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Abstract
Researchers across many fields routinely analyze trial data using Null Hypothesis
Significance Testswith zero null and p < 0.05. To promote thoughtful statistical testing,
we propose a visualization tool that highlights practically meaningful effects when
calculating sample sizes. The tool re-purposes and adapts funnel plots, originally
developed for meta-analyses, after generalizing them to cater for meaningful effects.
As with traditional sample size calculators, researchers must nominate anticipated
effect sizes and variability alongside the desired power. The advantage of our tool
is that it simultaneously presents sample sizes needed to adequately power tests for
equivalence, for non-inferiority and for superiority, each considered at up to three alpha
levels and in positive and negative directions. The tool thus encourages researchers at
the design stage to think about the type and level of test in terms of their research goals,
costs of errors,meaningful effect sizes and feasible sample sizes.AnR-implementation
of the tool is available on-line.
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1 Introduction

The over-reliance on a p-value of 0.05 and the prevalence of testing against zero
rather than a practically meaningful or important effect size are two long-standing
concerns of the statistical community (Wasserstein et al. 2019; Amrhein et al. 2019;
Blake et al. 2019).Many prominent statisticians have encouraged researchers to reflect
carefully on the form of their tests, and on factors to consider when setting parameters
(e.g., Hodges and Lehmann 1954; Cohen 1988). Yet standard tests still dominate the
scientific literature. There is thus a place for tools that encourage researchers to think
more broadly about their statistical design.

The most common tool used in study design is the sample size calculator, available
in numerous web implementations (e.g., Kohn & Senyak 2021) as well as in software
repositories and commercial statistical software packages. Sample size calculators
usually provide for a variety of study designs, such as continuous or binary outcomes
and one group or two. However, typically the default—and sometimes, the only—test
options are the t-test with a null value of 0; the default settings for alpha and power
levels are the usual suspects; and results may only be provided as numbers. Sample
size calculators encourage researchers to think about power and sample sizes, but
rarely about other facets of their study design.

Power calculations in statistical packages such as SAS (SAS Institute Inc. 2013)
and some specialist calculators such as G*power (Faul et al. 2007) allow tests against
values other than zero and can display power vs. sample size graphs at different
candidate alpha levels or effect sizes.We propose a visualization tool that extends such
calculators to simultaneously considermultiple tests concerningminimummeaningful
effect sizes, at multiple test levels.

Visualization has become an important component of statistical software packages,
helping researchers understand their data through boxplots, clustering and so forth.
One such tool is the funnel plot, developed by Light and Pillemer (1984) to identify
publication bias in meta-analyses (Kossmeier et al. 2020a). Funnel plots map trial
summary statistics onto a chart in which usually the horizontal axis is the effect size
while the vertical axis is a measure of precision, usually the standard error (SE). The
inverse relationship of SE to sample sizes suggests that the chart underlying a funnel
plot could be used to inform sample size calculations.

Funnel plots have been enhanced with shading to identify regions of the chart
that correspond to ranges of p-values for a standard test statistic (“contour-enhanced
funnel plots”—Peters et al. 2008). Distinguishing regions in this manner aids visual
interpretation of the statistical significance of the findings (Sterne et al. 2017). Another
recent enhancement is to use color bands to highlight the power of the studies, creating
“sunset funnel plots” (Kossmeier et al. 2020b). An enhancement to funnel plots that to
our knowledge has not previously been considered is to visually distinguish findings
concerning practically meaningful effects from those that are statistically significant
but not meaningful.

In the following, we first present this enhancement to funnel plots. We then show
how such generalized funnel plots can be adapted to a completely different purpose:
viz, to act as sample size calculators that simultaneously display results for equivalence
tests and inferiority and non-superiority tests in both directions, all at multiple test
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levels. (These tests are described in the next section.) As with a conventional Neyman-
Pearson analysis, estimates of anticipated effect sizes and variances are required before
selecting a sample size. A Neyman-Pearson analysis also requires that an alpha level
for either a directional or two-sided test be selected prior to the study, and our tool is
designed to assist rather than replace this step.

We describe an implementation of the tool. We argue that the tool’s use in study
design could encourage researchers to think not only about the effect sizes that are
practically meaningful and the costs of both Type I and Type II errors in their context,
but also to think about whether a finding of non-inferiority, say, might be sufficient
for their research purpose, or even whether a research question should be flipped.

2 Generalized funnel plots

2.1 Generalizing standard funnel plots

A conventional funnel plot of effect sizes versus the standard error depicts a triangular
region, centred on the pooled mean, in which 95% of study findings should fall if there
is no bias and no heterogeneity in the underlying true effects. We can identify two
additional regions outside that triangle, corresponding to findings that are significantly
greater than or significantly less than the pooled mean, given a one-sided test alpha of
0.025. Figure 1a uses shading to distinguish these three regions. The central triangle
corresponds to findings that are not significantly different to the pooled mean, i.e., that
would be inconclusive under a standard Null Hypothesis Significance Test (NHST)
against the pooled mean. The plotted points are for illustrative purposes and are from
van Aert and Niemeyer’s (2021) re-examination of a 2014 meta-analysis of studies
into cognitive behaviour therapy for problem gamblers.

Figure 1b shows the same data in a funnel plot centred on zero. Findings in the
region labelled inconclusive are not significantly different to zero at a two-sided test
alpha level of 0.05. To interpret Fig. 1c, consider the superposition of two funnel
plots respectively centred on the upper and the lower bound of meaningful effect sizes
(shown here with magnitude 0.2, i.e., small on Cohen’s scale). Suppose each of the
funnel plots is drawnwith the same one-sided alpha level of 0.025. The region labelled
“inconclusive” in Fig. 1c is the overlap of the “inconclusive” regions of the two plots,
where the tests that the effect is significantly different to the upper bound and that
it is significantly different to the lower bound are both rejected. The region labelled
“equivalent” is the overlap of the “superior” region of the plot centred on the lower
bound and the “inferior region” of the plot centred on the upper bound, and hence is
where the effect is conclusively in the range of effect sizes that are not meaningful.
The region labelled “superior” in Fig. 1c is where the superior regions overlap, and
similarly for “inferior”. “Non-inferior” and “non-superior” are regions where one, but
not both, plots are inconclusive.

This terminology is that used in comparative drug trials (e.g., Piaggio et al. 2006)
because the regions in the chart correspond to the rejection regions of the tests used to
establish whether one study arm is relatively superior (inferior, etc.) to the other arm.
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Fig. 1 a A conventional funnel plot centred on the pooled mean divides the chart into three, corresponding
to rejection regions of one-sided tests that the effect size is greater than or is less than the pooled mean,
plus a region where both tests are inconclusive. b A funnel plot centred on zero. c Generalized funnel plot,
showing regions of significance for tests against the minimum meaningful effect boundaries, here shown at
± 0.2. Each chart shows the same data from a meta-analysis in which the effect size is Hedges’ g and the
meta-analysis outcome is depicted as a cross

Figure 1b shows that all but two of the findings in themeta-analysis are significantly
different to zero at a two-sided alpha of 0.05. However, Fig. 1c shows that, assuming
the smallest meaningful effect size is 0.2, only one study is consistent with a finding
of superiority, that is, that the intervention brings an effect of meaningful size. On
the other hand, all but one study is consistent with the finding that the outcomes with
the intervention are non-inferior to those in the other study arm. The meta-analysis
outcome indicates superiority at the higher signficance level.

2.2 Generalizing contour-enhanced funnel plots

Contour-enhanced funnel plots can similarly be generalized to highlight meaningful
effect sizes. Contour-enhanced plots typically are centred on zero and consider two
significance levels, giving three ranges: say, the p-values from two-sided NHSTs that
are greater than 0.10, less than 0.01, or in-between. Figure 2a illustrates such an
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Fig. 2 a Contour-enhanced funnel plot uses shading to identify regions of different statistical significance.
b Generalized enhanced funnel plot that uses tests against symmetric minimum meaningful effect bound-
aries, here at ± 0.2. Plotted data points are as in Fig. 1

enhanced funnel plot. The darkest region corresponds tofindings that are not significant
at the least stringent test level. Usually, regions where findings are significantly greater
than zero at a given test level are not distinguished from regions where findings are
significantly less than zero at that level. By making this distinction, we have identified
five regions in total. Figure 2b shows such a contour-enhanced plot adapted to highlight
meaningful effects, again assuming the smallestmeaningfulmagnitudes are symmetric
about zero. There are now nine regions, as described in the figure legend.

3 Adapting the funnel plots to be a study design tool

Consider the hypothesis that an effect size is greater than 0.2 and a second hypothesis
that the effect size is greater than 0.3. The second hypothesis is said to be stronger
than the first because it limits the effect size to a smaller range: whenever the second
hypothesis is true, then so is the first. We will therefore say that a statistical test is
stronger than another if it tests a stronger hypothesis, and both tests use the same alpha
level. We will also say a test is stronger than another if both test the same hypothesis,
but the first uses a more stringent alpha level, say, 0.05 rather than 0.10.

Suppose now that a researcher in the design stage of a study computes an anticipated
sample size and SE, and plots these as a point on the charts in Fig. 1 or 2. The shade
of the region in which the point falls will indicate the strongest of the tests under
consideration that would be significant for such a finding. However, that test may not
have the required power. A weaker test must then be employed to increase power.

The calculations behind the funnel plots are readily modified to ensure that the
region in which a point corresponding to an anticipated effect size and SE falls is
the strongest of the candidate tests with the required power. For technical details,
see Online Resource 1: “Error rates and sample sizes for one-sided and equivalence
tests”.1 Figure 3a is the result of applying this modification to Fig. 2b with 80%

1 The calculations are standard textbook, apart from the derivation of a tighter upper bound on the standard
error in power calculations for equivalence tests.

123



J. Aisbett et al.

Fig. 3 A generalized funnel plot modified to become a sample size calculator for multiple tests simultane-
ously. a Shows rejection regions for tests at one-sided alpha levels 0.025 and 0.005 while b also allows the
unusually large value of 0.25. The heavy vertical lines are at candidate effect sizes, and assist with visually
estimating the sample size needed for a test to have required power at that effect size

power, and then translating the units on the vertical axis from SE to total sample size.
SE and sample size have an inverse relationship that depends on the study design:
this illustration assumes a two group design with equi-sized groups and an anticipated
pooled variance of one. While the nominated units on the vertical axis in Fig. 3 have
changed, the scaling has not, so a sample size difference of 16, say, represents an
increasingly small distance as you go up the charts. The vertical lines in Fig. 3 are
at two potential effect sizes; tracking either line upward confirms that as sample size
increases, a stronger test is expected to have the desired power.

The region labelled “inconclusive” is enlarged in Fig. 3a compared with that in
Fig. 2b. This change is where tests on values that would be significant do not have
adequate a priori power. The other regions in the chart are similarly affected, moving
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upward on the vertical scale to smaller SEs/larger sample sizes. Some regions where
equivalence was found (that is, both tests for non-inferiority and non-superiority were
significant) are now reduced to findings of either non-inferiority or non-superiority;
see Online Resource 1 for clarification on this aspect.

An R-implementation of our tool was used to create the figures in this manuscript
and is available online as a Shiny app atmeraglim.shinyapps.io/genSSize. The R-code
and documentation are available at github.com/JA090/generalized.The tool optionally
creates colored versions of the charts. It currently caters for t-tests based on one and
two group study designs, and for Pearson’s correlation using Fisher’s transformation.
The t-tests are at a default 38 degrees of freedom that users are asked to refine after
initial computations lead them to select an approximate sample size. Users must also
enter desired power and at least one test alpha level. They may also nominate multiple
anticipated effect sizes or correlations, to help gauge the sensitivity of the sample size
estimate. These entries are presented as vertical lines through each of the values. Of
interest are where these lines cross into regions representing another test. On clicking
a crossing point, the required sample size is returned. To help position the cursor
accurately, the ranges of displayed effect sizes and sample sizes can be modified.

An option overlays the rejection region boundaries for a NHST with zero null
over the rejection regions for the various tests against minimum meaninful effect
magnitudes. This faciltates comparison with conventional sample size calculations.

To emphasize its link with funnel plots, our tool also allows users to create gener-
alized funnel plots such as those in Figs. 1 and 2. If this option is selected, the user is
asked to supply lists of effect sizes and SEs of the studies. These are plotted as points
along with the meta-analysis outcome, which can be selected from a fixed-effects or
a maximum likelihood random-effects model provided through the metafor CRAN
package (Viechtbauer 2010).

4 Discussion

We suggest visualization tools have a role in moving researchers away from dichoto-
mous decision-making based on statistical significance, as called for by Amrhein et al.
(2019) and many others. A valid question is whether it is worth asking researchers to
consider tests of multiple hypotheses at multiple alpha levels, as our tool does, given
the additional complexity. One answer is that researchers who only look for posi-
tive effects may miss reporting findings that add to the body of knowledge and may
be useful to stakeholders in the research. For example, suppose a researcher hopes to
establish superiority and anticipates amoderate effect size, say three times the smallest
meaningful effect magnitude. Figure 1c shows that, even ignoring power, the antici-
pated standard error needs to be close to the smallest meaningful effect magnitude to
plausibly seek a significant result at a two-sided alpha level of 0.05. In some cases,
establishing non-inferiority may be enough for the research purpose and will be a
more realistic goal if sample sizes are constrained. Setting a goal of non-inferiority
may still allow a finding of superiority (US Food and Drug Administration 2016)—or
vice versa, provided the required margins are selected prior to the study (Committee
for Proprietary Medicinal Products 2001).
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To determine the appropriate direction of a test, Neyman (1977, p. 104) argues that
the hypothesis of interest should be set so that the errors deemed “more important
to avoid” are Type I. This is because stronger control is exercised over these than
over Type II errors. For instance, in a professional sport setting, a coach may believe
it to be more costly to miss an opportunity to improve team motivation than it is
to waste 10 min of each training session on a motivational routine that brings no
additional benefits. If a team’s sports psychologist runs a small trial to help decide
if the motivational routine should be continued, the hypothesis of interest should be
flipped from superiority (does the routine bring a meaningfully large benefit?) to non-
superiority. The test that must be rejected is then that the routine is beneficial, and a
Type I error is incurred when a beneficial effect is rejected. In this situation, the routine
will be continued unless the trial provides evidence that motivation is not improved.

Another valid question is whether a tool such as ours will provide researchers
enough justification to move beyond the safety of p < 0.05 or whatever is their dis-
ciplinary norm. By displaying rejection regions for tests at two or more alpha levels,
our tool at least allows researchers to compare their expected findings under different
tests and different test levels. For example, suppose that a researcher planning a two-
group trial has justified that the smallest meaningful effect magnitude is a Hedges’ g
of 0.2, and that power needs to be 80%. Suppose they can also justify an anticipated
effect size of about 0.8 but cannot feasibly gather more than 60 subjects. Figure 3a
shows that the researcher cannot plausibly expect significant findings at a one-sided
alpha level of 0.025. However, at this level, non-inferiority could be established. In
addition, Fig. 3b shows that superiority might be established at a test level of 0.25.
This extremely weak finding, in conjunction with the finding of non-inferiority, may
still be useful to a stakeholder in applied research.

The balance of errorsmust also be consideredwhen sample sizes are limited (Mudge
et al. 2010). Relatively high Type II error rates are often accepted without question
even though these errors may be important to a stakeholder. Researchers may be able
to justify planning weaker test alpha levels to gain power. An intervention designed to
make a person swim faster, jump higher, or score more points in some competition is
less consequential than an intervention that has wide-reaching implications for human
health at a population-level. The latter requires a much stronger level of evidence
around its benefit and harms. Findings for which the evidence is statistically weak still
inform a decision maker of which of the possible decisions is most compatible with
the data, and they serve the broader purpose of adding to a body of knowledge through
their contribution to meta-analyses.

Our tool allows researchers to compare expected outcomes for the tests involving
minimummeaningful effect sizes with that from a standard NHST against zero effect.
Using this option, our researcher limited to 60 subjects would be delighted to see
they could expect significance at a two-sided alpha level of 0.05 and 80% power.
This comparison highlights the fact that recognising that effects should be practically
meaningful makes it harder to achieve significance when sample sizes are constrained.
A pragmatic approach is to plan a conventional test with zero null at a conventional
p-value together with tests against the minimum meaningful effect boundaries at a
weaker alpha level. These tests can be conducted simultaneously without adjusting
for multiple effects (Berger 1982; Goeman et al. 2010).
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Our tool does not replace the need for a priori justification of test alpha levels for
researchers working within an Neyman-Pearson framework, but it helps brings levels
other than p < 0.05 into possible contention. It focusses attention on meaningful effect
sizes and on tests other than testing the hypothesis of no effect. While work remains to
develop the tool’s interface and extend its content to other families of tests, we believe
it is a practical step toward encouraging scientists to think more broadly about the
statistical tests they apply.
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