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Simulating quantum computations with Tutte polynomials
Ryan L. Mann 1,2✉

We establish a classical heuristic algorithm for exactly computing quantum probability amplitudes. Our algorithm is based on
mapping output probability amplitudes of quantum circuits to evaluations of the Tutte polynomial of graphic matroids. The
algorithm evaluates the Tutte polynomial recursively using the deletion–contraction property while attempting to exploit
structural properties of the matroid. We consider several variations of our algorithm and present experimental results comparing
their performance on two classes of random quantum circuits. Further, we obtain an explicit form for Clifford circuit amplitudes
in terms of matroid invariants and an alternative efficient classical algorithm for computing the output probability amplitudes of
Clifford circuits.
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INTRODUCTION
There is a natural relationship between quantum computation and
evaluations of Tutte polynomials1,2. In particular, quantum
probability amplitudes are proportional to evaluations of the
Tutte polynomial of graphic matroids. In this paper, we use this
relationship to establish a classical heuristic algorithm for exactly
computing quantum probability amplitudes. While this problem is
known to be #P-hard in general3, our algorithm focuses on
exploiting structural properties of an instance to achieve an
improved runtime over traditional methods. Previously it was
known that this problem can be solved in time exponential in the
treewidth of the underlying graph4.
The basis of our algorithm is a mapping between output

probability amplitudes of quantum circuits and evaluations of the
Tutte polynomial of graphic matroids2,5,6. Our algorithm proceeds
to evaluate the Tutte polynomial recursively using the
deletion–contraction property. At each step in the recursion, our
algorithm computes certain structural properties of the matroid in
order to attempt to prune the computational tree. This approach
to computing Tutte polynomials was first studied by Haggard
et al.7. Our algorithm can be seen as an adaption of their work to
special points of the Tutte plane where we can exploit additional
structural properties.
The performance of algorithms for computing Tutte polyno-

mials based on the deletion–contraction property depends on the
heuristic used to decide the ordering of the recursion7–9. We
consider several heuristics introduced by Pearce et al.8 and an
additional heuristic, which is specific to our algorithm. We present
some experimental results comparing the performance of these
heuristics on two classes of random quantum circuits correspond-
ing to dense and sparse instances.
The correspondence between output probability amplitudes of

quantum circuits and evaluations of Tutte polynomials also allows
us to obtain an explicit form for Clifford circuit amplitudes in terms
of matroid invariants by a theorem of Pendavingh10. This gives rise
to an alternative efficient classical algorithm for computing output
probability amplitudes of Clifford circuits.
This paper is structured as follows. We introduce matroid theory

in “Matroid theory” and the Tutte polynomial in “The Tutte
polynomial.“ In “The Potts model partition function,”

“Instantaneous quantum polynomial time,” and “Quantum com-
putation and the Tutte polynomial,” we establish a mapping
between output probability amplitudes of quantum circuits and
evaluations of the Tutte polynomial of graphic matroids. This is
achieved by introducing the Potts model partition function in “The
Potts model partition function,” instantaneous quantum poly-
nomial (IQP) time circuits in “Instantaneous quantum polynomial
time,” and a class of universal quantum circuits in “Quantum
computation and the Tutte polynomial.” In “Efficient classical
simulation of Clifford circuits,” we use this mapping to obtain an
explicit form for Clifford circuit amplitudes in terms of matroid
invariants. We also obtain an efficient classical algorithm for
computing the output probability amplitudes of Clifford circuits.
We describe our algorithm in “Algorithm overview” and present
some experimental results in “Experimental results.” Finally, we
conclude in “Discussion.”

RESULTS
Matroid theory
We shall now briefly introduce the theory of matroids. The
interested reader is referred to the classic textbooks of Welsh11

and Oxley12 for a detailed treatment. Matroids were introduced by
Whitney13 as a structure that generalises the notion of linear
dependence. There are many equivalent ways to define a matroid.
We shall define a matroid by the independence axioms.

Definition 1 (matroid). A matroid is a pair M ¼ ðS; IÞ consisting
of a finite set S, known as the ground set, and a collection I of
subsets of S, known as the independent sets, such that the
following axioms are satisfied:

(1) The empty set is a member of I .
(2) Every subset of a member of I is a member of I .
(3) If A and B are members of I and ∣A∣ > ∣B∣, then there exists

an x∈ A\B such that B ∪ {x} is a member of I .

The rank of a subset A of S is given by the rank function r :
2S ! N of the matroid defined by rðAÞ :¼ max jXjjX � A; X 2 Ið Þ.
The rank of a matroid M, denoted r(M), is the rank of the set S.
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The archetypal class of matroids is vector matroids. A vector
matroid M ¼ ðS; IÞ is a matroid whose ground set S is a subset of
a vector space over a field F and whose independent sets I are
the linearly independent subsets of S. The rank of a subset of a
vector matroid is the dimension of the subspace spanned by the
corresponding vectors. We say that a matroid is F-representable if
it is isomorphic to a vector matroid over the field F. A matroid is a
binary matroid if it is F2-representable and is a ternary matroid if it
is F3-representable. A matroid that is representable over every
field is called a regular matroid.
Every finite graph G= (V,E) induces a matroid MðGÞ ¼ ðS; IÞ as

follows. Let the ground set S be the set of edges E and let the
independent sets I be the subsets of E that are a forest, i.e., they
do not contain a simple cycle. It is easy to check that M(G) satisfies
the independence axioms. The rank of a subset A of a cycle
matroid is ∣V∣− κ(A), where κ(A) denotes the number of connected
components of the subgraph with edge set A. The rank of the
cycle matroid M(G), denoted r(M(G)) or simply r(G), is the rank of
the set E. The matroid M(G) is called the cycle matroid of G. We say
that a matroid is graphic if it is isomorphic to the cycle matroid of
a graph.
Graphic matroids are regular. To see this, consider assigning to

the graph G an arbitrary orientation D(G), that is, for each edge
e= {u,v} in G, we choose one of u and v to be the positive end and
the other one to be the negative end. Then, construct the oriented
incidence matrix of G with respect to the orientation D(G).

Definition 2 (oriented incidence matrix). Let G= (V,E) be a
graph and let D(G) be an orientation of G. Then, the oriented
incidence matrix of G with respect to D(G) is the ∣V∣ × ∣E∣ matrix
ADðGÞ ¼ ðaveÞjV j ´ jEj whose entries are

ave ¼
þ1; if v is the positive end of e;

�1; if v is the negative end of e;

0; otherwise:

8><
>: (1)

The rows of the oriented incidence matrix AD(G) correspond to
the vertices of G and the columns correspond to the edges
of G. Each column contains exactly one +1 and exactly one −1
representing the positive and negative ends of the corresponding
edge. If the column space of AD(G) is the ground set of a vector
matroid, then it is easy to see that a subset is independent if and
only if it is a forest in G. Hence, the oriented incidence matrix
provides a representation of a graphic matroid over every field.
A minor of a matroid M is a matroid that is obtained from M by

a sequence of deletion and contraction operations.

Definition 3 (deletion). Let M ¼ ðS; IÞ be a matroid and
let e be an element of the ground set. Then, the deletion of M
with respect to e is the matroid M n feg ¼ ðS0; I0Þ whose ground
set is S0 ¼ S n feg and whose independent sets are
I0 ¼ fI � S n fegjI 2 Ig.

The deletion of an element from the cycle matroid of a graph
corresponds to removing an edge from the graph.

Definition 4 (contraction). Let M ¼ ðS; IÞ be a matroid and let
e be an element of the ground set. Then, the contraction of
M with respect to e is the matroid M=feg ¼ ðS0; I0Þ whose
ground set is S0 ¼ S n feg and whose independent sets are
I0 ¼ fI � S n fegjI ∪ feg 2 Ig.

The contraction of an element from the cycle matroid of a
graph corresponds to removing an edge from the graph and
merging its two endpoints.

An element e of a matroid is said to be a loop if {e} is not an
independent set and said to be a coloop if e is contained in every
maximally independent set. If an element e of a matroid is either a
loop or a coloop then the deletion and contraction of e are
equivalent.

The Tutte polynomial
We shall now briefly introduce the Tutte polynomial, which is a
well-known invariant in matroid and graph theory.

Definition 5 (Tutte polynomial of a matroid). Let M ¼ ðS; IÞ
be a matroid with rank function r : 2S ! N. Then, the Tutte
polynomial of M is the bivariate polynomial defined by

TðM; x; yÞ :¼
X
A�S

ðx � 1ÞrðMÞ�rðAÞðy � 1ÞjAj�rðAÞ: (2)

The Tutte polynomial may also be defined recursively by the
deletion–contraction property.

Definition 6 (deletion–contraction property). Let M ¼ ðS; IÞ
be a matroid. If M is the empty matroid, i.e., S ¼ +, then

TðM; x; yÞ ¼ 1: (3)

Otherwise, let e be an element of the ground set. If e is a loop,
then

TðM; x; yÞ ¼ yTðM n feg; x; yÞ: (4)

If e is a coloop, then

TðM; x; yÞ ¼ xTðM=feg; x; yÞ: (5)

Finally, if e is neither a loop nor a coloop, then

TðM; x; yÞ ¼ TðM n feg; x; yÞ þ TðM=feg; x; yÞ: (6)

The deletion–contraction property immediately gives an algo-
rithm for recursively computing the Tutte polynomial. This
algorithm is in general inefficient, but the performance may be
improved by using isomorphism testing to reduce the number of
recursive calls14. The performance of this algorithm depends on
the heuristic used to choose elements of the ground set7–9.
Björklund et al.15 showed that the Tutte polynomial can be
computed in time exponential in the number of vertices.
The Tutte polynomial of a graph may be recovered by

considering the Tutte polynomial of the cycle matroid of a graph
and using the fact that the rank of a subset A of a cycle matroid is
∣V∣− κ(A), where κ(A) denotes the number of connected
components of the subgraph with edge set A.

Definition 7 (Tutte polynomial of a graph). Let G= (V,E) be a
graph and let κ(A) denote the number of connected components
of the subgraph with edge set A. Then, the Tutte polynomial of G
is a polynomial in x and y, defined by

TðG; x; yÞ :¼
X
A�E

ðx � 1ÞκðAÞ�κðEÞðy � 1ÞκðAÞþjAj�jV j: (7)

The Tutte polynomial is trivial to evaluate along the hyperbola
(x− 1)(y− 1)= 1 for any matroid. In the case of graphic matroids,
Jaeger et al.16 showed that the Tutte polynomial is #P-hard to
evaluate, except along this hyperbola and when (x,y) equals one of
nine special points.

Theorem 1 (Jaeger et al.16). The problem of evaluating the
Tutte polynomial of a graphic matroid at an algebraic point in the
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(x,y)-plane is #P-hard except when (x− 1)(y− 1)= 1 or when (x,y)
equals one of (1,1), (−1,−1), (0,−1), (−1,0), (i,−i), (−i,i), (j,j2), (j,j2), or
(j2,j), where j ¼ expð2πi=3Þ. In each of these exceptional cases the
evaluation can be done in polynomial time.

Vertigan17 extended this result to vector matroids.

Theorem 2 (Vertigan17). The problem of evaluating the Tutte
polynomial of a vector matroid over a field F at an algebraic point
in the (x,y)-plane is #P-hard except when (x− 1)(y− 1)= 1, (x,y)
equals (1,1), or when

(1) jFj ¼ 2 and (x,y) equals one of (−1,−1), (0,−1), (−1,0), (i,−i),
or (−i,i);

(2) jFj ¼ 3 and (x,y) equals one of (j,j2) or (j2,j), where
j ¼ expð2πi=3Þ; or

(3) jFj ¼ 4 and (x,y) equals (−1,−1).

In each of these exceptional cases, except when (x,y) equals (1,1),
the evaluation can be done in polynomial time.

Snook18 showed that when (x,y) equals (1,1) and F is either a
finite field of fixed characteristic or a fixed infinite field, then
evaluating the Tutte polynomial is #P-hard. It is an open problem
to understand the complexity of evaluating the Tutte polynomial
at (1,1) over any fixed field.

The Potts model partition function
The Potts model is a statistical physical model described by an
integer q 2 Zþ and a graph G= (V,E), with the vertices
representing spins and the edges representing interactions
between them. A set of edge weights fωege2E characterises the
interactions and a set of vertex weights fυvgv2V characterises the
external fields at each spin. A configuration of the model is an
assignment σ of each spin to one of q possible states. The Potts
model partition function is defined as follows.

Definition 8 (Potts model partition function). Let q 2 Zþ be
an integer and let G= (V,E) be a graph with the weights Ω ¼
fωege2E assigned to its edges and the weights ϒ ¼ fυvgv2V
assigned to its vertices. Then, the q-state Potts model partition
function is defined by

ZPottsðG; q;Ω;ϒÞ :¼
X
σ2ZV

q

wGðσÞ; (8)

where

wGðσÞ ¼ exp
X

fu;vg2E
ωfu;vgδðσu; σvÞ þ

X
v2V

υvδðσvÞ
0
@

1
A: (9)

The Potts model partition function with an external field is
equivalent to the zero-field case on an augmented graph
G0 ¼ ðV 0; E0Þ. To construct G0 from G, for each of the connected
components fCigκðEÞi¼1 of G add a new vertex ui and for every vertex
v∈ V(Ci) add an edge ev= {ui, v} with the weight υv assigned to it.
Then, we have the following proposition.

Proposition 3.

ZPottsðG; q;Ω;ϒÞ ¼ q�κðEÞZPottsðG0; q;Ω∪ϒ; 0Þ: (10)

A similar proposition appears in Welsh’s monograph19; we
prove Proposition 3 in Supplementary Note 1.
It will be convenient to consider the Potts model with weights

that are all positive integer multiples of a complex number θ. We
shall implement this model on the augmented graph G0 with all

weights equal to θ by replacing each edge with the appropriate
number of parallel edges. Let us denote the partition function of
this model by ZPottsðG0; q; θÞ. Then, we have the following
proposition relating the partition function of this model to the
Tutte polynomial of the augmented graph G0.

Proposition 4.

ZPottsðG0; q; θÞ ¼ qκðE
0Þðeθ � 1ÞrðG

0 Þ
T G0; x; yð Þ; (11)

where x ¼ eθþq�1
eθ�1 and y= eθ.

In particular, the q-state Potts model partition function is related
to the Tutte polynomial along the hyperbola (x− 1)(y− 1)= q. For
a proof of Proposition 4, we refer the reader to Welsh’s
monograph19 [Section 4.4].
The two-state Potts model partition function specialises to the

Ising model partition function.

Definition 9 (Ising model partition function). Let G= (V,E) be a
graph with the weights Ω ¼ fωege2E assigned to its edges and the
weights ϒ ¼ fυvgv2V assigned to its vertices. Then, the Ising
model partition function is defined by

ZIsingðG;Ω;ϒÞ :¼
X

σ2f�1;þ1gV
wGðσÞ; (12)

where

wGðσÞ ¼ exp
X

fu;vg2E
ωfu;vgσuσv þ

X
v2V

υvσv

0
@

1
A: (13)

Proposition 5.

ZPottsðG; 2;Ω;ϒÞ ¼ wGZIsing G;
Ω

2
;
ϒ
2

� �
; (14)

where wG ¼ exp 1
2

P
e2Eωe þ 1

2

P
v2Vυv

� �
.

Proof. The proof follows from some simple algebra.

Instantaneous quantum polynomial time
We shall now briefly introduce the class of commuting quantum
circuits, known as IQP time circuits5. These circuits exhibit many
interesting mathematical properties. In particular, the output
probability amplitudes of IQP circuits are proportional to
evaluations of the Tutte polynomial of binary matroids2. IQP
circuits comprise only gates that are diagonal in the Pauli-X basis
and are described by an X-program.

Definition 10 (X-program). An X-program is a pair (P,θ), where
P ¼ ðpijÞm ´ n is a binary matrix and θ∈ [−π,π] is a real angle. The
matrix P is used to construct a Hamiltonian of m commuting terms
acting on n qubits, where each term in the Hamiltonian is a
product of Pauli-X operators

HðP;θÞ :¼ �θ
Xm
i¼1

On
j¼1

X
pij
j : (15)

Thus, the columns of P correspond to qubits and the rows of P
correspond to interactions in the Hamiltonian.

An X-program induces a probability distribution PðP;θÞ known as
an IQP distribution.

Definition 11 (PðP;θÞ). For an X-program (P,θ) with P ¼ ðpijÞm ´ n,
we define PðP;θÞ to be the probability distribution over binary
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strings x ∈ {0, 1}n, given by

Pr½x� :¼ jψðP;θÞðxÞj2; (16)

where

ψðP;θÞðxÞ ¼ xh j exp �iHðP;θÞ
� �

0nj i: (17)

The principal probability amplitude ψ(P,θ)(0n) of an IQP distribu-
tion is directly related to an evaluation of the Tutte polynomial of
the binary matroid whose ground set is the row space of P.

Proposition 6. Let (P,θ) be an X-program with P ¼ ðpijÞm ´ n. Let
M ¼ ðS; IÞ be the binary matroid whose ground set S is the row
space of P, then

ψðP;θÞð0Þ ¼ eiθðrðMÞ�mÞði sinðθÞÞrðMÞT M; x; yð Þ; (18)

where x ¼ �i cotðθÞ and y= e2iθ.

A similar result may be obtained for the other probability
amplitudes. This can easily be seen when θ ¼ π

2k for k 2 Zþ, by
firstly letting P∥kx be the matrix obtained from P by appending k
rows identical to x, and then observing that
ψðP;θÞðxÞ ¼ �iψðPkk x;θÞð0nÞ. For a proof of Proposition 6 and a
treatment of the general θ case, we refer the reader to ref. 2

[“Discussion”].
We shall consider X-programs that are induced by a

weighted graph.

Definition 12 (graph-induced X-program). For a graph G= (V,
E) with the weights ωe 2 ½�π; π�f ge2E assigned to its edges and
the weights υv 2 ½�π; π�f gv2V assigned to its vertices, we define
the X-program induced by G to be an X-program XG such that

HXG ¼ �
X

fu;vg2E
ωfu;vgXuXv �

X
v2V

υvXv : (19)

Any X-program can be efficiently represented by a graph-
induced X-program5. The principal probability amplitude ψXG

ð0nÞ
of the IQP distribution generated by a graph-induced X-program is
directly related to the Ising model partition function of the graph
with imaginary weights.

Proposition 7. Let G= (V,E) be a graph with the weights Ω ¼
ωe 2 ½�π; π�f ge2E assigned to its edges and the weights ϒ ¼
υv 2 ½�π; π�f gv2V assigned to its vertices, then

ψXG
0jV j
� �

¼ 1

2jV j
ZIsingðG; iΩ; iϒÞ: (20)

Proposition 7 is well known20,21; we provide a proof in
Supplementary Note 2. It will be convenient to consider graph-
induced X-programs XGðθÞ with weights that are all positive integer
multiples of a real angle θ. As in “Results,” this model can be
implemented on the augmented graph G0 ¼ ðV 0; E0Þ with all weights
equal to θ by replacing each edge with the appropriate number of
parallel edges. Let us denote the graph-induced X-program of this
model by XG0ðθÞ. Then, we have the following proposition.

Proposition 8.

ψXGðθÞ 0jV j
� �

¼ ψXG0 ðθÞ 0jV
0 j

� �
: (21)

We prove Proposition 8 in Supplementary Note 3. We
also have the following proposition relating the principal

probability amplitude to the Tutte polynomial of the
augmented graph.

Proposition 9.

ψXG0 ðθÞ 0jV
0 j

� �
¼ eiθ rðG0Þ�jE0 jð Þði sinðθÞÞrðG0ÞT G0; x; yð Þ; (22)

where x ¼ �i cotðθÞ and y= e2iθ.

We prove Proposition 9 in Supplementary Note 4. Note that if
we let M ¼ ðS; IÞ be the binary matroid whose ground set S is
the column space of the orientated incidence matrix ADðG0Þ of G0
with an arbitrary orientation DðG0Þ assigned to it, then we can use
Proposition 6 to obtain Proposition 9.

Quantum computation and the Tutte polynomial
In this section, we show that quantum probability amplitudes may
be expressed in terms of the evaluation of a Tutte polynomial. We
achieve this by showing that output probability amplitudes of a
class of universal quantum circuits are proportional to the
principal probability amplitude of some IQP circuit.
It will be convenient to define the following gate set.

Definition 13 (Gθ). For a real angle θ∈ [−π,π], we define GðθÞ to
be the gate set

Gθ :¼ fH; eiθX ; eiθXXg; (23)

where H denotes the Hadamard gate.

It is easy to see that the gate set Gπ
4
generates the Clifford group

and the gate set Gπ
8
is universal for quantum computation.

In the IQP model it is easy to implement the gates eiθX and eiθXX.
So in order to implement the entire gate set Gθ, it remains to show
that we can implement the Hadamard gate. This can be achieved
by the use of postselection when θ ¼ π

4k for k 2 Zþ6. To apply a
Hadamard gate to the target state αj it consider the following
Hadamard gadget. Firstly, introduce an ancilla qubit in the state
0j ia and apply the gate e

iπ
4ðI�XÞtðI�XÞa to αj it 0j ia . Then, measure

qubit t in the computational basis and postselect on an outcome
of 0. The output state of this gadget is then H αj ia .
We shall consider quantum circuits that comprise gates from

the set G π
4k
for an integer k 2 Zþ. Let Ck,n,m denote such a circuit

that acts on n qubits and comprisesm Hadamard gates. Further let
XGðCk;n;mÞ denote the graph-induced X-program that implements
the circuit Ck,n,m by replacing each of the m Hadamard gates with
the Hadamard gadget. Then, we have the following proposition.

Proposition 10.

0nh jCk;n;m 0nj i ¼
ffiffiffi
2

p m
ψXGðCk;n;mÞ 0

nþmð Þ: (24)

Proof. The proof follows immediately from the application of
the Hadamard gadgets.
Any quantum amplitude may therefore be expressed as the

evaluation of a Tutte polynomial by Propositions 8–10.

Efficient classical simulation of Clifford circuits
In this section, we show how the correspondence between
quantum computation and evaluations of the Tutte polynomial
provides an explicit form for Clifford circuit amplitudes in terms of
matroid invariants, namely, the bicycle dimension and Brown’s
invariant. This gives rise to an efficient classical algorithm for
computing the output probability amplitudes of Clifford circuits.
We note that it was first observed by Shepherd2 that to compute
the probability amplitude of a Clifford circuit, it is sufficient to
evaluate the Tutte polynomial of a binary matroid at the point (x,y)
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equals (−i,i), which can be efficiently computed by Vertigan’s
algorithm17. We proceed with some definitions.
Let V be a linear subspace of Fn

2. The bicycle dimension and
Brown’s invariant are defined as follows.

Definition 14 (bicycle dimension). The bicycle dimension of V
is defined by

dðVÞ :¼ dimðV \ V?Þ: (25)

Definition 15 (Brown’s invariant). If jsuppðxÞj � 0 ðmod 4Þ for
all x∈ V ∩ V⊥, then Brown’s invariant σ(V) is defined to be the
smallest integer such that

X
x2V

ijsuppðxÞj ¼
ffiffiffi
2

p dðVÞþdimðVÞ
e
iπ
4σðVÞ: (26)

The following theorem of Pendavingh10 provides an explicit
form for the Tutte polynomial of a binary matroid at (−i,i) in terms
of the bicycle dimension and Brown’s invariant.

Theorem 11 (Pendavingh10). Let V be a linear subspace of FS
2

and let M(V) be the corresponding binary matroid with ground set
S. If jsuppðxÞj � 0 ðmod 4Þ for all x∈ V ∩ V⊥, then

TðMðVÞ;�i; iÞ ¼
ffiffiffi
2

p dðVÞ
e

iπ
4ð2jSj�3rðMÞ�σðVÞÞ: (27)

Otherwise, T(M(V); −i,i)= 0. Further, T(M(V); −i,i) can be evaluated
in polynomial time.

As an immediate consequence of Theorem 11, we obtain an
explicit form for Clifford circuit amplitudes in terms the bicycle
dimension and Brown’s invariant of the corresponding matroid.
Furthermore, we obtain an efficient classical algorithm for
computing the output probability amplitudes of Clifford circuits.
For similar results of this flavour see refs. 22,23.

Algorithm overview
We shall now use the correspondence between quantum
computation and evaluations of the Tutte polynomial to
establish a heuristic algorithm for computing quantum prob-
ability amplitudes. To compute a probability amplitude, it is
sufficient to compute the Tutte polynomial of a graphic matroid
at x ¼ �i cot π

4k

� �
and y ¼ e

iπ
2k for an integer k ≥ 22,5,6. Our

algorithm will use the deletion–contraction property to recur-
sively compute the Tutte polynomial. At each step in the
recursion, the algorithm will compute certain structural proper-
ties of the graph in order to attempt to prune the computational
tree. Our algorithm can be seen an adaption of the work of
Haggard et al.7 to special points of the Tutte plane.
We note that our approach differs from tensor network-based

methods, which involve the contraction of a graph with tensors
assigned to its vertices. These methods have been used to
simulate quantum computations while exploiting structural
properties of the graph4,24–27. However, our approach allows us
to exploit an alternative class of structural properties. We proceed
by describing the key aspects of our algorithm.
To improve the performance of our algorithm, we shall use the

following deletion–contraction formula for multigraphs.

Proposition 12. Let G= (V,E) be a multigraph and let e be a
multiedge of G with multiplicity ∣e∣. If e is a loop, then

TðG; x; yÞ ¼ yjejTðG n feg; x; yÞ: (28)

If e is a coloop, then

TðG; x; yÞ ¼ x þ
Xjej�1

i¼1

yi
 !

TðG=feg; x; yÞ: (29)

Finally, if e is neither a loop nor a coloop, then

TðG; x; yÞ ¼ TðG n feg; x; yÞ þ
Xjej�1

i¼0

yi
 !

TðG=feg; x; yÞ: (30)

Proposition 12 can easily be proven from the
deletion–contraction formula by induction; we omit the proof.
If U is the underlying graph of G, then the number of recursive

calls may be bounded by O 2jEðUÞj
� �

. Alternatively, we may bound
the number of recursive calls in terms of the number of vertices plus
the number of edges s= ∣V(U)∣+ ∣E(U)∣ in the underlying graph. The
number of recursive calls Rs is then bounded by Rs ≤ Rs−1+ Rs−2,
which is precisely the Fibonacci recurrence. Hence, the number of
recursive calls is bounded by O ϕjVðUÞjþjEðUÞj� �

, where ϕ ¼ 1þ ffiffi
5

p
2 is the

golden ratio28. A careful analysis shows that the number of recursive
steps is bounded by O τðUÞ � jEðUÞjð Þ, where τ(U) denotes
the number of spanning trees in U14.
At each step in the recursion, we use the multigraph

deletion–contraction formula to remove all multiedges that
correspond to either a loop or a coloop in the underlying graph.
This process contributes a multiplicative factor to the proceeding
evaluation. Note that when G is a graph whose underlying graph is
a looped forest, then every edge in the underlying graph is either
a loop or a coloop. Hence, we obtain the following formula for the
Tutte polynomial of G.

Corollary 13. Let G= (V,E) be a multigraph whose underlying
graph U is a looped forest. Further, for each edge e in U, let ∣e∣
denote its multiplicity in G. Then

TðG; x; yÞ ¼
Y

e 2 EðUÞ
loop

yjej
Y

e 2 EðUÞ
coloop

ðx þ
Xjej�1

i¼1

yiÞ:
(31)

Proof. The proof follows immediately from Proposition 12. ◻
There are a number of techniques that we can use to simplify

the graph at each step in the recursion. Firstly, we may remove
any isolated vertices, since they do not contribute to the
evaluation.
Secondly, when x ¼ �i cot π

4k

� �
and y ¼ e

iπ
2k for an integer

k 2 Zþ, we may replace each multiedge with a multiedge of
equal multiplicity modulo 4k. To account for this, we multiply the
proceeding evaluation by a efficiently computable factor. Speci-
fically, we invoke the following proposition.

Proposition 14. Fix k 2 Zþ. Let G= (V,E) be a multigraph and let
G0 ¼ ðV 0; E0Þ be the graph formed from G by taking the multiplicity
of each multiedge in G modulo 4k. Then

TðG; x; yÞ ¼ ie
iπ
4k sin

π

4k

� �� �κðEÞ�κðE0Þ
TðG0; x; yÞ; (32)

where x ¼ �i cot π
4k

� �
and y ¼ e

iπ
2k .

We prove Proposition 14 in Supplementary Note 5.
The Tutte polynomial of a multigraph whose edge multiplicities

are all integer multiples of an integer k 2 Zþ may be evaluated at
the point x ¼ �i cot π

4k

� �
and y ¼ e

iπ
2k in polynomial time. This can

be seen by the following proposition.
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Proposition 15. Fix k 2 Zþ. Let G= (V,E) be a multigraph whose
edge multiplicities are all integer multiples of k. Further let G0 ¼
ðV 0; E0Þ be the graph formed from G by taking the multiplicity of
each multiedge in G divided by k. Then

TðG; x; yÞ ¼
ffiffiffi
2

p
e
iπð1�kÞ

4k sin
π

4k

� �� ��rðGÞ
TðG0;�i; iÞ; (33)

where x ¼ �i cot π
4k

� �
and y ¼ e

iπ
2k .

We prove Proposition 15 in Supplementary Note 6 and note
that this is a special consequence of the k-thickening approach of
Jaeger et al.16. The Tutte polynomial may then be efficiently
computed by Vertigan’s algorithm17; we call such a multigraph a
Vertigan graph. We may therefore prune the computational tree
whenever the graph is a Vertigan graph with respect to k. Note
that this corresponds to quantum circuits comprising gates from
the Clifford group.
The Tutte polynomial factorises over components.

Proposition 16. Let G= (V,E) be a graph with connected
components C ¼ fCigki¼1, then

TðG; x; yÞ ¼
Yk
i¼1

TðCi; x; yÞ: (34)

Proposition 16 can easily be proven from the
deletion–contraction formula; we omit the proof. At each step in
the deletion–contraction recursion, if the graph is disconnected,
then we may use this property to prune the computational tree
and hence improve performance.
An identical result holds for biconnected components.

Proposition 17 (Tutte29). Let G= (V,E) be a graph with
biconnected components B ¼ fBigki¼1, then

TðG; x; yÞ ¼
Yk
i¼1

TðBi; x; yÞ: (35)

Proposition 17 can easily be proven from the
deletion–contraction formula. For a proof, we refer the reader to
ref. 29 [“Discussion”]. Similarly to the connected component case,
we may use this property to prune the computational tree and
improve performance. Note that the biconnected components of
a graph may be listed in time linear in the number of edges via
depth-first search30.
The Tutte polynomial of a multigraph whose underlying graph

is a cycle may be computed in polynomial time by invoking the
following proposition.

Proposition 18 (Haggard et al.7). Let G= (V,E) be a multigraph
whose underlying graph U is an n-cycle with edges indexed by the
positive integers. Further, for each edge e in U, let ∣e∣ denote its
multiplicity in G. Then

TðG; x; yÞ ¼ Pn�2

k¼1

Qn
j¼kþ1

yx jej j
� � Qk�1

j¼1
y1 jej j
� � !

þ yx jenj þ jen�1jð Þ Qn�2

j¼1
y1 jejj
� �

;

(36)

where yxðjÞ :¼ x þPj�1
i¼1 y

i .

Proposition 18 can easily be proven from the
deletion–contraction formula. For a proof, we refer the reader to
ref. 7 [Theorem 4]. We may use this proposition to prune the
computational tree whenever the underlying graph is a cycle.

The Tutte polynomial of a planar graph along the hyperbola
(x− 1)(y− 1)= 2 may be evaluated in polynomial time via the
Fisher–Kasteleyn–Temperley algorithm31–33. We may therefore
use this algorithm to prune the computational tree whenever
the underlying graph is planar. Note that we may test whether a
graph is planar in time linear in the number of vertices34.
The performance of our algorithm depends on the heuristic used

to select edges. We shall consider six edge-selection heuristics:
vertex order, minimum degree, maximum degree, minimum degree
sum, maximum degree sum, and non-Vertigan. These edge-
selection heuristics were first studied by Pearce et al.8, with the
exception of non-Vertigan, which is specific to our algorithm.
Vertex order: The vertices of the graph are assigned an ordering.

A multiedge is selected from those incident to the lowest vertex in
the ordering and whose other endpoint is also the lowest vertex
of any incident in the ordering. For contractions, the vertex
inherits the lowest of the positions in the ordering.
Minimum degree: A multiedge is selected from those incident

to a vertex with minimal degree in the underlying graph.
Maximum degree: A multiedge is selected from those incident

to a vertex with maximal degree in the underlying graph.
Minimum degree sum: A multiedge is selected from those

whose sum of degrees of its endpoints is minimal in the
underlying graph.
Maximum degree sum: A multiedge is selected from those

whose sum of degrees of its endpoints is maximal in the
underlying graph.
Non-Vertigan: A multiedge is selected from those whose

multiplicity is not an integer multiple of k; we call such a multiedge
non-Vertigan. Using this edge-selection heuristic, the number of
recursive calls may be bounded by O 2νðGÞ

� �
, where ν(G) denotes the

number of non-Vertigan multiedges in G. This is due to the fact that
both the deletion and contraction operation reduce the number of
non-Vertigan multiedges by at least one. We note that this is similar
to the sum-over-Cliffords approach studied in refs. 35–37.
There are many other methods that may improve the

performance of our algorithm, which we do not study. We shall
proceed by discussing some of these.
Isomorphism testing: During the computation the graphs

encountered and the evaluation of their Tutte polynomial is
stored. At each recursive step, we test whether the graph
is isomorphic to one already encountered, and if so, we use the
evaluation of the isomorphic graph instead. Haggard et al.7

showed that isomorphism testing can lead to an improvement in
the performance of computing Tutte polynomials. Note that this
may not be as effective when the input is a multigraph.
Almost planar: At each step in the recursion, we may test

whether the graph is close to being planar, and if so, select edges
in such a way that the deletion and contraction operations give
rise to a planar graph. For example, if the graph is apex, that is, it
can be made planar by the removal of a single vertex, then we
may select a multiedge incident to such a vertex. Similarly, if the
underlying graph is edge apex or contraction apex38, then we may
select a multiedge such that the deletion or the contraction
operation gives rise to a planar graph.
k-connected components: Similarly to the connected and

biconnected component case, we may compute the Tutte
polynomial in terms of its k-connected components39,40.

Experimental results
In this section, we present some experimental results comparing
the performance of the edge-selection heuristics on two classes of
random quantum circuits. Our experiments were performed using
SageMath 9.041. The source code and experimental data are
available at ref. 42.
The first class we consider corresponds to random instances of

IQP circuits induced by dense graphs. Specifically, an instance is
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an IQP circuit induced by a complete graph with edge weights
chosen uniformly at random from the set fmπ

8 jm 2 Z=8Zg. This
class of IQP circuits is precisely that was studied in ref. 43, where it
is conjectured that approximating the corresponding amplitudes
up to a multiplicative error is #P-hard on average.
The second class we consider corresponds to random instances

of IQP circuits induced by sparse graphs. Specifically, an instance is
an IQP circuit induced by a random graph where each of the
possible edges is included independently with probability 1/2 and
with edge weights chosen uniformly at random from the set
fmπ

8 jm 2 Z=8Zg.
We run our algorithm using each of the edge-selection

heuristics to compute the principal probability amplitude of 64
random instances of both the dense and sparse class on 12
vertices. The performance of each edge-selection heuristic is
measured by counting the number of leaves in the computational
tree. Our experimental data are presented in Supplementary Note
7. We find that the non-Vertigan edge-selection heuristic performs
particularly well for the dense class and the maximum degree sum
edge-selection heuristic performs particularly well for the
sparse class.

DISCUSSION
We established a classical heuristic algorithm for exactly comput-
ing quantum probability amplitudes. Our algorithm is based on
mapping output probability amplitudes of quantum circuits to
evaluations of the Tutte polynomial of graphic matroids. The
algorithm evaluates the Tutte polynomial recursively using the
deletion–contraction property while attempting to exploit struc-
tural properties of the matroid. We considered several edge-
selection heuristics and presented experimental results comparing
their performance on two classes of random quantum circuits.
Further, we obtained an explicit form for Clifford circuit
amplitudes in terms of matroid invariants and an alternative
efficient classical algorithm for computing the output probability
amplitudes of Clifford circuits.
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