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With the rapid development of wireless communication technologies and the proliferation of the urban Internet of Things
(IoT), the paradigm of mobile computing has been shifting from centralized clouds to edge networks. As an enabling
paradigm for computation-intensive and latency-sensitive computation tasks, mobile edge computing (MEC) can provide
in-proximity computing services for resource-constrained IoT devices. Nevertheless, it remains challenging to optimize
computation offloading from IoT devices to heterogeneous edge servers, considering complex intertask dependency, limited
bandwidth, and dynamic networks. In this paper, we address the above challenges in MEC with TPD, that is, temporal
and positional computation offloading with dynamic-dependent tasks. In particular, we investigate channel interference and
intertask dependency by considering the position and moment of computation offloading simultaneously. We define a
novel criterion for assessing the criticality of each task, and we identify the critical path based on a directed acyclic graph
of all tasks. Furthermore, we propose an online algorithm for finding the optimal computation offloading strategy with
intertask dependency and adjusting the strategy in real-time when facing dynamic tasks. Extensive simulation results show
that our algorithm reduces significantly the time to complete all tasks by 30–60% in different scenarios and takes less time
to adjust the offloading strategy in dynamic MEC systems.

1. Introduction

With the rapid development of wireless communication
technologies and the pervasive use of the urban Internet of
Things (IoT), IoT devices have become deeply integrated
into daily life [1]. At the same time, the rapid increase in
the number of IoT devices has brought new challenges in
processing the massive amount of IoT data [2]. With con-
strained computing resources and limited battery capacity,
IoT devices are facing rapid energy drains as a result of pro-
cessing computation-intensive tasks [3, 4]. While some ini-
tial efforts have been made to solve such problems by
leveraging centralized cloud computing, the long communi-

cation distance and unstable network connection can cause
unacceptable delays to end users [5, 6]. To tackle this issue,
mobile edge computing (MEC) has emerged as a promising
computing paradigm for providing highly responsive com-
puting services with low latency [7–10]. By offloading com-
putation tasks to edge servers, IoT devices incur fewer
costs than they would if processing these tasks locally or
remotely at cloud data centers [11].

Nevertheless, applications on IoT devices are highly
diverse, and there can be intertask dependency in many
computation tasks offloaded to MEC [12]. For instance,
Figure 1(a) shows an access control system for MEC. When
a user wants to enter, they must swipe their card and pass
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facial recognition. The card reader generates the ID card rec-
ognition task, whereupon the camera takes user pictures and
then generates the feature extraction task. When the latter is
completed, the camera then generates the data analysis task
to analyze the results of the feature extraction task. Intui-
tively, the door opens only after the data analysis and ID
card recognition tasks have been processed successfully.
The arrows in Figure 1(a) show the dependencies among
the three computation tasks. Therefore, we must find an
optimal offloading strategy for all three tasks. Suppose that
there are two edge servers, i.e., edge server 1 and edge server
2, and that edge server 2 has greater computing capability
and larger channel bandwidth than those of edge server 1.
Correspondingly, the three tasks executed on the edge
servers will generate different uploading delays and compu-

tation delays, as shown in Table 1. Note that there will be
channel interference when tasks are uploaded simulta-
neously, which will cause longer delays than expected. Spe-
cifically, we carefully consider the following two issues of
computation offloading with intertask dependency in MEC.

Offloading position: the first step is to find the optimal
offloading positions for the three tasks. Here, we have pro-
duced two different types of offloading positions for tasks.
With the first type (Figure 1(b)), the ID card recognition task
is offloaded to edge server 2 and its total delay is 3 + 4 = 7
ms. We assume that the feature extraction and data analysis
tasks are uploaded simultaneously, so that the total delay is
8 + 7 + 6 = 21ms (data analysis must wait for feature extrac-
tion to complete). In this case, the door opens after 21ms. As
can be seen, both the feature extraction and data analysis

ID card
recognition

Data analysisFeature extraction

(a) Schematic of access control system

Edge server 1 Edge server 2

Total delay = 8+7+6 = 21ms Total delay = 3+4+6 = 7ms

(b) First type of offloading positions

Edge server 1 Edge server 2

Total delay = 4+5+ = 9ms Total delay = 7+6+5 = 18ms

(c) Second type of offloading positions

Edge
server Compute Compute
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exetraction

Data
analysis

Upload

Upload
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(d) Tasks uploaded simultaneously

Edge
server Compute Compute
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exetraction
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analysis Upload

Upload
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(e) Tasks uploaded separately

Figure 1: A simple example of an access control system.
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tasks determine the delay of door opening. However, if we
offload both the feature extraction and data analysis tasks
to edge server 2 (Figure 1(c)), then the total delay is reduced
to 18ms. Therefore, it is essential to consider task dependen-
cies when seeking desirable offloading positions.

Offloading moment: if the feature extraction and data
analysis tasks are offloaded simultaneously to edge server 2
at 0ms (Figure 1(d)), then there is channel interference and
the uploading delay of the two tasks becomes 7ms. Conse-
quently, the door opens after 18ms. However, if we set the off-
loadingmoment of the data analysis task as 6ms (Figure 1(e)),
then channel interference is avoided and the overall uploading
delay is reduced to 5ms. Finally, the door opening time is
advanced to 16ms. By introducing this example, we show that
the offloading moment also has considerable impact on task
processing in mobile computation offloading.

Existing solutions for mobile computation offloading are
focused mainly on reducing task response delays, and gener-
ally, they offload all computation tasks to MEC and then
make optimized adjustments to the edge servers. However,
as the above observation cases show, the potential intertask
dependency and channel contention will cause significant
processing delays in MEC systems with thousands or even
millions of IoT devices. Herein, we study the problem of
TPD, that is, temporal and positional computation offload-
ing with dynamic-dependent tasks in MEC. In particular,
we investigate computation offloading in MEC considering
both intertask dependencies and offloading moments. We
also address the dynamics of mobile edge networks, where
new tasks are involved continuously in computation offload-
ing. Formally, we aim to solve the following three critical
challenges.

(i) How to find the optimal offloading positions of
tasks under dependency restrictions: with more
tasks, the dependencies among them become very
complicated. Therefore, a challenge is how to find
the optimal offloading position for each task under
such complicated dependency restrictions

(ii) How to calculate the offloading moments of tasks to
avoid channel interference: the execution and
upload delays of tasks are affected by various factors
such as channel quality and the computation capa-
bilities of the edge servers. Therefore, it is difficult
to estimate these delays, thereby posing the chal-
lenge of how to calculate the offloading moments
of tasks to reduce channel interference

(iii) How to reduce the time overhead of updating the
offloading strategy in real time: in a dynamic MEC
system, IoT devices generate new tasks frequently,
and the offloading strategy must also be updated
frequently. However, doing so incurs a time over-
head, so another challenge is how to update the off-
loading strategy in real time

To overcome the above challenges, we propose an online
offloading algorithm known as the critical task first (CTF) algo-
rithm. Combined with the idea of the critical path, the CTF
algorithm marks the criticality of tasks based on their depen-
dencies and decides the offloading positions of tasks according
to their criticality. When IoT devices generate new tasks in the
MEC system, the CTF algorithm can update the offloading
strategy in real time with minimal time overhead. The main
contributions in this paper are summarized as follows:

(i) We not only decide the offloading positions and
execution order of tasks but also calculate the off-
loading moment of each task to reduce channel
interference and uploading delay

(ii) Considering the dependencies among tasks and
combining the critical-path idea, we propose an effi-
cient online offloading algorithm, i.e., the CTF algo-
rithm. This uses a backward criticality notation
(BCN) method to mark the criticality of tasks, and
it can update the offloading strategy with less time
overhead in the dynamic MEC system

(iii) We conduct simulations to assess the effectiveness of
the CTF algorithm in different scenarios. Compared
with previous studies, the CTF algorithm is effective
at reducing the time to complete all tasks and updat-
ing the offloading strategy with less time overhead

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 presents the system model
and problem formulation. Section 4 introduces the main
design of the offloading strategy. Section 5 presents the eval-
uation results. Section 6 concludes the paper.

2. Related Work

As one of the core technologies in MEC, computation off-
loading has attracted considerable research attention in
recent years [13, 14]. According to the optimization goal,
computation offloading can be divided into three categories:

Table 1: Delays of three tasks on different servers.

Feature extraction Data analysis ID card recognition

Uploading on S1 (separated) 6ms 6ms 4ms

Uploading on S1 (synchronous) 8ms 8ms 5ms

Computing on S1 7ms 6ms 5ms

Uploading on S2 (separated) 5ms 5ms 3ms

Uploading on S2 (synchronous) 7ms 7ms 4ms

Computing on S2 6ms 5ms 4ms
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(i) minimizing the delay [15–17], (ii) reducing the energy
consumption [18, 19], or (iii) balancing the delay and energy
consumption [20, 21]. Herein, we consider mainly computa-
tion offloading to minimize task delays.

Previous studies of minimizing task delays can be classi-
fied into two broad categories: centralized and distributed.
The centralized method [22, 23] sets the MEC controller to
collect global information with which it makes an optimal off-
loading decision for each task. Cooperation among multiple
mobile devices is presented in [22], wherein the authors con-
struct a potential game to realize task scheduling aimed at
minimizing the overhead of each mobile device. In [23], Chen
and Hao propose an efficient task-offloading policy in
software-defined ultradense networks; they formulate the
task-offloading problem as an NP-hard nonlinear mixed-
integer programming problem and transform this optimiza-
tion problem into a task-placement subproblem and a
resource-allocation subproblem. Another direction is distrib-
uted resource allocation for multiuser MEC systems [24–26].
In [24], by targeting a multiuser and multiserver scenario
involving a small-cell network integrated with MEC, the
authors formulate the problem as a distributed overhead-
minimization problem to minimize the overhead for users.

Dependency-aware computation offloading has also
been studied widely. In [27], the authors propose a
dependency-aware offloading scheme in MEC with edge–
cloud cooperation under task-dependency constraints. In
[28], the authors propose a model-free approach based on
reinforcement learning, i.e., a Q-learning approach that
adaptively learns to optimize the offloading decision and
energy consumption jointly by interacting with the network
environment. In [29], the authors study the impact of
interuser task dependency on task offloading and resource
allocation in a two-user MEC network, and they propose
an efficient algorithm to optimize such decisions.

In [30, 31], the authors use game theory to solve the
problem of optimal offloading. In [31], the authors also con-
sider the dependency among subtasks and the contention
among multiple users, and they propose the distributed ear-
liest finish-time offloading (DEFO) algorithm based on non-
cooperative game theory to reduce the overall completion
time of IoT applications. Compared with our CTF algo-
rithm, the DEFO algorithm only decides the offloading posi-
tions and execution order of tasks without considering the
offloading moments, thereby causing serious channel inter-
ference. Also, the DEFO algorithm is designed for static
MEC systems, but actual MEC systems change dynamically.
By contrast, the proposed CTF algorithm can perform tem-
poral and positional computation offloading according to
task dependencies and update the offloading strategy with
less time overhead in dynamic MEC systems.

3. System Model

This section introduces the system model. We begin by
describing the network model and then present the commu-
nication and computation models in detail. For clarity of
presentation, Table 2 summarizes the notations used in the
following formulation.

3.1. Network Model. As shown in Figure 2, we consider a
typical multiuser and multiserver MEC system with n IoT
devices, l nearby edge servers, and wireless access points
such as macro base stations and small-cell base stations with
relatively powerful and heterogeneous computation abilities.
The IoT devices can offload tasks to any edge server through
the base stations and the core network. The sets of IoT
devices and edge servers are denoted as A = fA1,A2,⋯, Ai
,⋯, Ang and S = fS1, S2,⋯, Sk,⋯, Slg, respectively. We
suppose that each IoT device generates a set of computation-
ally intensive tasks to be executed during the work. Let f
Ti,1, Ti,2,⋯, Ti,j,⋯, Ti,mg denote the set of tasks from IoT
device Ai, where Ti,j represents task j. For efficient computa-
tion offloading, we exploit the potential dependency correla-
tion among the tasks [32]. As in the example in Figure 1(a),
executing the data analysis task requires completion of the
feature extraction task as a prerequisite. Therefore, we define
the feature extraction task as the predecessor task of the data
analysis task, and the data analysis task is its successor task.

Task Ti,j can then be described by the five-tuple ðmi,j,
ci,j, ai,j, Pi,j, Si,jÞ, where the terms are as follows: (i) mi,j is
the size of the input data for task execution (e.g., the pro-
gram codes and input parameters); (ii) ci,j is the total num-
ber of CPU cycles required to accomplish task Ti,j; (iii)
because each task can be either executed locally or offloaded
to a nearby edge server, we use ai,j ∈ f0 ∪ Sg to denote the

Table 2: Notations used herein.

Notation Definition

A Set of IoT devices

S Set of edge servers

Ti, j Task j of Ai

mi,j Computation input data size of Ti,j

ci,j No. of CPU cycles required for Ti,j

ai, j Offloading position of Ti,j

Pi,j Predecessor task set of Ti, j

Si, j Successor task set of Ti,j

STi,j Offloading moment of Ti, j

FTi,j Finishing moment of Ti,j

rti,k Data upload rate from Ai to Sk at time t

Bk Bandwidth of channel connected to Sk
ϖ Background noise

qi Transmission power of IoT device Ai

gi,k Channel gain

f li Computation capability of IoT device Ai

f ek Computation capability of edge server Sk
ti,j Total delay of Ti,j

Φ Offloading strategy for all tasks

Ψ Moment at which all tasks are completed

4 Wireless Communications and Mobile Computing



offloading position of task Ti,j, where ai,j = 0 means that task
Ti,j is executed locally on IoT device Ai and ai,j = k means
that Ti,j is offloaded to edge server Sk for execution; (iv)
Pi,j is the predecessor task set of Ti,j; and (v) Si,j is the succes-
sor task set. A task can start only after all its predecessors
have been completed. STi,j is the offloading moment of Ti,j
, and FTi,j is the finishing moment.

3.2. Communication and Computation Models. In this sub-
section, we introduce how to model the task delay, which
can be divided into communication and computation parts.
If tasks are executed by the IoT devices themselves, then
only a computing delay is incurred; otherwise, the IoT
devices select an edge server from the edge server set S for
computation offloading, which incurs uploading, waiting,
and computing delays. Next, we introduce the communica-
tion model followed by the computation model.

Communication model: the communication channel
quality changes constantly during the process of computa-
tion offloading. In [30, 31], the authors give a formula for
calculating the task upload rate. Based on this, we introduce
how to calculate the aforementioned communication delays
in detail according to the time. pti,k indicates whether device
Ai is uploading tasks to edge server Sk at time t. If there is a
task Ti,j such that ai,j = k and its uploading interval contains
time t, then pti,k = 1, otherwise pti,k = 0. rti,k denotes the data
upload rate from device Ai to edge server Sk at time t and
is given as

rti,k = Bklog2 1 + qigi,k
ϖ +∑i′∈ 1,:,n½ �,i′≠iqi′gi′ ,kp

t
i′ ,k

 !
, ð1Þ

where Bk is the bandwidth of the communication channel
connected to edge server Sk, qi is the transmission power
of Ai, gi,j is the channel gain for the link between Ai and
Sk, ϖ is the background noise, and ∑i′∈½1,::,n�,i′≠iqi′gi′ ,kp

t
i′ ,k is

the wireless interference suffered from other IoT devices
when Ai uploads tasks to Sk.

Computation model: a computation task can be either
handled locally or offloaded to an edge server for computing,
which leads to two different delay computing methods.

(1) Local computing: the task is handled on the IoT
device itself, and there is only a computing delay in
the process. f li is the computing capability of IoT
device Ai, which represents the number of CPU
cycles that Ai can calculate per second. Given the
number of CPU cycles for task Ti,j, the delay tli,j of
Ti,j with local computing can be represented as

tli,j =
ci,j
f li

ð2Þ

(2) Edge computing: tasks are offloaded to edge servers
for computing, and the process involves the follow-
ing steps: the task is uploaded to the edge server;
then, it is queued in the server for execution, and
finally, the edge server computes the task to obtain
the results. Therefore, these three steps produce a
three-part delay (upload delay, queuing delay, and
computing delay). The upload delay tk,Ui,j of Ti,j from

Edge server

Edge server

Edge server

BS

BS

BS

IoT device

IoT device

IoT device

Core network

Figure 2: Typical multiuser and multiserver mobile edge computing (MEC) system.
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Ai to Sk is determined by the data upload rate rti,k and

the data volume mi,j. Therefore, t
k,U
i,j is calculated as

tk,Ui,j =
mi,j
rti,k

ð3Þ

After arriving at the edge server, Ti,j may need to queue

in the server for computing, and tk,Qi,j denotes the queuing
delay of Ti,j on Sk. We use Qi,j to denote the task set that

is queued in front of Ti,j on Sk. Therefore, t
k,Q
i,j is calculated as

tk,Qi,j = 〠
Ti ′ , j ′∈Qi, j:

‍
ci′ ,j′
f ek

: ð4Þ

f ek is the computing capability of edge server Sk, and we
calculate the computing delay tk,Ci,j as

tk,Ci,j =
ci,j
f ek

: ð5Þ

In edge computing, the delay tki,j of Ti,j comprises the
uploading, queuing, and computing delays as

tki,j = tk,Ui,j + tk,Qi,j + tk,Ci,j : ð6Þ

ti,j is the total delay of Ti,j and is denoted as

ti,j =
tli,j if ai,j = 0,

tki,j if ai,j = k:

8<
: ð7Þ

If Ti,j chooses local computing, then ti,j = tli,j. If Ti,j
chooses edge server Sk, then ti,j = tki,j. Therefore, given STi,j
and ai,j of the task, we calculate the finishing moment as

FTi,j = STi,j + ti,j: ð8Þ

3.3. Problem Formulation. Herein, given the dependencies
among tasks, the dynamics of the MEC system, and the mul-
tiuser wireless interference, we jointly optimize the task off-
loading position and moment.

(1) Optimizing offloading positions: tasks are either exe-
cuted locally at the IoT devices or offloaded to differ-
ent edge servers, thereby causing different delays.
Optimizing the offloading positions involves finding
the optimal offloading position for each task that
minimizes the time to complete all tasks

(2) Optimizing offloading moments: offloading tasks at
different moments produces channel interference
among IoT devices. Optimizing the offloading
moments involves determining the optimal offload-

ing moments to avoid channel interference and
reduce the time of uploading tasks

Herein, our goal is to find both (i) the offloading position
ai,j at which task Ti,j is executed and (ii) the offloading
moment STi,j at which Ti,j starts to be offloaded. We use Φ
½ða1,1, ST1,1Þ,⋯, ðai,j, STi,jÞ,⋯, ðan,m, STn,mÞ� to represent
the offloading strategy. Our goal is then to find the optimal
offloading strategy that minimizes the total time to complete
all tasks. Let Ψ denote the moment at which all tasks are
completed, which is equivalent to the finishing moment of
the final completed task, i.e.,

Ψ =Max STi,j + ti,j
� �

, i ∈ 1,:,n½ �, j ∈ 1,:,m½ �: ð9Þ

Therefore, we formulate the problem of TPD (temporal
and positional computation offloading with dynamic and
dependent tasks) mathematically as follows:

Opt: minΨ ð10Þ

s:t:  ST i,j, FTi,j
� �

∩ STi′ ,j′ , FTi′ ,j′
h i

=∅,

∀ai,j = ai′ ,j′ , i, i′ ∈ 1, n½ �, j, j′ ∈ 1,m½ �,
ð11Þ

STi,j ≥max STi′ ,j′ + ti′ ,j′
n o

, Ti′ ,j′ ∈ Pi,j: ð12Þ

We seek the optimal offloading strategy Φ with the min-
imized Ψ (Equation (10)). However, there are two restric-
tions: (i) an edge server can only calculate one task at a
time; therefore, the time intervals of two tasks that select
the same server cannot overlap (Equation (11)); (ii) the lim-
itation of dependencies means that a successor task can only
start after all its predecessor tasks are completed, and its off-
loading moment must be later than the finishing moments
of all its predecessors (Equation (12)).

3.4. Complexity Analysis of the Problem.Here, we analyze the
complexity of the above optimization problem by comparing
it with the flexible job-shop scheduling problem (FJSP),
which is the problem of scheduling workpiece processing
on machines. In the FJSP, a group of workpieces must be
processed on a group of machines. Each workpiece involves
multiple dependency-aware jobs, a machine can only pro-
cess one job at a time, and jobs have different execution
times on different machines. As a classic NP-hard problem
[33, 34], the goal of the FJSP is to determine the execution
machines and order of the jobs to reduce the time to com-
plete all jobs.

After abstraction, our optimization problem is similar to
the FJSP. The applications running on the IoT devices can be
regarded as workpieces, the tasks can be regarded as jobs,
and the edge servers can be regarded as machines in the
FJSP. Also, the constraints and optimization objectives of
the two problems are the same. Therefore, our optimization
problem of computation offloading can be regarded as a type
of FJSP. However, our optimization problem is more com-
plicated than the classic FJSP because we not only determine

6 Wireless Communications and Mobile Computing



the offloading positions and order of the tasks but must also
calculate the precise offloading moments, and we consider
the communication time and channel interference. There-
fore, the optimal offloading problem proposed by us is also
an NP-hard problem.

4. Task Offloading Strategy

In this section, we introduce the detailed task-offloading
strategy for our problem. We begin by constructing a
directed acyclic graph (DAG) according to the dependency
correlation of tasks and proposing a BCN method to mark
the criticality of all tasks. We then devise the online CTF off-
loading algorithm to minimize the time to complete all tasks.

4.1. Marking of Task Criticality. The dependency correlation
among tasks means that we can first construct a DAG, as the
example shown in Figure 3, to present their topological
structure. The nodes in the DAG represent tasks generated
by IoT devices, and the directed edges denote the specific
dependency relations between tasks. A node is weighted by
the number of CPU cycles required by the corresponding
task, and the length of a path in the DAG is the sum of the
weights of the nodes on the path. The critical path is the lon-
gest path in the DAG, and the completion times of tasks on
the critical path have a direct effect on the time Ψ.

Intuitively, we can find the critical path and offload tasks
on it to edge servers with sufficient computing capability to
reduce Ψ. However, searching for the longest path in the
DAG using traditional methods such as the Floyd or Dijkstra
algorithm would generally incur a large computation time
overhead. Also, the critical path will change frequently with
the emergence of new tasks. Therefore, we can transform the
problem of finding the critical path into marking the critical-
ity of each task. A task with a greater impact on Ψ has higher
criticality, and we use γi,j to denote the criticality of task Ti,j.
Next, we introduce the method for calculating the criticality
of tasks.

Tasks without successors are called exit tasks, such as T3,
T4, and T6 in Figure 3, and the path from a task to an exit
tasks is called an influence path. As shown in Figure 3, T2
has two influence paths such as (T2 ⟶ T4) and
(T2 ⟶ T5 ⟶ T6). The length of an influence path of T2
is the sum of CPU cycles required by tasks on that path
and indicates the amount of calculation affected by T2. We
reason that a task that affects a greater amount of calculation
is more critical, so we define the criticality of a task as the
length of its longest influence path.

On this basis, we propose a BCN method for calculating
the length of a task’s longest influence path and marking the
task’s criticality with less time overhead. The criticality of an
exit task is the number of CPU cycles that it requires. The
criticality of a nonexit task depends on its successor tasks
and is calculated as

γi,j = ci,j +max γi′ ,j′ ,
Ti′ ,j′ ∈ Pi,j:

ð13Þ

In this way, we can mark the criticality of all tasks. When
IoT devices generate new tasks (e.g., T7), thereby changing
the task topology, the BCN method can update the criticality
of affected tasks with a small overhead. As an example in
Figure 4, T7 is generated and added to the task topology,
thereby affecting its predecessor tasks. Therefore, the BCN
method recalculates the criticality of T4 by means of Equa-
tion (13). In this way, the criticality of the other affected
tasks (T1, T2), as indicated by the arrows in Figure 4, is
updated.

4.2. CTF Algorithm. Based on the criticality of tasks, we pro-
pose the CTF algorithm. In a dynamic MEC system, the CTF
algorithm will monitor the tasks’ criticality in real time and
find the optimal offloading position and moment for each
task to minimize Ψ. The pseudocode of the CTF algorithm
is shown in Algorithm 1 and has four stages.

(1) State division

First, the CTF algorithm collects information about all
the tasks and divides them (line 1) according to the following
three states.

(1) Waiting state: a task whose predecessor tasks have
not been completed

(2) Ready state: a task whose predecessor tasks have
been completed but have not been offloaded

(3) Computing state: a task that has been offloaded and
is now computing

Correspondingly, the CTF algorithm generates three
types of task queues: the waiting queue, the ready queue,

T1

T2

T4

T5

T3

T6

Figure 3: Example of topological diagram of tasks.

T1

T2

T4

T5

T7

T3

T6

Figure 4: A new task is added to the topological diagram of tasks.
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and the computing queue. As shown in Figure 5, tasks gen-
erated by IoT devices are first put into the waiting queue.
After all its predecessors have been completed, a task is
moved from the waiting queue to the ready queue. When
its offloading moment comes, a ready task is offloaded for
computing and then put into the computing queue. Finally,
the computation results of tasks are obtained. After the tasks
have been divided into the three states, the CTF algorithm
uses the BCN method to mark their criticality (line 2).

(2) Sorting of ready tasks

Because waiting tasks are not yet ready for computing
and computing tasks have been offloaded, we only need to
determine when and where the tasks in the ready queue
should be offloaded. First, the CTF algorithm sorts the tasks
according to their criticality (line 3). Based on the principle
of critical tasks first, the CTF algorithm decides the offload-
ing positions and moments for critical tasks first and then
for other tasks. If two tasks choose the same edge server,
the one with the higher criticality is offloaded first, and the
other tasks must wait.

(3) Deciding on task offloading

In the process of computation offloading, the CTF algo-
rithm calculates the offloading and finishing moments of the
task on each edge server or locally and chooses the position
with minimized finishing moment as the final result. Next,
using Ti,j as an example, we introduce how the CTF algo-
rithm calculates the offloading and finishing moments on
edge servers (taking Sk as an example) for ready tasks at time
tnow (lines 5–8). The detailed calculation process can be
divided into the following three cases.

Case 1. Sk is idle, and no more-critical tasks have chosen it.
In this case, task Ti,j can be offloaded directly; the offloading

moment on Sk is STk
i,j = tnow, and Ti,j is calculated after it

arrives on the edge server, as in Figure 6. Therefore, the fin-
ishing moment of Ti,j on Sk is FT

k
i,j = tnow + tk,Ui,j + tk,Ci,j .

Case 2. A task is being executed on Sk but no more-critical
tasks have chosen it. As shown in Figure 7, we suppose that
Ta,b is the task being executed on Sk. We calculate the off-

loading moment of Ti,j as STk
i,j = FTk

a,b − tk,Ui,j . Therefore,
Ti,j can be calculated as soon as it arrives at Sk, and its finish-

ing time is FTk
i,j = FTk

a,b + tk,Ci,j .

Case 3. A task is being executed on Sk but some more-critical
tasks have also chosen it. Although task Ta,b is being exe-
cuted, multiple more-critical tasks have selected Sk, so Ti,j
must wait for those tasks to complete before it can be exe-
cuted on the edge server (Figure 8). We use φi,j to represent
this more-critical task set. The finishing moment of task Ti,j
is calculated as

FTk
i,j = FTk

a,b + 〠
Ti ′ , j ′∈φi, j

tk,C
i′ ,j′ + tk,Ci,j , ð14Þ

and the offloading moment of Ti,j is ST
k
i,j = FTk

i,j − tk,Ci,j − tk,Ui,j .
As shown above, the CTF algorithm controls the offload-

ing moments of tasks so that they (i) do not need to wait on
a server, thereby avoiding waiting delay and (ii) are
uploaded separately, thereby avoiding channel interference
from other IoT devices. Therefore, the upload rate of task
Ti,j becomes

rti,k = Bklog2 1 + qigi,k
ϖ

� �
: ð15Þ

Finishing moment on local IoT device: On the local IoT
device, task Ti,j can be calculated directly (line 9), and the

offloading moment is then STl
i,j = tnow and FTl

i,j = STl
i,j + tli,j.

Input:Information about tasks, edge servers, and IoT devices
Output: Offloading strategy with minimized Ψ
1 Put tasks into three types of queues according to task status. Use the BCN method to mark the criticality of tasks. Sort ready tasks
from high to low according to criticality. all tasks Ti,j in ready queue do
2 for all Sk in Sdo
3 Calculate STk

i,j and FTk
i,j on Sk

4 end
5 Choose the edge server with the smallest FTk

i,j Calculate ST
l
i,j and FTl

i,j on local IoT device FTl
i,j < FTk

i,jthen

6 FTi,j = FTl
i,j, STi, j = STl

i,j, ai,j = 0
7 end
8 else
9 FTi,j = FTk

i,j, STi, j = STk
i,j, ai,j = k

10 end
11 end
12 Go back to step 2 when a new task or new ready task is generated.

Algorithm 1: Critical task first (CTF) algorithm.
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After calculating the finishing moments of Ti,j on all
edge servers and locally, the CTF algorithm chooses the off-
loading position with minimized FTi,j, and the offloading
moment is calculated according to the offloading position
(lines 10–15). Therefore, we can obtain the offloading strat-
egy for ready tasks at time tnow .

(4) Updating of offloading strategy

In a dynamic MEC system, the status of tasks changes
over time, thereby decreasing the effectiveness of the offload-
ing strategy. In the following two situations, the offloading
strategy for ready tasks at time tnow may become suboptimal
and require recalculation: (i) IoT devices generate new wait-
ing tasks, thereby changing the task topology and thus the
task criticality; (ii) new ready tasks are added to the ready
queue but the offloading strategy at time tnow does not
account for them.

As an online algorithm, the CTF algorithm updates the
offloading strategy for ready tasks (line 17) in time to ensure
the best effect. After a new waiting task is generated, the CTF
algorithm first uses the BCN method to update the criticality
of the affected tasks and then recalculates the best offloading
position and moment for each ready task. If only new ready
tasks are generated, then the CTF algorithm only needs to
recalculate the offloading strategy for ready tasks.

4.3. Complexity Analysis of the CTF Algorithm. Here, we take
calculating the finishing moments of tasks as the basic calcu-
lation for analyzing the complexity of the CTF algorithm.
Suppose that the MEC system has k edge servers and that
the IoT devices generate n tasks in total, with Q denoting
the number of ready tasks. When deciding the offloading

Compute Compute Compute Compute

Upload

Upload

Upload

Ai

Aj

Am

Sk

tnow

ti
k,

,j
u ti

k,
,j
c

Figure 8: Third case of the calculation.

Table 3: Experimental parameters.

Parameter Value

Base-station bandwidth 20MHz ± 20%
Computing capability of edge servers 10GHz ± 20%
Computing capability of IoT devices 1GHz ± 20%
Transmission power of IoT devices 100mW± 20%
Distance from IoT device to each server 20–50m

Pass loss factor 4

Task data volume 1000 kB ± 50%
No. of CPU cycles required for task 1000–5000 megacycles

Background noise −100 dBm

Generate task Predecessor
task completed

Task

Task

Task

Task Task Task

Task

Task

Offload Finish

Result

Task

Task

Waiting Ready Computing

Figure 5: Transformation of the three task states.
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Figure 6: First case of the calculation.
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Figure 7: Second case of the calculation.

9Wireless Communications and Mobile Computing



100

80

60

40

20

0

ψ
 (s

)

50 100 150 200

Number of tasks

Edge server: 15 IoT device; 30

CTF
Random

FCFS
DEFO

(a) Ψ for different numbers of tasks (4 algorithms)

0

2

4

6

8

10

12

14

ψ
 (s

)

50 100 150 200

Number of tasks

Edge server: 15 IoT device: 30

CTF
DEFO

(b) Ψ for different numbers of tasks (2 algorithms)

100

80

60

40

20

0
14 16 18 20 22 24 26 28 30

ψ
 (s

)

Number of IoT devices

Edge server: 15 Task: 200

CTF
Random

FCFS
DEFO

(c) Ψ for different numbers of IoT devices (4 algorithms)

Edge server: 15 Task: 200

14

12

10

8

6

4

2
14 16 18 20 22 24 26 28 30

Number of IoT devices

CTF
DEFO

ψ
 (s

)

(d) Ψ for different numbers of IoT devices (2 algorithms)

Figure 9: Continued.

10 Wireless Communications and Mobile Computing



positions of ready tasks, the CTF algorithm calculates the
finishing moment of the ready task on each edge server
and locally, so it does k + 1 basic calculations. Therefore,
finding the offloading strategy for all ready tasks requires
Q × ðk + 1Þ basic calculations.

In the worst case, tasks are generated one at a time and no
ready tasks are executed. Therefore, every time a new task is
generated by an IoT device and put into the ready queue, the
CTF algorithm updates the offloading strategy of all ready
tasks. The number of tasks in the ready queue increases grad-
ually from 1 to n, thereby requiring ð1 + 2+,⋯ ,+nÞðk + 1Þ
= ððn2 + nÞ/2Þðk + 1Þ basic calculations in total.

As analyzed above, in a dynamic MEC system contain-
ing k edge servers, the CTF algorithm offloads n tasks and
requires ððn2 + nÞ/2Þðk + 1Þ basic calculations at most. In
actual situations, tasks are rarely generated one at a time,
and the number of tasks in the ready queue decreases with
offloading. Therefore, the actual number of calculations is
much less than ððn2 + nÞ/2Þðk + 1Þ. Every time an IoT device
generates a new task, the CTF algorithm requires only Q ×
ðk + 1Þ basic calculations. However, in some other methods
(e.g., noncooperative game methods, genetic algorithms),
once a new task is generated, the offloading strategy for all
tasks must be recalculated, and the process of iterative con-
vergence is very complicated, thereby generating a large time
overhead.

5. Experiments and Evaluation

In this section, we report simulation experiments conducted
to assess how the CTF algorithm performs with static and
dynamic MEC systems. We also compare the CTF algorithm
with the DEFO algorithm [31] and two other classic algo-
rithms, i.e., the random algorithm and the first-come first-
served (FCFS) algorithm. The random algorithm chooses
offloading positions and moments randomly for tasks,

whereas in the FCFS algorithm, tasks that are generated first
are sent to the nearest edge server and executed first. The
design of the simulation experiments and analysis of the
results are shown below.

5.1. Experimental Settings. The simulation experiments
involved a multiuser and multiserver MEC system with the
parameter settings given in Table 3. The channel bandwidth
of each base station was 20MHz ± 20%, and the computing
capability of each edge server was 10GHz ± 20%. The com-
puting capability of the IoT devices was 1GHz ± 20%, and
the transmission power of each IoT device was 100mW±
20%. Considering the mobility of IoT devices, the distance
l between an IoT device and an edge servers was 20–50m
and changed continuously. The channel gain gi,k from Ai

to Sk is gi,k = lα, where α is the pass loss factor, and we set
α = 4. For tasks generated by IoT devices, the task data vol-
ume was 1000 kB ± 50%, and the number of CPU cycles
required by a task was 1000–5000 megacycles. The back-
ground noise was −100dBm, and the dependencies among
tasks were generated randomly.

5.2. Effects of Different Algorithms with Static MEC System.
Here, we begin by assessing the performances of the four
algorithms with a static MEC system without generating
new tasks. To explore how different factors (numbers of
tasks, IoT devices, and edge servers) influence the algo-
rithms, we conducted simulation experiments in the follow-
ing three scenarios.

(1) MEC system with different numbers of tasks

In this experiment, we studied how different task num-
bers affect Ψ. To prevent the influence of other factors, we
set 15 edge servers and 20 IoT devices. The number of tasks
in the MEC system was 30 initially and then was increased
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Figure 9: Effects of different algorithms with a static MEC system.
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gradually to 200. TheΨ of the offloading strategies generated
by the four algorithms varied with the task number, and the
results are shown in Figures 9(a) and 9(b).

Figure 9(a) shows that as the number of tasks increases,
the computation resources become insufficient, and the Ψ
values of the four algorithms increase constantly. In particu-
lar, the Ψ growth rates of the FCFS and random algorithms
are very high, and their Ψ values are much higher than those
of the CTF and DEFO algorithms. For clarity, we plot the
results of the CTF and DEFO algorithms separately in
Figure 9(b). The CTF algorithm performs better when facing
a different number of tasks, and its Ψ values are only
approximately half of those for the DEFO algorithm, which
shows that the CTF algorithm adapts well to the MEC sys-
tem with more tasks.

(2) MEC system with different numbers of IoT devices

IoT devices are the sources of tasks in the MEC system,
so it is necessary to study how their number influences Ψ.
In this experiment, we set 15 edge servers. Because task
number is related to the number of IoT devices, we set the
former as six times the latter. Starting with a MEC system
with only 15 IoT devices, we gradually increased that num-
ber to 30, and the results of the experiment are shown in
Figures 9(c) and 9(d).

As their number increases, IoT devices compete more
fiercely for computing resources, thereby increasing the task
execution delay. The Ψ values of the four algorithms con-
tinue to increase as the number of IoT devices is increased.
However, the experimental results show that the Ψ values
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for the CTF algorithm are 30% of those for the DEFO algo-
rithm when the number of IoT devices exceeds 18 and
remain low for the MEC system with different numbers of
IoT devices.

(3) MEC system with different numbers of edge servers

As an important computing resource in a MEC system,
the number of edge servers has a significant effect on the
time to complete all tasks. Therefore, we explore how the
number of edge servers influences Ψ. In this experiment,
there were 30 IoT devices and 200 tasks. The number of edge
servers was 5 initially and was increased gradually to 20, and
the results of the experiment are shown in Figures 9(e) and
9(f).

The results show that Ψ can be reduced significantly by
having more edge servers. In particular, the Ψ values for
the random, FCFS, and DEFO algorithms decrease signifi-
cantly. By contrast, the CTF algorithm performs better and
is more stable in a MEC system with different numbers of
servers.

From the three simulation experiments above, we con-
clude that the CTF algorithm can reduce Ψ significantly in
different static MEC systems.

5.3. Effects of Different Algorithms with Dynamic MEC
System. Here, we report simulation experiments conducted

to assess the performances of the four algorithms with a
dynamic MEC system. To build such a system, we added
new tasks continuously to simulate the process of IoT
devices generating tasks while the algorithms are running.
First, we constructed an initial MEC system with 15 edge
servers, 30 IoT devices, and 200 tasks. During the execution
of the algorithms, we added 20 new tasks to the MEC system
in each round. As the number of rounds increased, the MEC
system became more dynamic, and the results of the exper-
iment with different numbers of rounds are shown in
Figure 10.

The enhanced dynamics of the MEC system decrease the
effectiveness of the offloading strategy. Figure 10(a) shows
that as the number of rounds increases, the Ψ values of each
algorithm increase significantly, but those for the CTF algo-
rithm are lower, as is their growth rate. In particular, the Ψ
values for the CTF algorithm are only 60% of those for the
DEFO algorithm (Figure 10(b)). In addition to Ψ, the aver-
age task delay is also affected. Figure 10(c) shows that as
the number of rounds increases, so does the average task
delay. However, the average task delay with the CTF algo-
rithm is significantly lower than that with the other three
algorithms, which means that the CTF algorithm adapts bet-
ter to the dynamic MEC system.

In a dynamic MEC system, the CTF algorithm adjusts
the offloading positions and moments of tasks continuously
to maintain the most effective offloading strategy. Figure 11
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Table 4: Time overhead and Ψ of DEFO and CTF algorithms.

Round 1 2 3 4 5 6 7 8 9 10

Time overhead of CTF (s) 0.81 1.30 1.16 1.19 1.23 1.30 1.43 1.44 1.27 1.38

Time overhead of DEFO
(s)

23.18 30.85 36.42 42.07 60.22 52.93 70.68 105.41 106.22 132.66

Ψ of CTF (s) 6.22 8.07 10.71 10.79 12.01 12.50 15.18 16.76 18.47 20.60

Ψ of DEFO (s) 7.32 11.05 13.56 18.45 20.86 s 22.03 25.45 28.24 30.93 34.91
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shows the numbers of changes in offloading positions and
moments of tasks made by the CTF algorithm in different
rounds. As the number of rounds increases, the MEC system
becomes more dynamic, and the CTF algorithm adjusts the
offloading strategy frequently to ensure the best results.

An online algorithm incurs a short time overhead to
update the offloading strategy in a dynamic MEC system.
Here, we study the time overhead of the DEFO and CTF
algorithms with the dynamic MEC system. The DEFO and
CTF algorithms were both programmed in Python on a
Windows 10 platform and tested in an Intel 2.60GHz,
16GB memory environment. We measured the time over-
head of running the two algorithms in different rounds, as
given in Table 4. Clearly, the time overhead of the CTF algo-
rithm under different rounds is short and stable. With 10
rounds, the time overhead of the DEFO algorithm is 100
times that of the CTF algorithm. Compared with Ψ, the time
overhead incurred by the CTF algorithm is acceptable,
whereas that for the DEFO algorithm is too long to deal with
the dynamic MEC system. Therefore, the CTF algorithm can
update the offloading strategy in the dynamic MEC system
with less time overhead and deliver better results.

6. Conclusion

Herein, we studied the problem of temporal and positional
computation offloading in a dynamic MEC system with
dependent tasks. Unlike previous studies, we also considered
the impact of dependencies on the offloading positions of
tasks and calculated the offloading moments of tasks accu-
rately to reduce channel interference. To cope with dynamic
tasks, we proposed the CTF algorithm, which updates the
offloading strategy in real time to ensure the most effective
computation offloading. Simulation experiments were con-
ducted, and the results showed that the CTF algorithm
reduces significantly the time to complete all tasks and
incurs less time overhead.

Data Availability

The simulated data used to support the findings of this study
are included within the article, In the fifth chapter of our
manuscript, “Experiments and Evaluation,” we introduce
in detail how to generate the simulation data needed for
the experiment. Any authors can reproduce the experiment
according to our data generation method, so we do not give
additional experimental data.
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