
Machine Teaching-based Efficient Labelling for
Cross-unit Healthcare Data Modelling

Yang Wang1,2, Xueping Peng1�, Allison Clarke2,
Clement Schlegel2, and Jing Jiang1

1 Australian AI Institute, University of Technology Sydney
yang.wang-17@student.uts.edu.au,

{xueping.peng, jing.jiang}@uts.edu.au
2 Health Economics and Research Division, Australian Department of Health
{alvin.wang, allison.clarke, clement.schlegel}@health.gov.au

Abstract. A data custodian of a big organization (such as a Common-
wealth Data Integrating Authority), namely teacher, can easily build an
intelligent model which is well trained by comprehensive data collected
from multiple sources. However, due to information security and privacy-
related regulation requirements, full access to the well-trained intelligent
model and the comprehensive training data is usually limited to the
teacher only and not available to any unit (or branch) of that organiza-
tion. Therefore, if a unit, namely student, needs an intelligent function
similar to the trained intelligent model, the student has to train a similar
model from scratch using the student’s own dataset. Such a dataset is
usually unlabelled, requiring a big workload on labelling. Inspired by the
Iterative Machine Teaching, we propose a novel collaboration pipeline.
It enables the teacher to iteratively guide the student to select samples
that are most worth labelling from the student’s own dataset, which
significantly reduces the requirement for human labelling and, at the
same time, prevents regulation and information security breaches. The
effectiveness and efficiency of the proposed pipeline is empirically demon-
strated on two publicly available healthcare datasets in comparison with
baseline methods. This work has broad implications for the healthcare
sector to facilitate data modelling in instances where the large labelled
datasets are not accessible to each unit.

Keywords: Iterative Machine Teaching · Cross-units · Efficient labelling
· Electronic Health Records.

1 Introduction

The use of large-scale complex health data, including Electronic Health Records
(EHR), holds immense potential to better predict patient outcomes and un-
derstand disease cohorts [23, 25]. Although huge volumes of EHR are typically
unlabelled and have privacy concerns, existing deep learning models [2, 7, 20, 16,
11, 19] have shown great success in healthcare applications by self-supervised
learning [4, 15, 5, 18, 17]. However, deep learning models typically require a large
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amount of labelled data for training which is not always available in real-world
settings. Although data linkage and sharing can sometimes reduce the require-
ment for human labelling, this is often hindered due to information security and
privacy-related requirements and concerns [27, 14]. Consider the below scenario
that often occurs in the real world:

A large data service provider in healthcare (e.g. a Commonwealth Data In-
tegrating Authority) may have a large amount of valuable data on a wide range
of health and welfare topics (e.g. linked comprehensive dataset). Such a data
service provider may have responsibility to provide end-to-end data services to
ensure strong evidence available to policymakers, service planners, researchers
and the community. On the other hand, an approved data recipient (e.g. a small
research team in a university) may only have limited access to a specific part
of the linked comprehensive dataset for approved studies. It is much easier and
more achievable for the large data service provider to train a high performing
machine learning model using their comprehensive dataset. However, It is diffi-
cult for the small research team to train a similar model due to the limited data
access.

Let’s take a more specific example here: a small research group needs to
train a machine learning model to classify patient cohorts (by disease) using
their approved access to a ten percent sample of patient’s pharmaceutical ben-
efits claims data. However, this would require a large number of records to be
labelled by humans (i.e. label disease type on thousands of pharmaceutical ben-
efits claim history records) to construct a sufficient training data for achieving
a good machine learning classifier for this specific task. Alternatively, it would
be much easier for a large data integration organization to train the same ma-
chine learning classifier, because they may already have sufficient training data.
For example, the disease type on each pharmaceutical benefits claim history
can be easily found from a linked comprehensive dataset that is available to
the integration organization (such as the diagnosis code from the linked hos-
pital data). Therefore, the amount of time spent on constructing the required
training dataset by humans for the large data integration organization is con-
siderably smaller. However, in this example, given the information security and
privacy-related regulation requirements, the small research group is not allowed
to access any extra information so the large data integration organization won’t
be able to directly give the researchers the trained model and/or the required
training dataset.

To overcome these limitations, this paper proposes a novel collaboration
pipeline, namely Machine Teaching-based Labelling (MaTe-Labelling) frame-
work. It enables the teacher to iteratively guide the student to select samples
that are most worth labelling from the student’s own dataset, which significantly
reduces the requirement for human labelling and, at the same time, prevents reg-
ulation and information security breaches.

More specifically, the above-mentioned large data service provider is consid-
ered to be the teacher, and the approved data recipient (i.e. the small research
team) is considered to be the student. In each iteration, the teacher leverages
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MaTe-Labelling to construct an optimal sample set that is selected only from the
data that the student has access to. Similar to the optimization task of the Iter-
ative Machine Teaching, the optimal sample set is carefully selected by solving
an optimization task that minimizes the difficulty of the selected samples and,
at the same time, maximizes their usefulness [13]. Such an optimal sample set
would then be returned to the student. After being labelled by domain experts,
it becomes the most efficient training set for the student model in that iteration,
outperforming any training set created by labelling without teacher guidance.
Given the optimal sample sets are only selected from the data that the student
has access to, there is no extra information released to the student.

Our main contributions are summarized as follows:

– We propose a novel Machine Teaching-based Labelling (MaTe-Labelling)
framework. It enables iterative guidance on the student to select samples
that are most worth labelling, which reduces the large human efforts for
labelling.

– MaTe-Labelling enables teacher to provide efficient data services and strong
guidance to student without releasing any extra information, which effec-
tively prevents regulation and information security breaches.

– Extensive experiments are conducted on two public health datasets to demon-
strate effectiveness and efficiency of the proposed pipeline.

The remainder of this paper is organised as follows: Section 2 briefly reviews
the related work on iterative machine teaching, interactive machine learning and
active leaning. Section 3 describes the proposed model. Section 4 presents the
experiments and results for EHR data from three patient cohorts and Section 5
concludes the paper by summarising the research.

2 Related Work

2.1 Iterative Machine Teaching

Traditional machine teaching is to solve the problem of finding an optimal
(usually minimal) training set given a machine learning algorithm (the student
model) and a target [28, 29]. Iterative Machine Teaching was proposed after-
wards and extends the traditional machine teaching from batch setting to itera-
tive setting, enabling iterative student model to achieve faster convergence [13].
Specifically, the optimization task of the Iterative Machine Teaching is to mini-
mize the difficulty of the selected samples and, at the same time, maximize their
usefulness.

2.2 Interactive Machine Learning

Interactive machine learning has been proposed as a promising field in visual
analytics [6, 12, 26], which couples human input with machines in the learning
process. Recently, machine teaching has been combined with interactive machine
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learning to improve human teacher by giving teaching guidance via performing a
classification task by showing examples [3]. To address the crowdsourcing prob-
lem, a model called STRICT [24] has been introduced as an efficient algorithm
for selecting examples to teach crowd workers to better classify the query. These
studies consider a very different setting where the learner is not iterative and
does not have a particular optimization algorithm [13].

2.3 Active Learning

Active learning (also called query learning) enables the learner to choose the data
from which it learns and ask an oracle for its label, which performs better with
less training [22, 21]. Active learning is different from machine teaching in the
sense that active learners explore the optimal parameters by itself rather than
being guided by the teacher. They therefore have different sample complexities [1,
28, 13].

3 Methodology

This section starts with notations of several important concepts and settings
in the paper. The remainder mainly focuses on details of the proposed pipeline
consisting of machine teaching and example selection.

3.1 Notations and Settings

Notations. We denote an example for the teacher as (x, y) while the same
example for the student as (x̃, ỹ) . We assume the representation spaces of x ∈ X
and x̃ ∈ X̃ are the same, and y = ỹ. v∗ and w∗ are teacher’s optimal model and
student’s optimal model, respectively. In this paper, we assume v∗ is the same as
w∗. The initial parameter is denoted as w0, loss function as `(f(x), y), learning
rate as ηt over time (and initial η0) and the trackability of the parameter as wt,
where t denotes the t-th iteration.

Settings. The paper introduces the following settings to describe the proposed
model.

– Student’s Components: The initial parameter w0, loss function, optimiza-
tion algorithm, representation, model, learning rate ηt and the trackability
of the parameter wt.

– Model : The teacher uses a model with parameter v∗ (w∗ for student’s space)
that is taught to the student. w and v do not necessarily lie in the same space,
but in this paper, they are equivalent and interchangeably used.

– Communication : The teacher can only communicate with the student via
examples. In this paper, the teacher provides one example xt in the iteration
t.
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Fig. 1. The structure of the proposed model MaTe-Labelling.

– Loss Function : The teacher and student share the same loss function. We
assume this is a convex loss function `(f(x), y), and the best model is usually

found by minimizing the expected loss below: w
∗ = arg min

w
E(x,y) [`(〈w, x〉 , y)] ,

where the sampling distribution (x, y) ∼ P(x, y).

– Algorithm : The student uses the stochastic gradient descent to optimize

the model. The iterative update is wt+1 = wt − ηt
∂`(〈w, x〉, y)

∂w
.

3.2 Model Structure

As shown in Figure 1, the whole model architecture of MaTe-Labelling consists
of one Teacher and a set of Units and each Unit includes a Student and a Domain
expert. In each iteration, a Student from an Unit first provides information about
the Student’s data access and current parameters to the Teacher. The Teacher
then solves an optimization task to be able to select an optimal sample set from
the data (usually unlabeled) that the Student has access to. Then the selected
optimal sample set is returned to the Unit for Domain expert labelling. The
labelled sample set would then be used to update the Student model in the
Unit.
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3.3 Machine Teaching

An teacher has access to the student’s feature space, model, loss function and
optimization algorithm [13]. In specific, teacher’s (x, y) and student’s (x̃, ỹ) share
the same representation space.

Teaching algorithm. In order to make the student model converge faster with
a smaller set of samples, the algorithm will start with looking into the difference
between the current student parameter and the teacher parameter w∗ during
each iteration:

∥∥wt+1 − w∗
∥∥2
2

=

∥∥∥∥wt − ηt
∂`(〈w, x〉 , y)

∂w
− w∗

∥∥∥∥2
2

=
∥∥wt − w∗

∥∥2
2

+ η2t

∥∥∥∥∥∂`(
〈
wt, x

〉
, y)

∂wt

∥∥∥∥∥
2

2

− 2ηt

〈
wt − w∗,

∂`(
〈
wt, x

〉
, y)

∂wt

〉
=
∥∥wt − w∗

∥∥2
2

+ η2t T1(x, y|wt)− 2ηtT2(x, y|wt)

(1)

where T1(x, y|wt) =

∥∥∥∥∂`(〈wt,x〉,y)
∂wt

∥∥∥∥2
2

and T2(x, y|wt) =

〈
wt − w∗, ∂`(〈w

t,x〉,y)
∂wt

〉
.

Based on the decomposition of the parameter error, the teacher aims to choose
a particular example (x, y) such that ‖wt+1−w∗‖22 is most reduced compared
to ‖wt−w∗‖22 from the last iteration. Thus the general strategy for the teacher
is to choose an example (x, y), such that η2t T1−2ηtT2 is minimized in the t-th
iteration:

arg min
x∈X ,y∈Y

η2t T1(x, y|wt)− 2ηtT2(x, y|wt). (2)

The smallest value of η2t T1−2ηtT2 is −‖wt − w∗‖22. If the teacher achieves this,
it means that we have reached the teaching goal after this iteration. However,
it usually cannot be done in just one iteration, because of the limitation of
teacher’s capability to provide examples. T1 and T2 have some nice intuitive
interpretations:

Difficulty of an example. T1 quantifies the difficulty level of an example.
The difficulty level is not related to the teacher w∗, but is based on the current
parameters of the learner wt. From another perspective, the difficulty level can
also be interpreted as the information that an example carries. Essentially, a
difficult example is usually more informative. In such sense, our difficulty level
has similar interpretation to curriculum learning, but with different expression.

Usefulness of an example. T2 quantifies the usefulness of an example.
Concretely, T2 is the correlation between discrepancy wt−w∗ and the information
(difficulty) of an example. If the information of the example has large correlation
with the discrepancy, it means that this example is very useful in this teaching
iteration.
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3.4 Example Selection

Teacher can access a comprehensive training set with labels generated by both
domain experts and linked data that only teacher has access to. Due to infor-
mation security and privacy-related regulation requirements, student from any
individual unit does not have access to the same comprehensive training set that
the teacher has access to. In addition, each unit is only allowed to see it’s own
data at all times. To this end, the optimal samples that are returned by teacher
to a unit are only selected from the data that the very unit has access to. There
is no extra information released to any unit. We take unit u as an example to
formalize example select as below,

(xtu, y
t
h) = arg min

xu∈Xu,yh∈Yh
η2t

∥∥∥∥∥∂`(
〈
wt

u, xu
〉
, yh)

∂wt
u

∥∥∥∥∥
2

2

− 2ηt

〈
wt

u − w∗,
∂`(
〈
wt

u, xu
〉
, yh)

∂wt
u

〉
(3)

where Xu denotes the set of samples collected from or available to unit u, and
Yh denotes corresponding labels for Xu that are available to the student, but
not to the student, wt

u represents the parameters of the student on unit u in the
iteration t.

The optimal sample(s) selected by the teacher would be sent to the domain
expert in unit u to be labelled. We set ytu as the label of xtu, thus, the student
model update on unit u can be formalized as following,

wt
u = wt−1

u − ηt
∂`
(〈
wt−1

u , xtu
〉
, ytu
)

∂wt−1
u

. (4)

The proposed MaTe-Labelling algorithm is summarized in Alg.1.

4 Experiments

In this section, we conduct experiments on two real world medical claim datasets
to evaluate the performance of the proposed MaTe-Labelling. Compared with
the baseline models, MaTe-Labelling yields better performance on different eval-
uation strategies.

4.1 Data Description

Dataset. We conducted comparative studies on two real-world datasets in the
experiments, which are the MIMIC-III [9] and MIMIC-IV [8] databases.

– The MIMIC-III dataset [9] is an open-source, de-identified dataset of ICU
patients and their EHRs between 2001 and 2012. The diagnosis codes in the
dataset follow the ICD9 standard.

– The MIMIC-IV dataset [8] is an update to M-III, which incorporates con-
temporary data and improves on numerous aspects of M-III. The dataset
consists of the medical records of 73,452 patients between 2008 and 2019.
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Algorithm 1 MaTe-Labelling Algorithm

1: Randomly initialize the student and teacher parameter w0;
2: Train teacher with comprehensive training set to get optimal teacher parameter
w∗;

3: Set t = 1 and the maximal iteration number T , u = 0 and the total unit number
U ;

4: while u < U do
5: while wt

u has not converged or t < T do
6: Solve the optimization (e.g., pool-based teaching):

(xtu, y
t
h) = arg min

xu∈Xu,yh∈Yh
η2t

∥∥∥∥∥∂`(
〈
wt

u, xu
〉
, yh)

∂wt
u

∥∥∥∥∥
2

2

− 2ηt

〈
wt

u − w∗,
∂`(
〈
wt

u, xu
〉
, yh)

∂wt
u

〉
7: Domain expert labels xtu as ytu to perform the update:

wt
u = wt−1

u − ηt
∂`
(〈
wt−1

u , xtu
〉
, ytu
)

∂wt−1
u

.

8: t← t+ 1
9: end while

10: u← u+ 1
11: end while

Cohort Identification. Patients were included in analysis if they had at least
one cohort-specific International Classification of Diseases (ICD)-9 diagnosis
code of 140-239 for cancer, 428 for heart failure and 249-250 for diabetes. Ta-
ble 1 shows the statistical details of the three cohorts in the datasets, where
the selected patients made at least two visits and the labels are identified by
ICD codes in an indexed visit. If a visit includes a cohort-specific ICD-9 code
(considered to be the index visit), the previous visits which represent a patient’s
sequential history are used as input. To evaluate the performance of the algo-
rithm, we perform classification on the selected data and the classification is
based on the original labels.

Table 1. Statistics of the datasets.

Cohort MIMIC-III MIMIC-IV

# of diabetes patients 943 10,640

# of heart failure patients 1,021 13,551

# of cancer patients 1,333 6,167
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4.2 Experimental Setup

Performance Metric and Baseline. We evaluate the convergence perfor-
mance with following metric: the average classification accuracy on testing set
over U units. We compare our proposed framework to a random labelling strat-
egy, which is teacher-free.

Implementation Details. We implement all the approaches with Pytorch
1.7.0. For the training models, we use Adam [10] with 1 patient per iteration
on both MIMIC-III and MIMIC-IV. We randomly split the data into a training
set and test set with ratio of 80% to 20%. The drop-out strategies (the drop-out
rate is 0.1) are used for all the approaches. We set dimension d = 200 for all the
baselines and the proposed model.

4.3 Experimental Results

Prediction Performance of Trained Student. Table 2. shows the average
testing accuracy and corresponding standard deviations of the MaTe-Labelling
pipeline compared with the baseline for the predictive tasks over three cohorts
in the two MIMIC datasets. The results show that the proposed MaTe-Labelling
pipeline outperforms baseline Random strategy on both MIMIC-III and MIMIC-
IV datasets. It is obvious that the benefits of machine teaching to import global
knowledge to students on individual units by selecting useful and informative
samples. Specifically, the average testing accuracy of MaTe-Labelling increases
by 9.2% on the task of Cancer vs. Diabetes compared to Random strategy.

Table 2. Performance comparison of classification tasks.

Dataset Model Testing Accuracy (%)
Canc. vs Diab. Canc. vs Heart. Diab. vs Heart.

MIMIC-III Random 65.81 ± 5.68 73.19 ± 3.81 80.63± 1.00
MaTe-Labelling 75.01 ± 1.73 74.47 ± 3.74 82.36± 2.62

MIMIC-IV Random 75.58 ± 6.41 73.10 ± 7.00 78.06 ± 4.63
MaTe-Labelling 78.99 ± 2.49 74.54 ± 5.15 79.47 ± 5.93

Testing Accuracy over Iterations. Fig. 2 and 3 depict the testing accu-
racy for all models over three prediction (Cancer vs. Diabetes, Cancer vs. Heart
Failure and Diabetes vs. Heart Failure) tasks on both MIMIC datasets with iter-
ation number varying from 1 to 200. The two figures show that MaTe-Labelling
outperforms the baseline model with increasing iteration number.

The results in Fig. 2 show that the student model can converge much faster
using the example provided by the teacher and labelled by domain expert, show-
ing the effectiveness of our MaTe-Labelling pipeline. Particularly, we find that
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the MaTe-Labelling consistently achieves faster convergence than the random
labelling over task of Cancer vs. Diabetes on MIMIC-III dataset. The results
over task of Diabetes vs. Heart Failure also show that the MaTe-Labelling is
much stable than random labelling.
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Fig. 2. Average Testing Accuracy on MIMIC-III with 3 units.

In contrast to the results on MIMIC-III, Fig. 3 show that the random strategy
achieves better performance when the iteration number is less than 50. One
possible reason is that the size of MIMIC-IV is much larger than MIMIC-III and
learning ability of the student model is weak, thus, the MaTe-Laballing obtains
the lower performance. However, we find that MaTe-Laballing can converge much
faster with increasing iteration number when the number is larger than about
50. We also observe the similar stability issue about random strategy over task
of Cancer vs. Diabetes.
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Fig. 3. Average Testing Accuracy on MIMIC-IV with 3 units.

5 Conclusion

In this paper, we have proposed a novel Machine Teaching-based Labelling
(MaTe-Labelling) framework. It enables iterative guidance for the student to
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select samples that are most worth labelling, which largely reduces human ef-
forts for labelling. On the other hand, MaTe-Labelling has also enabled teacher
to provide efficient data services and strong guidance to student without releas-
ing any extra information, which effectively prevents regulation and information
security breaches. The effectiveness and efficiency of the proposed pipeline has
been empirically demonstrated on two publicly available healthcare datasets in
comparison with baseline methods. This work has broad implications for the
healthcare sector to facilitate data modelling in instances where the large la-
belled datasets are not accessible to each unit.

Acknowledgements. This research is supported by an Australian Government
Research Training Program Scholarship. We also thank the Australian Govern-
ment Department of Health for supporting this work.

References

1. Balcan, M.F., Hanneke, S., Vaughan, J.W.: The true sample complexity of active
learning. Machine learning 80(2), 111–139 (2010)

2. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient sub-
typing via time-aware lstm networks. In: Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining. pp. 65–74 (2017)

3. Cakmak, M., Thomaz, A.L.: Eliciting good teaching from humans for machine
learners. Artificial Intelligence 217, 198–215 (2014)

4. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based
attention model for healthcare representation learning. In: SIGKDD. pp. 787–795.
ACM (2017)

5. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: An
interpretable predictive model for healthcare using reverse time attention mecha-
nism. In: NeurIPS. pp. 3504–3512 (2016)

6. Fails, J.A., Olsen Jr, D.R.: Interactive machine learning. In: Proceedings of the 8th
international conference on Intelligent user interfaces. pp. 39–45 (2003)

7. Gao, J., Xiao, C., Wang, Y., Tang, W., Glass, L.M., Sun, J.: Stagenet: Stage-aware
neural networks for health risk prediction. In: Proceedings of The Web Conference
2020. pp. 530–540 (2020)

8. Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark, R.: Mimic-iv
(version 0.4). PhysioNet (2020)

9. Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible
critical care database. Scientific data 3, 160035 (2016)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Lee, D., Yu, H., Jiang, X., Rogith, D., Gudala, M., Tejani, M., Zhang, Q., Xiong, L.:
Generating sequential electronic health records using dual adversarial autoencoder.
Journal of the American Medical Informatics Association 27(9), 1411–1419 (2020)

12. Liu, M., Jiang, L., Liu, J., Wang, X., Zhu, J., Liu, S.: Improving learning-from-
crowds through expert validation. In: IJCAI. pp. 2329–2336 (2017)



12 Y. Wang et al.

13. Liu, W., Dai, B., Humayun, A., Tay, C., Yu, C., Smith, L.B., Rehg, J.M., Song,
L.: Iterative machine teaching. In: International Conference on Machine Learning.
pp. 2149–2158. PMLR (2017)

14. Long, G., Shen, T., Tan, Y., Gerrard, L., Clarke, A., Jiang, J.: Federated learning
for privacy-preserving open innovation future on digital health. arXiv preprint
arXiv:2108.10761 (2021)

15. Ma, F., You, Q., Xiao, H., Chitta, R., Zhou, J., Gao, J.: KAME: Knowledge-based
attention model for diagnosis prediction in healthcare. In: CIKM. pp. 743–752.
ACM (Oct 2018)

16. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: A convolutional
net for medical records (2016)

17. Peng, X., Long, G., Pan, S., Jiang, J., Niu, Z.: Attentive dual embedding for
understanding medical concepts in electronic health records. In: IJCNN. pp. 1–8.
IEEE (2019)

18. Peng, X., Long, G., Shen, T., Wang, S., Jiang, J., Zhang, C.: Bitenet: Bidirectional
temporal encoder network to predict medical outcomes. In: 2020 IEEE Interna-
tional Conference on Data Mining (ICDM). pp. 412–421. IEEE (2020)

19. Peng, X., Shen, T., Wang, S., Niu, Z., Zhang, C., et al.: Mimo: Mutual integration
of patient journey and medical ontology for healthcare representation learning.
arXiv preprint arXiv:2107.09288 (2021)

20. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Deepcare: A deep dynamic memory
model for predictive medicine. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining. pp. 30–41. Springer (2016)

21. Settles, B.: Active learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning (2012)

22. Settles, B.: Active learning literature survey (2009)
23. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep ehr: a survey of recent

advances in deep learning techniques for electronic health record (ehr) analysis.
IEEE J Biomed Health Inform 22(5), 1589–1604 (2018)
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