(0.020)

97.600
(20.134)

2 165 145 95 1562.667
(0.020)

1742.207
(96.251)

694
(1.000)

694
(0.000)

57
(0.040)

80.060
(14.026)

3 223 193 92 1624.667
(0.020)

1826.987
(112.164)

694
(1.000)

694
(0.000)

61
(0.040)

85.860
(15.242)

4 253 193 97 1627.667
(0.020)

1866.027
(127.177)

694
(1.000)

694
(0.000)

65
(0.020)

87.560
(12.384)

5 225 241 106 1637.667
(0.020)

1912.047
(122.529)

694
(1.000)

694
(0.000)

63
(0.020)

89.880
(11.117)

16 250

1 1286 865 253 - - 1261
(1.000)

1261
(0.000)

138
(0.020)

217.580
(34.527)

2 1048 673 266 - - 1261
(1.000)

1261
(0.000)

134
(0.020)

223.300
(61.364)

3 691 673 245 - - 1261
(1.000)

1261
(0.000)

136
(0.020)

217.040
(40.249)

4 1214 577 268 - - 1261
(1.000)

1261
(0.000)

127
(0.020)

194.380
(41.212)

5 272 673 196 - - 1261
(1.000)

1261
(0.000)

147
(0.020)

210.720
(38.405)

Mean rank 3.86 3.13 2 6 5 1

listed in the ”Initialization” column of Table I. For GRASP,
Λ = 1000, α = 0.25 and β = 0.3 are used as in [26], [28]. For
SIMANN3, its initial temperature is 2000 for the problems of
size 12 and 5000 for the problems of size 16 as in [27]. The
semi-neighborhood searching in Algorithm 4 is used in all the
BiQAP solvers.

The experimental results are presented in Table I and
Table II, where the symbol ”-” means that the corresponding
experiments are not conducted due to the algorithm’s high
computational cost in terms of the time limit (0.5s here) of
the MPP BiQAP task allocation. Note that, for deterministic
algorithms FIRST, BEST, and HEIDER, their results are

deterministic if the initial solution is given, while for stochastic
algorithms GRASP, SIMANN3, and HEIDER-Random, since
there are other random factors other than the initial solution,
their results over independent runs may be different. Here,
we list the best results and their ratios in the corresponding
parentheses; meanwhile, the average results and standard de-
viations are listed in the ”avg.” columns and the corresponding
parentheses. The ”Mean rank” row is calculated according
to the algorithms’ best results. It can be seen that HEIDER-
Random is the best in terms of the probability to find the best
known solutions and converge with less computational cost.

In addition, note that, all the searching algorithms here,



either deterministic or stochastic, are iterative algorithms. That
is, the current iterative procedure depends on the results of
the previous iteration, the process of which is sequential.
Therefore, the algorithm’s runtime is mainly determined by the
number of iterations and the time in evaluating a solution per
iteration. For the BiQAP task allocation of size n = 4 ·m, the
time to evaluate a permutation solution is m ·t(f i) where m is
the number of preys and t(f i) is the time in evaluating f i of Eq
(12). As shown in Fig. 4, t(f i) ≈ 0.0005s on a Macbook Pro
with a 2.9 GHz quad-core Intel core i7 and a 16 GB memory.
So, roughly, at most 1000 sequential calculations of f i, i.e.,
1000/m algorithm’s iterations or MPP fitness evaluations Eq
(12) are allowed if only one solution is evaluated per iteration,
as listed in the ”MaxIter” column in Table II. Hence, for
the problems of size 12, all deterministic algorithms FIRST,
BEST, HEIDER, and HEIDER-Random can converge, while
for the problems of size 16, only HEIDER and HEIDER-
Random can converge. In contrast, the computational cost of
GRASP and SIMANN3 are too high to converge within 0.5s
even for the problems of size 12.

Fig. 4. The fitness evaluation time.

Take the test instance 5 of the problem size 12 as an
example. The BiQAP task allocation fitness values of the
permutation solutions over iterations are averaged over the 50
independent runs and plotted in Fig. 5. It can be seen that,
the greedy initial solution construction stage of GRASP takes
too much computational cost and the greedily constructed
initial solution may be not as good as the initial solution
constructed from the domain knowledge as proposed in Al-
gorithm 3. So, the most contributed component of GRASP,
i.e., the solution construction stage, may be unnecessary in
real-world applications when better initial solutions can be
constructed by practical domain knowledge. On the other hand,
SIMANN3 is sensitive to its parameters settings. First, it takes
efforts to determine its initial temperature, which additionally
may be different with the problem size. Second, although its
optimal temperature value can be determined automatically,
the automation process itself also takes much computational
cost. Therefore, deterministic algorithms are more favorable
for the BiQAP task allocation since they are the simplest
algorithms with the fastest converging speed when a good
enough initial solution can be given, among which HEIDER is
the best in terms of the trade-off between the solution quality
and the computational cost. Since HEIDER is a special case of
HEIDER-Random with a fixed neighborhood searching cyclic

order, HEIDER-Random, which adopts a random searching
order, has the probability to be superior than the original
simplest version of HEIDER.

Fig. 5. The averaged fitness values of different algorithms during the
optimization process over 50 runs.

B. PCCPSO-R vs. CCPSO-R

In this section, we compare the effectiveness of PCCPSO-R
over CCPSO-R on the multiple random walking preys pursuit
problems. The environmental instances in Section IV-A is used
as the initialization, while the HEIDER-Random algorithm are
used as the BiQAP task allocation solver, and maximal 1000
times steps are allowed to capture all preys. The experimental
results are shown in Table III where the average steps taken
to terminate the game and the standard deviations of the steps
in all the 50 independent runs are listed. Both CCPSO-R and
PCCPSO-R achieve the 100% capture rate. It can be seen
that PCCPSO-R has a higher efficiency than CCPSO-R due
to the introducing of the local capture patterns and capturing
rules in Section III-C. However, due to the parallel nature in
agents’ observations, decision makings, and movements, it is
not guaranteed that no collisions in using PCCPSO-R.

TABLE III
COMPARISON OF THE MULTIPLE-PREYS PURSUIT EFFICIENCY OF

PCCPSO-R AND CCPSO-R

Problems 3-preys pursuit (BiQAP task allocation size: 12)
1 2 3 4 5

CCPSO-R 125.38
(65.098)

122.76
(63.864)

97.68
(47.549)

122.76
(89.185)

115.88
(62.588)

PCCPSO-R 56.28
(25.499)

48.18
(12.388)

57.72
(17.266)

62.74
(26.173)

49.32
(23.835)

Problems 4-preys pursuit (BiQAP task allocation size: 16)
1 2 3 4 5

CCPSO-R 120.14
(61.477)

145.54
(85.455)

128.28
(58.538)

126.62
(64.839)

132.36
(74.068)

PCCPSO-R 60.14
(22.107)

49.96
(10.849)

54.22
(30.190)

47.36
(23.606)

53.46
(30.517)

V. CONCLUSIONS

In this paper, the MPP is modeled as a dynamic optimization
problem where each time step is solved by the proposed two-
stage approach. In particular, the first stage is to centrally as-
sign each prey to 4 predators by modeling such task allocation
problem as the BiQAP, the solutions of which are evaluated by



the proposed multiple-preys pursuing fitness function. In this
way, the MPP is transformed to several SPPs. In the second
stage, each SPP is simultaneously solved by the assigned
predators through PCCPSO-R, which parallelizes CCPSO-R
to further improve the scalability of the predator’s strategy to
cooperatively capture the assigned prey. Since the MPP is a
slow-changing problem, the BiQAP task allocation solution
found in the previous time step is used as the initial solution
for the current time step, while the initial solution for the first
time step is constructed by the proposed greedy initial solution
construction procedure based on the domain knowledge.

As for the solving of the BiQAP task allocation, due to
the time limit (0.5s here) in MAS, more complex and more
powerful heuristic algorithms are inferior to the simplest
deterministic local search algorithms when a good enough
initial solution can be given. Even if the population of swarm
intelligence algorithms (SIAs) is parallel, enough generations
are needed to find good enough solutions, the process of which
is sequential and thus hard to be achieved in the time limit.
Therefore, based on the domain knowledge, we have proposed
a greedy procedure to construct a good enough initial solution
for the BiQAP task allocation, and modified HEIDER as
HEIDER-Random by adding tricks and integrating application
considerations.

However, there are still limitations in the proposed approach
to MPP. First, the centralized BiQAP solution to the task
allocation is still not applicable to large-scale problems due
to the time limit in MAS. Second, although PCCPSO-R
enable the parallel observation, decision making and moving
of predators by introducing two minimal secure distances
in Eq (14), local capture patterns, and effective rules, these
patterns are not complete to involve all possible local cap-
turing scenarios. Therefore, the authors are currently working
on solutions towards coping with these limitations, such as
building fuzzy neural networks (FNNs) to automatically learn
the local capturing patterns.
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