
Explainable Hybrid CNN and FNN Approach
Applied on Robotic Wall-Following Behaviour

Learning
1st Jakub Kwiatkowski

Faculty of Computing
Poznan University of Technology

Poznan, Poland
jakub.k.kwiatkowski@doctorate.put.poznan.pl

2nd Liang Ou
School of Computer Science

University of Technology Sydney
Sydney, Australia

liang.Ou-1@student.uts.edu.au

3rd Yu-Cheng Chang
School of Computer Science

University of Technology Sydney
Sydney, Australia

yu-cheng.chang@uts.edu.au

4th Chin-Teng Lin
School of Computer Science

University of Technology Sydney
Sydney, Australia

chin-teng.lin@uts.edu.au

Abstract—Fuzzy Neural Network (FNN) that is applied to
robotic control tasks has proved to be effective by previous
researchers. However, FNN has an inherent deficiency in dealing
with inputs of large dimensions, such as images. Therefore, this
research utilizes a Convolutional Neural Network (CNN) model
to convert image into distance values and delivers these values
to FNN based robot controller as inputs. The proposed hybrid
CNN+FNN are tested with both a regression model and a multi-
task model. Results show that the multi-task method performs
better with less information loss from input images. This paper
also proved that the proposed hybrid approach can be generalized
into an unknown robotic simulation environment and performs
better than its FNN counterpart. By utilizing state of the visual
art explainable analysis method, our both the CNN part and the
FNN part of the hybrid approach can be explained in a human-
understandable way, thus the trustworthiness of the proposed
approach is guaranteed by its high explainability.

Index Terms—Explanable AI, Fuzzy System, Robotic Naviga-
tion

I. INTRODUCTION

Deep learning reached impressive results in many areas of
machine learning [1], especially in the image processing [2].
This excellent performance eventuates from the ability of DNN
to extract complex non-linear features from the raw input data.

The article / publication was created thanks to participation in program
PROM of the Polish National Agency for Academic Exchange. The program
is co-financed from the European Social Fund within the Operational Program
Knowledge Education Development, non-competitive project entitled “Inter-
national scholarship exchange of PhD students and academic staff” executed
under the Activity 3.3 specified in the application for funding of project No.
POWR.03.03.00-00-PN13 / 18.

This research has been partially supported by the statutory funds of Poznan
University of Technology.

This work was also supported in part by the Australian Research Council
(ARC) under discovery grant DP150101645, and in part by Central for
Artificial Intelligence, UTS, Australia. Research was also sponsored in part
by the Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-10-2-0022.

Although this capability makes DNN outperforms other types
of machine learning approaches, its complexity resulting in
uninterpretable by humans. In contrast to deep learning, fuzzy
learning system (FLS) is much more explainable, since FLS
leanings fuzzy rules from input data and those fuzzy rules
consist of fuzzy linguistic term sets that enable humans to
understand the inherent knowledge extracted by a fuzzy system
[3]. A Fuzzy Neural Network (FNN) can be considered as a
combination of a set of fuzzy rules, which is proved to straight-
forward explanations for knowledge learned. To further foster
hybridisation of fuzzy systems and DNNs, and overcome
the curse of dimensionality of FNNs, we propose a simple
framework, where fuzzy neural network makes decisions using
interpretable rules on features extracted by DNN from raw
data. The proposed model merges these two types of learning
regime. We take advantage of their strong point and hide their
drawbacks by employing them only in the context where they
shine. This paper tested the hybrid approach on robot control
application. The control problem is defined as achieving Wall-
Following behaviour of a robot, by which a robot is expected
to surround a wall (obstacle) without collision. The baseline
model is fuzzy learning system trained on input from distance
sensors, while the hybrid approach trains DNN to mimic the
functionality of distance sensors. Then trained DNN is used
as a substitution of sensor information during FLS training.
An FNN is used to make the final decision. We believe that
generalizable and continuous nature of deep neural network
will improve the performance of the system. We analyse the
trained models in the context of explainability to show that
even with the use of deep neural network and processing raw
images as inputs, we are still able to preserve explainability
of the algorithm.

II. RELATED WORK

A. Deep learning for navigation

The deep neural network is increasingly popular in naviga-
tion tasks, including autonomous vehicles [4] or drones [5].
When it comes to perception in navigation setting, DNNs are
often used as depth estimators, that determine the distance
from the camera to object for every pixel in the image. [6]
shows the possibility of learning the depth of the image from
the natural images; just one image is sufficient for depth
prediction. A depth estimation introduced in [7] as auxiliary
task suggests that it can extract valuable information for the
navigation task.

B. Fuzzy learning system

Fuzzy logic has proved to be effective in the robotic
control field [8], [9], with the advantage of dealing with
uncertainty with if-then-rule architecture [10]–[12]. Tasks with
high uncertainties are suited for FNN. In consideration of robot
models, wheeled mobile robot is one type of popular robots
that attraction attention by researchers.

C. Hybrid approach

Authors of ”A Survey on Fuzzy Deep Neural Networks”
[13] divide hybrid approaches into 2 groups: integrated models
and ensemble models. In the first group, fuzzy logic is
directly integrated into a DNN [14]. In contrast, the second
group represents approaches where a fuzzy system and a
DNN are individual parts that jointly generate the output [15]
(our approach belongs to this group). We encourage readers
interested in a broader overview of hybrid models to check
out the survey. The major difference between the previous
studies and our paper is that these approaches are used for
image processing task, mainly for classification, whereas we
use multi-task deep learning model as image feature extractor
for an FNN that controls a robot in the environment.

(a) Main Lidar sensor coverage
illustration

(b) Four coverage reads (SN1 to
SN4) of the auxiliary sensor for
detecting distance during train-
ing

Fig. 1. 1a shows the 8 coverage (S1 to S8) of the distance sensor, while S1
to S4 are used in the robot navigation. 1b show the coverage of an auxiliary
sensor used only in the training session.

III. MODEL

A. Fuzzy learning systems

In our model, the Fuzzy system (FS) is established based on
10 Takagi–Sugeno-type fuzzy rules. Each of the fuzzy rules
is defined in the fowling formula:

Ri : if d1(k) is µi1 & ... & dn(k) is µin Then u(k) is ai,
(1)

where d1(k) to dn(k) represent inputs of the rule, u(k) is
the output of the rule, ai is the weight of this rule, and µi1 to
µin are corresponding membership functions for inputs. These
membership functions, defined in formula 2, are Gaussian
functions that transform inputs into a number between 0 and
1.

µij(dj) = exp

{
−
(
dj −mij

σij

)}
, (2)

where dj is the input of the function, mij is the centre of the
fuzzy set and σij is the width of the fuzzy set. The output
of the whole system is calculated by the weighted sum of the
outputs of the 10 rules, defined as follows:

y(k) =
Σr

i=1Φi(~d(k))ai

Σr
i=1Φi(~d(k))

, (3)

where Φi(~d(k)) is the output of a rule, ai is the weight of the
rule, and y(k) is the output of the fuzzy system. Specifically,
Φi(~d(k)) is the summation of membership values:

Φi(~d(k)) = Πn
j µij(dj(k)), (4)

where µij(dj(k)) represents the transformed value from mem-
bership functions defined by formula 2, n is the number of the
membership function.

The Multi-Objective Vibration-Based Particle Swarm Opti-
mization (MO-VBPSO) [16] method is applied for training the
FS. With MO-VBPSO, the learning process of the system aims
to find an optimal set of parameters that defined the FS which
can direct the robot to execute Wall-Following behaviour.

B. Deep neural network

The DNNs are trained to substitute the distance sensor. The
models take images x from camera of the robot and outputs
distances y to the obstacle. We experiment with two types of
deep neural network: canonical regression model and multi-
taks deep neural network.

1) Regression model: The regression model produces con-
tinuous values ŷ that represent distances that robot would
obtain from sensor. The head of regression model fh(θh),
parametrized by θh, produce a representation of the image
r.

s = fh(x; θh) (5)

The regression model estimates the distances yr through
linear mapping fr(θr) of representation r.

ŷr = fr(x; θr) (6)

In case of regression model estimation ŷr is forwarded as the
output of the DNN module ŷ.

2) Multi-task model: To tackle this problem, we model its
also as multi-task learning. Our multi-task approach consists
of two models: previously described regression neural network
and multi-label classification deep neural network that predicts
whether obstacle is out of the sensor range. Each output of
mulit-label part is treated as binary classification problem with
two class out-of-the-range O and in-the-range I . The multi-
label clarification model exploits representation r, created by
head fh(θh), to produce classification result ŷc through linear
mapping fc(θc).

ŷc = fc(x; θc) (7)

The classification result is represented as vector of binary
values [l1, l2, ..., lN] , where each value tells if particular label
was assigned to example x. The size of vector N equals the
number of distance values collect by robot sensor.

In the training phase, we optimize cross-entropy loss for
each label. Total loss for the multi-task model is presented
below

L(θh, θr, θc|x) = ||ŷr − yr|| − α
N∑
l=1

yc,l log (ŷc,l) (8)

where α describes the importance of multi-labels loss. For
regression model we only train regression part (α is equal 0).

In the inference stage, the outputs of models are combined
to generate final the result. Firstly the multi-label classification
model is executed. In the case of out-of-the-range results, the
output is forwarded as the final result. In other case, the result
of regression model is used.

y =

{
10, if ŷc = O

ŷr, otherwise
(9)

C. Deep Neural Network explainability

The explanation of deep learning model in visual task is
often presented as a matrix of values that shows the importance
of each pixel in output creation (saliency map). The occlusion
visualisation [17] creates new images by taking the source
images and applying black patches at different places to cover
some part of the images (the size of the patch is parameter of
the model). Then the trained model predicts the outputs based
on patched images. The goal of the visualisation is to analyze
the difference of the model output dependently on the location
of patch. This technique is mostly used in classification setting,
when the created saliency map determines the confidence
on classifying the patched image as given class. For our
multi-task model this works in exact same manner, but for
regression model we needed to do some modification. In the
regression model, the saliency map we created, shows the
squared difference between the output of the patched image
and source image. The gradient visualisation [18], for the
purpose of saliency map creation, computes gradient of loss
function wrt the input images instead of parameters of the
DNN as stochastic gradient descend do.

Fig. 2. Robotic training environ-
ment

Fig. 3. Robotic training environ-
ment

IV. EXPERIMENTS

A. Robotic environment

Training and testing for the hybrid approach are conducted
in a robotic simulation environment (Fig. 2) (Webots). This
paper adopts Pioneer 2 wheeled robot shown in the centre
of the Figure. The robot is installed with a lidar sensor
for distance detection and a camera for image collection.
The white area represents the Wall or Obstacle. The Wall-
Following Behaviour task requires the robot to move around
the wall without collision.

Performance of the robot is evaluated by 3 fitness functions:

f1 = Tc, (10)

f2 =

Tc∑
t=1

Tc∣∣∣ 12 (SN1(t)
SN3(t)

+ SN2(t)
SN4(t)

)
− 1
∣∣∣ , (11)

f3 =

Tc∑
t=1

Tc
|SN2(t)− 0.2|

, (12)

Note that SN1 to SN4 are distance from an auxiliary sensor
used only in the training, shown in Fig. 1. The first fitness
function evaluates the robot’s running time until failure. Fail
of the robot is defined as robot moving too far (more than 5m)
or too close (less than 0.2m) to the Wall. The second fitness
function evaluates the smoothness of the robot’s movement. By
implementing this fitness function, the robot is encouraged to
not change its direction frequently. The last fitness function
evaluates the closeness of the robot toward the wall. This
fitness provide restriction to prevent the robot from moving
far from the wall to gain running time, formula (10).

B. Deep learning dataset

For training deep neural network we created an images
dataset that was extracted from a robotic environment. Along
with the movement of the robot, the camera with record images
for its surrounding environment, i.e. the view of the wall,
while the lidar sensor will record the distance between the
robot and the wall. Fig. 3 is an image example taken from the
camera, while Fig. 1a demonstrate the coverage of the lidar
sensor. S1 to S8 are 8 reads of the fan-shaped lidar sensor
coverage, although in this experiment only S1 to S4 are in
use because the experiment only concerns the left-hand side
detection of the wall. For the purpose of the multi-target model
we also created the second set of binary labels for each sensor
that determine if the obstacle is in the range of a particular
coverage of the sensor.

TABLE I
ARCHITECTURE OF REGRESSION AND MULTI-TARGET MODEL.

Layer Hyper-parameters
Type Filters/Neurons Kernel size Strides size Padding Activation

Conv2D 64 4x4 2x2 Same Relu
Conv2D 64 4x4 2x2 Same Relu
Conv2D 64 4x4 2x2 Same Relu
Conv2D 64 4x4 2x2 Same Relu
Dense 256 Relu
Dense 4 Linear

C. Deep learning experiments

We trained the regression model and the multi-target model
using same hyper-parameters. We have used Adam optimizer
with 0.0001 learning rate and batch size that equals 64. These
models have also exact same architecture (Table I), except
that the multi-target model has two output layers: one for
regression and another one for classification. We were able
to reach 0.2482 loss for regression model and loss for multi-
target model 0.3017. Accuracy for multi-target model equals
0.9899.

D. Deep Neural Network explainability

We perform occlusion visualisation on both regression and
multi-target models. The width and height of used path equal
4 pixels. For multi-target models we also conduct a gradient
visualisation. Since we use the SmoothGrad [18] version of
gradient visualisation, we create the batch of the image that
are copies of the source image with gaussian noise applied
to them. We add the Gaussian noise with mean of 0 and
variance of 0.125 to images where each pixel is represented by
3-dimensional tensor with 3 channels that values range from
0 to 1.

The results of these methods are presented in similar manner
as a grid of images. The first column show the samples of
original images from dataset and the rest of columns presents
the original images with saliency maps applied. In case of
the occlusion visualisation of regression model the second
columns show the averaged saliency map for all output. In
other cases the averaged saliency map for all outputs does
not exist. The rest of columns are related to each of outputs
of neural network in order from left to right. As regression
output in multi-target model have similar results to regression
model, we present only visualisation multi-label part.

The upper part of the image, that shows the sky of the en-
vironment, does not change in the whole dataset. Considering
this fact, we exclude this part from all of the visualisations
since it would show some random saliency that would unnec-
essarily clutter visualisation and made it harder to understand.

V. RESULT DISCUSSION AND ANALYSIS

A. Fuzzy training results

1) Trajectory comparison with FNN baseline: Robotic tra-
jectory tests of the trained models are conducted in the sim-
ulation environment. Fig. 4 compares the moving trajectories
of the Multi-Task model with lidar sensor-based FNN model.

Fig. 4. Trajectory illustration of image driven hybrid approach with Multi-
Task Model and the sensor driven FNN.

Fig. 5. Trajectory illustration of
the image-driven hybrid approach
with the multi-task Model and the
sensor-driven FNN.

Fig. 6. Trajectory illustration of
image driven hybrid approach with
Multi-Task Model and the sensor
driven FNN.

Although the Multi-Task model following the way with a
similar approach, it sticks with the wall much better than other
the baseline at the end of the cycle.

B. Generalization evaluation

Since the CNN part of the Hybrid model is trained to
predict distance between the wall and the robot, we tested
the generalization ability of the the pre-trained Multi-Task
model in a new environment, and compare it with lidar sensor
driving FNN baseline. The comparison is based on s-metric
value introduced by [19]. Fig. 5 shows that, by taking inputs
from the multi-task model, the FNN can learn even better
performance at the end of the experiment, although it starts
at comparatively lower level. Generalization ability is also
evaluated by their trajectories. Fig. 6 compares the trajectories
of pretrained FNN baseline and pretrained hybrid approach in
a new environment. Although both of them have generalization
ability, the baseline follows the wall better in alone straight
path, whereas the hybrid approach performs better at corners.

We believe that the generalization ability of our method
comes also from the hybrid nature of our model. The individ-
ual DNN, used for control of the robot, could just remember
the steps needed to achieve a goal (over-fitting). However, that
kind of strategy would not be able to achieve a goal in a
different environment.

C. Explainability evaluation

1) Deep Neural Network explainability: The saliency maps
indicates the parts of the image that neural network focuses.

Fig. 7. Occlusion visualisa-
tion of regression model that
shows the difference in predic-
tion of regression model in case
when marked part is covered with
4x4 black patch. Consecutively
columns show: original image and
then 4 saliency maps for each out-
put of regression model.

Fig. 8. Occlusion visualisation of
multi-task model that shows the
confidence that obstacle is in the
range of sensor when that part is
covered with 4x4 black patch. Con-
secutively columns show: original
image and then 4 saliency maps for
each output of regression model.

These parts contain characteristic points that are good indica-
tors of locations in the environment. We can clearly see that
the most important parts of the image, according to the trained
model, are edges of obstacle. Giving the most attention to these
point is reasonable way of achieving goal in this environment,
since it gives the most valuable information about the locations
of robot in the environment. The point that has especially good
amount of saliency is the right end of obstacle since its the
most important point that robot should follow to achieve the
goal. The far horizon of these environment that have a lot of
saliency seems also like a important point for navigation. This
is also part of the image that varies in high level sense. The
robot learn to move around the obstacle that in most cases is
on the left side of the robot, so the right part part varies in
the presence of obstacle or floor, compared to left part which
is mostly populated by presence of obstacle. Since we use the
squared difference in saliency map creation, the visualisation
focuses on the parts, that when covered, change the output
in the most meaningful way. Although weaker we can also
see the saliency on the floor in the environment, especially in
contour of the pattern of squares on the floor, so the robot also
uses a floor pattern to navigate thought environment.

The saliency map in Fig. 8 shows the probability of obstacle
being in the range of sensor when that part of the image is
covered. In the first row we have situation where obstacle is in
the range of every read of sensor. The saliency is high in most
places, because if we cover these places, model still predicts
that obstacle is in the range of sensor. The only exceptions
are locations on obstacle, especially the right end of obstacle,
when covered the model would predict that sensor is out of
range. In the second row the area of low probability of obstacle
being in the sensor range increase for the right-most image.
In first and second row we can also see few interesting cases
of covering obstacle: When the patch covers the left part of
obstacle the probability is high, because the model see the part
of obstacle on the right side. Then cover starts to be close to
the right edge of obstacle or slightly cover it, so the model
don’t know the exact location of right edge of obstacle. When
most of cover is on the left side of edge of obstacle, there is

Fig. 9. Saliency map of SmoothGrad algorithm with number of images in
batch that equals 10. The algorithm shows the averaged gradient of multi-
label output wrt to image with applied Gaussian noise. Consecutively columns
show: original image and then 4 saliency maps for each output of regression
model.

possibility that the end is more to the left than is in reality, so
the possibility of being out of the range increases. However,
when the major part of the cover is right to the edge, there is
possibility that the edge is more to right, so the probability of
being in the range of sensor dramatically roses. In the third
row the situation drastically changes as edge of obstacle is in
the middle of image. The right reads of senor have obstacle out
of range, so the only way of tricking these sensor to predict in-
the-range output is to cover some part of horizon or the end of
obstacle. In the fourth row situation is similar for all of reads
of sensor, as all of them are in the range of obstacle and there
is no easy way of changing it. The covering of the middle of
obstacle is way of tricking a model to decrees the probability
of obstacle being in the range of sensor. We hypothesise that
when you cover the middle of obstacle is hard for the model to
distinguish between covered obstacle and pattern on the floor.
In the last row all of reads of sensor are out of the range,
especially the right reads, so saliency is low in almost every
part of the image. Only when you cover the some parts of
the horizon the probability of being in the range of obstacle
increases.

Gradient visualisation of multi-task model shows gradient of
maximizing the probability of obstacle being out of the sensor
range with respect to image. We see that most of saliency
emerges on the obstacle and far horizon of the image. There
is not much of the gradient in the first row of visualisation.
However as the right edge of obstacle moves to left, the
obstacle is getting out of range for right reads of sensor and
the saliency starts to emerge on these images, what we can
see in the next two rows. In the 4 row there is little saliency,
because the obstacle is in range of sensor. In the last row we
see a little bit of saliency on each of the image as every one
of them have obstacle out of range. In last row is also hard to
localize obstacle, so model focus some attention on the pattern
on the floor to navigate in the environment.

TABLE II
FNN RULES LEARNT WITH THE MULTI-TASK MODEL

Rule Fuzzy Inference
Number Input1 Input2 Input3 Input4 Output

1 VS(-1.0,2.9) H(7.4,-0.3) H(5.9,2.0) VS(-0.7,0.0) 0.0
2 M(2.0,-0.7) S(0.0,0.0) M(3.9,-0.8) S(0.3,0.6) -0.3
3 VS(-0.8,0.3) S(0.6,-1.9) VS(-0.4,7.5) VS(-0.8,-0.3) -0.1
4 H(7.5,-0.8) VS(-0.3,1.7) S(1.5,5.5) S(1.0,4.2) -0.9
5 H(5.5,1.0) H(4.2,1.0) M(2.6,1.4) VS(-0.1,0.9) 1.9
6 S(1.4,-0.1) S(0.9,-0.8) M(2.0,2.9) H(5.0,2.7) -0.9
7 M(2.9,5.0) M(2.7,-2.4) S(1.7,-0.9) M(3.3,0.6) 0.0
8 VS(-0.9,3.3) S(0.6,3.8) M(2.9,7.5) M(2.0,1.2) -4.6
9 H(7.5,2.0) S(1.2,2.0) S(1.9,2.3) S(0.1,0.1) -0.8

10 M(2.3,0.1) S(0.1,1.2) H(5.0,1.0) S(1.2,1.3) 3.1

2) FNN explainability: Taking advantage of the inherent
interpretability of fuzzy system, the parameters in the pre-
trained FNN can be analysed with rule-based logic. Table
II displays the logic of 10 rules in the FNN learnt together
with the Multi-Task CNN model. Each input corresponding
to the predicted distance values from the CNN, which are the
mimic of lidar sensor range S1 to S4, and are transformed
with Gaussian membership function (formula 2). The centre
and width of the membership functions are all displays in
the brackets of the table. Semantically, we define negative
distances as Very Short (“VS”), distances from 0 to 2 as Short
(“S”), distances from 2 to 4 as Medium (“M”), distances larger
than 4 as Hight (“H”). The last column of the table shows the
consequent part of each rule, in this case, the steering angle to
direct the robot. Positive angles direct the robot moving toward
the left, whereas negative angles direct the robot moving
towards the right. Therefore, we can explain the FNN by
looking at each of the learnt parameters of rules. For, example,
if S1 is very short, S2 and S3 are short, S4 is high, rule 7
will be fired by directing the robot moving straight forward.
Semantically, this rule means if the robot finds obstacles in
its side but not in its front, it will go straight. This logic of
achieving wall-following align with human intuition.

VI. CONCLUSION

The proposed model combines the robustness and gen-
eralisability of deep neural network and explainability of
fuzzy learning system. By replacing lidar sensor inputs into
image from camera, the hybrid approach we proposed is more
robust than traditional lidar sensor-based learning methods.
This robustness of the hybrid approach is identified in the
testing simulation environment. Since our DNN is trained
to mimic distance from sensors, and applied comprehensive
visual analysis, our approach secures the interpretability of
the DNN. In our future work we investigate the possibility
of training two models jointy. Another interesting case is
possibility of combining fuzzy learning system with unsuper-
vised deep learning models, like Variational AutoEncoders or
GenerativeAdversarial Networks. The question rises if there is
possible cooperation between models and whether deep neural
network can extract features that are sufficiently meaningful
to control robot through fuzzy learning system.

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate.” [Online]. Available:
http://arxiv.org/abs/1409.0473

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” [Online]. Available:
http://arxiv.org/abs/1409.1556

[3] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA). IEEE, 2018, pp. 80–89.

[4] X. Liang, Y. Liu, T. Chen, M. Liu, and Q. Yang, “Federated Transfer
Reinforcement Learning for Autonomous Driving.” [Online]. Available:
http://arxiv.org/abs/1910.06001

[5] H. X. Pham, H. M. La, D. Feil-Seifer, and L. V. Nguyen, “Autonomous
UAV Navigation Using Reinforcement Learning.” [Online]. Available:
http://arxiv.org/abs/1801.05086

[6] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network.” [Online]. Available:
http://arxiv.org/abs/1406.2283

[7] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and
R. Hadsell, “Learning to Navigate in Complex Environments.” [Online].
Available: http://arxiv.org/abs/1611.03673

[8] X. Xiang, C. Yu, L. Lapierre, J. Zhang, and Q. Zhang, “Survey on
fuzzy-logic-based guidance and control of marine surface vehicles and
underwater vehicles,” International Journal of Fuzzy Systems, vol. 20,
no. 2, pp. 572–586, 2018.

[9] R. H. Abiyev, N. Akkaya, and I. Gunsel, “Control of omnidirectional
robot using z-number-based fuzzy system,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 49, no. 1, pp. 238–252, 2018.

[10] I. Couso, C. Borgelt, E. Hullermeier, and R. Kruse, “Fuzzy sets in
data analysis: From statistical foundations to machine learning,” IEEE
Computational Intelligence Magazine, vol. 14, no. 1, pp. 31–44, 2019.

[11] I. Caylak, E. Penner, and R. Mahnken, “A fuzzy uncertainty model for
analytical and numerical homogenization of transversely fiber reinforced
plastics,” PAMM, vol. 19, no. 1, p. e201900356, 2019.

[12] D. Chen, X. Zhang, L. L. Wang, and Z. Han, “Prediction of cloud
resources demand based on hierarchical pythagorean fuzzy deep neural
network,” IEEE Transactions on Services Computing, 2019.

[13] R. Das, S. Sen, and U. Maulik, “A Survey on Fuzzy Deep Neural
Networks,” vol. 53, no. 3, pp. 54:1–54:25. [Online]. Available:
https://doi.org/10.1145/3369798

[14] S. R. Price, S. R. Price, and D. T. Anderson, “Introducing
Fuzzy Layers for Deep Learning,” pp. 1–6. [Online]. Available:
http://arxiv.org/abs/2003.00880

[15] S. Zhou, Q. Chen, X. Wang, and X. Li, “Hybrid Deep Belief Networks
for Semi-supervised Sentiment Classification,” in Proceedings of
COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. Dublin City University and Association
for Computational Linguistics, pp. 1341–1349. [Online]. Available:
https://www.aclweb.org/anthology/C14-1127

[16] L. Ou, G. Zeng, Y.-C. Chang, and C.-T. Lin, “Multi-objective vibration-
based particle-swarm-optimized fuzzy controller with application to
boundary-following of mobile-robot simulation environment,” in 2020
IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2020, pp. 1893–1898.

[17] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks.” [Online]. Available: http://arxiv.org/abs/1311.2901

[18] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg,
“SmoothGrad: Removing noise by adding noise.” [Online]. Available:
http://arxiv.org/abs/1706.03825

[19] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications.”

