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1  | INTRODUC TION

To the extent ecological strategies of species can be captured via 
measurable traits, this makes comparisons possible at global scale. 
For vascular plants on land, major dimensions of strategy variation 
have been described through traits (e.g., Díaz et  al.,  2016), and 
responses to competition have been generalized across different 
vegetation types through traits (e.g., Kunstler et al., 2016). The pos-
sibility of a trait-based ecology for bacteria has been advocated by 
several research groups (Fierer et al., 2007, 2014; Hall et al., 2018; 
Ho et al., 2017; Krause et al., 2014; Litchman et al., 2015; Litchman 
& Klausmeier,  2008; Malik et  al.,  2020; Wood et  al.,  2018), but 
up to the present has taken the form of discussing concepts or 

interpreting particular study situations. Based on synthesis of 
quantitative and phenotypic trait data across bacteria and archaea 
as a whole (Madin et  al.,  2020), we here assess correlation pat-
terns among some major traits and consider what they imply for 
ecological strategies. By “as a whole,” we mean spanning all clades 
and habitats, but excluding species that have not been brought 
into culture. For species known only from metagenomic assem-
bly, cell sizes and maximum growth rates are not known; hence, 
they are not included. It is possible that trait correlation patterns 
among not-yet-cultured species may prove different, but since 
phenotypic trait data are not yet available for them, that ques-
tion cannot be addressed at present. For the main-text narrative, 
we have excluded also mycoplasmas and other taxa specialized to 
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Abstract
Among bacteria and archaea, maximum relative growth rate, cell diameter, and ge-
nome size are widely regarded as important influences on ecological strategy. Via the 
most extensive data compilation so far for these traits across all clades and habitats, 
we ask whether they are correlated and if so how. Overall, we found little correla-
tion among them, indicating they should be considered as independent dimensions 
of ecological variation. Nor was correlation evident within particular habitat types. A 
weak nonlinearity (6% of variance) was found whereby high maximum growth rates 
(temperature-adjusted) tended to occur in the midrange of cell diameters. Species 
identified in the literature as oligotrophs or copiotrophs were clearly separated on 
the dimension of maximum growth rate, but not on the dimensions of genome size 
or cell diameter.
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make their living inside eukaryote cells. Versions including these 
taxa are shown in Appendix Figures A1-A4.

In the present paper, we focus on cell diameter, genome size, 
and maximum growth rate. These traits are widely thought to have 
important roles in ecological strategy among bacteria and archaea 
(reviewed briefly below), and they are available across a reason-
ably wide range of species. Major habitat groups are considered 
as a potential influence. Relationships to aerobic versus anaero-
bic metabolism are discussed elsewhere (Nielsen et  al.,  2021). 
The question addressed here is how these three quantitative 
traits correlate with each other across species. Consider the fol-
lowing two ends of a spectrum of possibilities. At one end, the 
three traits might vary independently, meaning that at any given 
level for one, a wide range of values for the others can be found. 
This might be expected on the basis that each is capable of evolv-
ing independently of the others. At the other end of a spectrum 
of possibilities, all these traits might be coordinated with the 
oligotrophy–copiotrophy spectrum generally regarded as import-
ant in bacterial ecology. If oligotrophy favors small cells, small 
genomes and slow maximum growth rate, and if the oligotrophy–
copiotrophy spectrum is a major influence on variation across 
species, then we would expect all these traits to be distinctly cor-
related across species. Further if such a correlation were present, 
then a subsidiary question would be whether it was clearly evident 
within habitats, or whether it might take the form mainly of dif-
ferences between relatively oligotrophic habitats such as pelagic 
water versus relatively copiotrophic habitats such as waste water.

We first summarize briefly what is known about each of the 
three quantitative traits, then turn to their relationships to copiot-
rophy and oligotrophy.

1.1 | Cell size

Recorded mean cell radial diameter varies about one order of mag-
nitude across species, running mostly between about 0.2 and 3 μm. 
Cell volume varies more widely, being the cube of a linear dimension 
and also due to the diversity of cell morphologies. Here, we adopt 
radial diameter as our main descriptor of size. It captures surface 
area to volume relations effectively both for spheroidal cocci and for 
rod-shaped bacilli, the two most common shapes.

Potential diffusion of substrate toward and into the cell, per 
cell volume, increases steeply as cells become smaller, to −2 power 
of radius (Fenchel et  al.,  2012; Fiksen et  al.,  2013; Jumars,  1993; 
Madsen,  2008). This means that smaller cells can sustain a given 
consumption rate per cell volume from lower ambient substrate 
concentrations. It has been seen as a reason why small cells should 
be favored in oligotrophic settings (e.g., Madsen,  2008; Schulz & 
Jorgensen, 2001).

Lower limits to cell diameter are thought to be set by costs of 
cell wall and membrane construction becoming larger at the expense 
of investment in synthetic and metabolic machinery. For example, 
a calculation by Raven (1994) suggested that boundary membranes 

reach more than 30% of cell dry mass by the time a spherical cell 
becomes as small as 0.5 μm radius.

Cell sizes are known to adjust plastically within cell lineages in 
response to substrate supply (Lever et al., 2015), with volumes de-
creasing up to 10-fold after 28 days of starvation conditions com-
pared with growth conditions. Available cell size measurements 
have nearly all been made under laboratory growth conditions. 
Measurements can be considered standardized in this respect, and 
should capture differences across species, though not necessarily 
reflecting actual field cell sizes.

1.2 | Genome size

Variation in genome size across bacteria and archaea reflects 
mainly the number of different coding genes, rather than noncod-
ing sequence or genes found in multiple copies (Konstantinidis 
& Tiedje,  2004; and this was true in our dataset also, Figure  A1). 
Genome size can therefore be thought of as capturing ecologi-
cal strategy variation along a versatility dimension (Guieysse & 
Wuertz,  2012). It is expected to reflect the range of different re-
sources that can be transported or metabolized, together with flex-
ibility in responses to different circumstances. Consistent with this 
interpretation, genome size is correlated with the proportion of the 
genome occupied with receiving internal and external signals and 
using those to modify gene expression, and also with aerobic me-
tabolism and with sporulation (Nielsen et al., 2021).

Much discussion has focused on genome reduction (Giovannoni 
et  al.,  2014; Swan et  al.,  2013). This takes two disparate forms 
(Giovannoni et  al.,  2014). Species that grow inside eukaryote cells 
or otherwise in very intimate association often have come to rely on 
their associate to provide metabolic products and the correspond-
ing pathways are no longer present in their own genome. Small ef-
fective population sizes increase the importance of drift relative to 
selection (Bobay & Ochman, 2018), making more genes effectively 
neutral and prone to be eliminated. In contrast, where effective 
population sizes are large and resources low, selection can minimize 
resources required for replication. The pelagic taxa Prochlorococcus 
and Pelagibacter are exemplars.

1.3 | Maximum growth rate

Maximum growth rate is the potential relative rate of increase under 
favorable growth conditions, μmax in the Monod equation. Like meas-
urements for cell size, it should be thought of as a bioassay that cap-
tures differences across species, not as a typical field observation. 
The growth temperatures adopted for culture vary across species 
and growth rates tend to be faster at higher temperatures. Here, we 
use a temperature-adjusted maximum growth rate.

Also of interest, and investigated in appendices, is ribosomal RNA 
operon copy number (RRN). This is a contributor to maximum growth 
rate and is quite widely used as a proxy for it (Nemergut et al., 2016; 
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Niederdorfer et al., 2017; Valdivia-Anistro et al., 2016). However, re-
ported correlations between RRN and maximum growth correspond 
to only moderate r2 values in the range .15–.35 (Nielsen et al., 2021; 
Vieira-Silva & Rocha, 2010). Both maximum growth rate and RRN are 
expected to be most strongly under selection in lifestyles where re-
sources become episodically available and there is a race to convert 
them into population. For example, Li et al. (2019) showed that RRN 
was not correlated with growth rates in soil, but became correlated 
with growth rates following glucose addition.

Larger RRN allows species to build up ribosome numbers faster 
and perhaps to maintain larger numbers. However, the more ribo-
somes produced or maintained, the less protein is available for meta-
bolic machinery that would use substrate more completely (Flamholz 
et  al.,  2013; Molenaar et  al.,  2009; Polz & Cordero,  2016; Roller 
et  al.,  2016). Accordingly, high RRN is associated with a rate-yield 
trade-off, whereby faster-multiplying populations are less efficient 
in converting substrate into cell material (Polz & Cordero, 2016). The 
rate-yield trade-off occurs also as plastic response, with gene ex-
pression shifting to economize on possible downstream mechanisms 
of energy use. In summary, RRN and potential rate of increase are 
correlated, but not identical.

Overall, enough is known to feel confident that cell size, genome 
size, maximum growth rate and RRN are each an important influence 
on the ecology of bacterial and archaeal species.

1.4 | Traits in relation to the oligotrophy–
copiotrophy spectrum

A strategy spectrum widely regarded as important in microbial ecol-
ogy runs from oligotrophy, coping with low resource supply, to co-
piotrophy, the capacity to take advantage of rich resource supply 
(Fenchel et al., 2012; Fierer et al., 2007; Madsen, 2008). This spec-
trum is expected both on a within-habitat and a between-habitat 
basis. Between habitats, some environments such as deep aquifers 
and the pelagic waters of central gyres clearly offer much lower 
levels of resource supply than (say) wastewater treatment plants. 
Within habitats, opportunity for many heterotrophic bacteria and 
archaea arises in the form of successions initiated by an injection of 
substrate, via (say) death of a zooplankter or production of a fecal 
pellet. Initial occupancy of such a resource is expected to favor co-
piotrophs that capture a large proportion by rapid multiplication. As 
resource concentrations become depleted, the competitive balance 
is expected to shift to oligotrophic taxa that can sustain growth from 
lower substrate concentrations.

The strongest expectation is that oligotrophs will have slower 
maximum growth rates than copiotrophs and that these will be asso-
ciated with higher yields and lower RRN. It has also been quite widely 
argued that oligotrophy should be characterized by smaller cell 
sizes (Giovannoni et al., 2014; Lauro et al., 2009; Lever et al., 2015; 
Poindexter, 1981) and smaller genome sizes (Fierer, 2017; Giovannoni 
et al., 2014), although Poindexter (1981) reasoned that oligotrophs 

needed to extract all possible energy from substrate, which would 
often require them to have multiple pathways and to be aerobic. 
Some have sought to apply the competitor–stress tolerator–ruderal 
(CSR) strategy triangle from plant ecology to microbes, with the S di-
mension of this scheme corresponding to oligotrophy (Fierer, 2017; 
Krause et al., 2014). These treatments similarly suggest small cell size 
and small genomes may tend to be associated with oligotrophy.

So then, if these expectations for oligotrophy are correct, and if 
also the oligotroph to copiotroph spectrum is a substantial influence 
on variation across bacterial and archaeal species, we would expect 
to find correlation across species among small cell size, small genome 
size, slow maximum growth rate, and low RRN. At the other end of 
the spectrum of possibilities, these traits might vary more or less 
independently. This would mean that they operated separately as in-
fluences on ecological strategy, and all combinations have been able 
to emerge during the course of prokaryote evolution.

We note that DeLong et al. (2010) and Kempes et al. (2012, 2016)
have argued that maximum growth rate, genome size, and cell size 
are observed to be positively correlated across species. Their data 
are compared with ours in Appendix  B. Briefly, the differences in 
conclusions trace mainly to which species are included and how 
many.

2  | METHODS

The species-by-traits dataset used here is produced by a scripted 
workflow, described in depth by Madin et al. (2020), that reproduc-
ibly merges 26 existing datasets. Most records in the datasets are 
at the level of genotypes or 16S rRNA phylotypes. The workflow 
(a) prepares datasets to be merged; (b) combines datasets and con-
denses equivalent traits into columns; and (c) condenses rows into 
species based on the GTDB taxonomy (Parks et al., 2018) (https://
gtdb.ecoge​nomic.org). This taxonomy applies the conventional cri-
terion of average nucleotide identity ≥96.5% for grouping entities 
into species.

Where there are multiple records for a species, these are con-
densed down to a single row. The records are typically averaged 
(for quantitative traits) or a majority rule is applied (for categorical 
traits). The rules are specified in more detail below for selected traits 
and in Madin et al. (2020). During this process, standard deviations 
have been calculated and outliers identified. A substantial number 
of records have been corrected, or sometimes removed as not cred-
ible. A table of these corrections is implemented by the code. The 
number of records for individual species ranges from >10,000 for 
Staphylococcus aureus down to 1 for many species. Among the traits 
considered here, maximum growth rate has the least coverage at 618 
species, but this is still an advance over the 214 species in previous 
compilations (Vieira-Silva & Rocha, 2010).

Our aim was to develop coverage of traits and their correla-
tions as widely as possible across bacteria and archaea. We have 
condensed to species level as a working compromise, intended to 

https://gtdb.ecogenomic.org
https://gtdb.ecogenomic.org
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capture ecologically meaningful variation without letting the dataset 
be unduly dominated by a few species with thousands of records 
each (e.g., Staphylococcus aureus, Salmonella enterica, Streptococcus 
pneumoniae). Because our focus has been on phenotypic traits such 
as cell diameter and potential rate of increase, the data come largely 
from species that have been brought into culture. These may tend 
to have larger genomes and faster potential growth rates and more 
often to be aerobic, compared with the many uncultured species 
(Fierer,  2017; Giovannoni et  al.,  2014; Nayfach & Pollard,  2015; 
Solden et al., 2016). However, the species included here do span a 
full range of possibilities, including extreme oligotrophy, very small 
genome sizes, and very slow potential growth rates.

For purposes of the main text, we have excluded species that 
live inside the cells of eukaryotes, and also mycoplasmas as a group. 
These are well known to have strongly reduced genomes for rea-
sons not connected to oligotrophy, and their maximum growth rates 
must be conditioned by relations with their host as well as by their 
uptake and conversion of resources. There were 35 such species in 
our dataset with both genome size and cell diameter, and 27 such 
species with both genome size and maximum growth rate. They are 
included in Figures A1–A3.

We have built a list of species (Table A1) identified in the liter-
ature as definite oligotrophs or definite copiotrophs, in order to be 
able to position these in the trait-space figures. To avoid circularity, 
we have not applied criteria of our own to the question whether they 
are oligotrophs or copiotrophs, but have adopted the opinions of the 
authors of the papers.

Because maximum growth rates tend to be faster for spe-
cies cultured at higher growth temperatures, we have used here 
temperature-adjusted maximum growth rates, which are resid-
uals from the regression fit log10(max growth)  =  0.0105(growth 
temp) − 1.2003, r2 = .11. In other words, these are deviations above 
or below the expected mean max growth at their growth tempera-
ture, in log10 units. The basis for adopting this particular temperature 
adjustment is explained further at Appendix C.

The data reported here are survey or correlative. As is well known, 
correlation unlike manipulative experiments cannot prove causation, 
because of the likelihood of cross-correlation with other variables, 
including those unmeasured and unconsidered. Accordingly, the 
statistics presented should be interpreted as quantifying variation 
and correlation across species, rather than as significance tests of 
hypotheses about causation. For the major correlations, we pro-
vide also versions partialled for phylogeny, using phylogenetic gen-
eralized least squares (PGLS) via phylolm (Tung Ho & Ané, 2014). 
Phylolm v2.6.1 was installed from https://github.com/lamho​86/
phylolm. The phylogenetic tree adopted corresponded to GTDB tax-
onomy with seven levels (superkingdom, phylum, class, order, family, 
genus, and species), star phylogeny at each node, and unit branch 
lengths. GTDB taxonomy was adopted because it is monophyletic, 
so far as can be determined from the 120 protein-coding genes used, 
and because it places taxonomic ranks at a consistent relative dis-
tance from the tree root. Partialling for phylogeny via PGLS has the 
effect of measuring correlation of trait divergences averaged across 

the ensemble of nodes. Compared to correlation across present-day 
species, it downweights differences between major clades.

3  | RESULTS

Across culturable species where records are available, there was lit-
tle to no correlation (2% of variation or less) among temperature-
adjusted maximum growth rate, cell radial diameter, and genome size 
(r2 values in Table 1, Figure 1a–c). The same was true of correlations 
partialled for phylogeny (Table A2).

Although there was little overall correlation between maximum 
growth rate and cell radial diameter, there was some evidence for 
a particular nonlinearity, with the fastest growth rates tending to 
occur in the midrange of cell diameters (Figure 2). If indeed lower 
and upper limits to cell size coincide with disadvantage, at the small-
diameter end from increasing relative allocation to cell envelope, and 
at the large-diameter end from decreasing diffusive uptake per cell 
volume, it would make sense that very fast growth rates were only 
achievable in the midrange of sizes. Note, however, that slow max-
imum growth rates were also common in the midrange of cell sizes.

A more complete search for interactions or nonlinearities is de-
scribed in Table 2. The most substantial contributions to R2 were for 
a nonlinear response to cell diameter (model 4 in Table 2, ca. 6%) and 
for habitat (model 6, ca. 10%). The best model overall by AIC (model 
7) simply had these two effects additive, and R2 = 0.167. This is the 
model fitted in Figure 2. Providing for interaction between the re-
sponse to diameter and habitat (model 8) and for interactions of all 
these with genome size (model 9) did not increase R2 commensurate 
with the df invoked, and AIC deteriorated.

Other points of interest in Figure 1, besides the absence of sub-
stantial correlation across species, are as follows. First, correlation 
was absent also within major habitat types (color scheme in Figure 1, 
and the cell size–genome size graph further separated into habitats 
in Figure 3). There was no indication of oligotrophy-related correla-
tions within particular habitats such as marine waters, with these 
then being obviated by differences between different major habi-
tats. Second, certain species are indicated that have been explicitly 
identified in the literature as either oligotrophs (triangle symbols) 
or copiotrophs (square symbols) (listed in Table  A1). These were 
rather clearly separated on the dimension of maximum growth rate, 
but not on the dimensions of genome size or cell radial diameter. 
Third, species from thermal environments tended to smaller genome 
sizes (Figure 1a,b), as observed previously (Lear et al., 2017; Sabath 
et al., 2013; Sauer & Wang, 2019; Sorensen et al., 2019). Fourth, the 
density contours in Figures 1 and 3 were more or less circular. This 
indicates little interaction between the two traits. The corners of 
the trait space are not unachievable, but are thinly occupied simply 
because of low incidence in each dimension.

The independent variation among maximum growth rate, ge-
nome size, and cell diameter was not much affected by including 
species that make a living within eukaryote cells (Figures A2–A4; dis-
cussed further in Appendix B). Archaea tended to smaller genomes 

https://github.com/lamho86/phylolm
https://github.com/lamho86/phylolm
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than bacteria, but correlation was equally absent within each domain 
(Figures A5–A7).

Ribosomal RNA operon copy number RRN was indeed cor-
related with temperature-adjusted maximum growth rate (Table 1, 

Figure A8), as expected and as previously shown from smaller data-
sets without temperature adjustment (Klappenbach et  al.,  2000; 
Vieira-Silva & Rocha,  2010). RRN was also correlated with ge-
nome size (Table 1, Figure A9), with large RRN not being found in 

Trait Genome size Cell radial diameter
rRNA operon 
copy number

Temperature-adjusted max 
growth rate

.00425 (n = 618) .000456 (n = 519) .303 (n = 388)

Genome size .0121 (n = 3,466) .138 (n = 2,726)

Cell radial diameter .0225 (n = 925)

TA B L E  1   Correlation r2 among the 
four traits considered here, all log-scaled. 
Number of species for each trait pair given 
next to the correlation

F I G U R E  1   (a) Temperature-adjusted maximum growth rate in relation to genome size across species. (b) Temperature-adjusted maximum 
growth rate in relation to cell radial diameter across species. (c) Genome size in relation to cell radial diameter. Dashed lines indicate density 
contours. In the habitat classification (color scheme), fresh and marine waters include both water and sediment. Host-associated species 
are attributed to endotherm or to ectotherm hosts if they multiply within the host body or gut, or to “other” if they grow on the host's 
external surface or are associated with plants, algae, or fungi or have no habitat attributed. Species identified in the literature (Table A1) as 
copiotrophs or oligotrophs are denoted by squares and triangles, respectively
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association with small genome sizes. Species identified in the liter-
ature as copiotrophs (squares in Figures A8 and A9) rather consis-
tently had higher RRN than identified oligotrophs (triangles in the 
figures), as they did faster temperature-adjusted maximum growth 
rates. RRN is also a quantity that is available across more species 
than maximum growth rates. However, RRN, like maximum growth 
rate, was hardly correlated with cell radial diameter (Figure A10).

4  | DISCUSSION

4.1 | Individual relationships

Although discussion of genome reduction often assumes that shed-
ding genes will be an advantage unless they confer some definite 
benefit, it has been known for some time that maximum growth 
rate is not faster in species with smaller genomes (Vieira-Silva & 
Rocha, 2010). Figure 1 confirms this result with expanded coverage. 
This is possible because fast-doubling species commonly operate 
more than one set of bidirectional replication forks at the same time 
(Vieira-Silva & Rocha, 2010). This in turn has consequences for ge-
nome architecture. Genes closer to the origin are expressed in more 
copies at any given time, and it appears that genes are rearranged 
so that these distance-dosage effects are beneficial, particularly for 
genes coding for rRNA, RNA polymerase, ribosomal protein, tRNA, 
and ubi-tRNA. There are advantages to high expression of these 
genes during rapid growth.

The absence of correlation between genome size and cell radial 
diameter implies either that there is little consistent relationship be-
tween the mass of cell machinery and the radial diameter (in other 
words larger-diameter species tend to have lower-density cyto-
plasm), or that there is little relationship between the genome size 
and the mass of cell machinery, or both of those things. Rod-shaped 
bacteria tended to have slightly larger genomes and slightly smaller 
radial diameters than spheroidal (Figure A11), but with little correla-
tion evident within either shape.

4.2 | Overall conclusions

The principal result emerging has been that genome size and cell radial 
diameter vary across species substantially independently from each 
other and from temperature-adjusted maximum growth rate and RRN. 

F I G U R E  2   Temperature-adjusted 
maximum growth rate in relation to cell 
diameter, with polynomial fits separated 
by habitat. The model (Table 2) accounts 
for about 17% of variance in log temp-
adjusted maximum growth rate in total, 
with habitat contributing about 11% 
and nonlinear response to cell diameter 
about 6%. Coefficients of the model are 
in Table A3. While the models in Table 2 
use only species for which all data are 
available so that AIC is comparable, use 
of all available species for each model 
(Table A4) shows similar patterns

TA B L E  2   Models with successively more terms for predicting 
temperature-adjusted maximum growth rate, showing AIC, multiple 
R2, and associated df

Model AIC R2 df

1. growth ~ cell_diam 700.69 0.000893 384

2. growth ~ genome_size 700.99 0.000099 384

3. growth ~ cell_diam * 
genome_size

698.95 0.0156 382

4. growth ~ cell_
diam + cell_diam^2

679.13 0.0600 383

5. growth ~ genome_
size + genome_size^2

702.85 0.000474 383

6. growth ~ habitat 667.98 0.106 379

7. growth ~ (cell_
diam + cell_
diam^2) + habitat

644.29 0.167 377

8. growth ~ (cell_
diam + cell_diam^2) * 
habitat

654.69 0.196 365

9. growth ~ (cell_
diam + cell_diam^2) * 
genome_size * habitat

679.32 0.232 344

Note: All quantitative variables were log10 scaled. In the model notation, 
the terms after ~ show what predictors are offered, and * instead of 
+ indicates interactions were provided for, as well as additive terms. 
Models shown here use only data rows for which all variables are 
available, so that the AIC values are commensurate. Table S3 shows the 
same models fitted to all available data for each model.
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A wrinkle on this is that it appears especially rapid growth rates are 
not found at the upper and lower edges of the cell diameter range. At 
the lower edge, this may be because cell membranes contribute a large 
fraction of biomass. At the upper edge, it may be because diffusion of 
substrate to the cell surface is slower per cell volume.

A secondary result has been that species identified in the litera-
ture as oligotrophic or copiotrophic are clearly separated along the 
dimension of maximum growth rate or rRNA operon copy number 
(RRN), but not along the dimensions of genome size or cell radial 
diameter. It is no surprise to find that identified oligotrophs are 
strongly separated from copiotrophs along a maximum growth rate 

dimension, since capacity to respond to favorable growth conditions 
is often a criterion people have used to label species as copiotroph 
versus oligotroph. Similarly, RRN is a predictor for the abundance of 
ribosomes produced or maintained, and low RRN is therefore con-
nected to higher yields at the expense of slower rates, and thence to 
being able to sustain populations at low substrate concentrations. In 
the data compiled here, both maximum growth rate and RRN were 
strong predictors of what people have called oligotrophs versus 
copiotrophs.

There have been three previous reports of positive correla-
tion across species between genome size and cell size (DeLong 

F I G U R E  3   Genome size in relation to cell radial diameter, separated by habitat type. Symbols as in Figure 1
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et  al.,  2010; Shuter et  al.,  1983; West & Brown,  2005). DeLong 
et al. also reported positive correlation between maximum growth 
rate and cell size. Differences between their results and ours arise 
partly from their including intracellular parasites (which contributed 
strongly to the small-cell, small-genome, slow-growth end of their 
patterns) and partly from their species coverage being 10- to 20-
fold smaller than ours, details in Appendix B. We believe our results 
are more representative for this reason. In further support, Guittar 
et al. (2019) compiled a dataset from the literature emphasizing (but 
not confined to) species found in infant microbiomes. Across the 
2,223 records in that dataset, correlation between genome size and 
cell diameter was weak at r2 = .0031 (Guittar pers comm).

We consider three possible interpretations for the apparently 
independent variation found among genome size, cell size, and max-
imum growth rate:

a.	 Existing measurements are too noisy
b.	 If not-yet-cultured species could be included then correlation 

would be found
c.	 These three traits are not the decisive ones for copiotrophy and 

oligotrophy; the oligotrophy to copiotrophy spectrum is not a 
major influence on variation across species in these traits

First, how likely is it that the measurements are so noisy that 
no correlation can be expected? Genome size is quite tightly char-
acterized relative to the differences across species. For species 
with 10 or more records, median coefficient of variation was 3% 
(Nielsen et al., 2021). For maximum growth rate, fewer species are 
covered, the numbers are known less precisely, and variation across 
strains within species is hardly ever known. There is uncertainty in 
the actual measurement, and then also there is uncertainty as to 
how closely culture conditions have approached the best possible. 
Nevertheless, reported maximum growth rates range across more 
than three orders of magnitude, from less than 0.01 to more than 
1 per hour. Further, maximum growth rate does increase with RRN 
in the genome (Figure A8; r2 =  .30). This correlation is well estab-
lished, and indeed RRN has quite often been used as a surrogate 
or indicator for potential rate of increase (Nemergut et  al.,  2016; 
Niederdorfer et al., 2017; Roller et al., 2016; Stoddard et al., 2015; 
Vieira-Silva & Rocha, 2010). Given the wide range and this estab-
lished correlation, we believe the estimates for maximum growth 
rate do contain meaningful signal.

Cell radial diameter measurements are typically given as either a 
single number or a range, without specification as to what the range 
represents. We believe the range usually represents a sampling of 
individual cells within a culture, more so than different stages of the 
cell division cycle, different provenances within a species, or differ-
ent growth conditions. We have not thought it possible to estimate 
any form of within-species variation from this. Plasticity within the 
same genotype in response to growth versus starvation conditions 
is considerable (Lever et al., 2015), but measurements will nearly all 
have been taken under favorable growth conditions and standard-
ized to that extent.

In summary, while there is certainly noise in the data, we do not 
believe it is so extreme as to obviate correlations that are there in 
reality.

A second possible interpretation for the apparently independent 
variation found among genome size, cell size, and maximum growth 
rate is that if not-yet-cultured species could be included there would 
be correlation. It certainly seems true that not-yet cultured species 
tend toward smaller genomes (e.g., Nayfach & Pollard, 2015), and it 
is possible that once brought into culture, they will be found also to 
have smaller cells and slower potential rates of increase. While such 
a result would be interesting, it would not really detract from the 
results in Figures 1 and 2. The data available do include species that 
the literature regards as strong oligotrophs as well as copiotrophs, as 
indicated in the figures, and most ideas about the nature of oligotro-
phy have been developed from species brought into culture.

A third possible interpretation is that these traits are not actu-
ally among the principal traits contributing to oligotrophy versus 
copiotrophy. For example, Lauro et al.  (2009) found that no single 
trait was a clear identifier of oligotrophy, and a complex multi-trait 
approach was needed. We think this interpretation is the likeliest 
with regard to cell diameter and genome size. For the compilation 
we have made of species identified in the literature as oligotrophs 
or copiotrophs, maximum growth rate and RRN were indeed rather 
strong predictors. However, cell diameter and genome size were not, 
and were also substantially uncorrelated with maximum growth rate. 
These results suggest future research can usefully focus on devel-
oping stronger ecological interpretation of cell radial diameter and 
of genome size.
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APPENDIX A

SUPPLEMENTARY FIGURE S AND TABLE S

F I G U R E  A 1   Relationship across species between number of different coding genes and total genome size. Ordinary least squares 
regression has r2 of .976 across 3,300 species. In the habitat classification (color scheme), fresh and marine waters include both water and 
sediment. Intracellular species are those making a living inside eukaryote cells. Host-associated species are attributed to endotherm or to 
ectotherm hosts if they multiply within the host body or gut, or to “other” if they grow on the host’s external surface or are associated with 
plants, algae, or fungi. Species without habitat information are also attributed to “other.” Species identified in the literature as copiotrophs or 
oligotrophs (Table A1) are denoted by squares and triangles, respectively

F I G U R E  A 2   Temperature-adjusted 
maximum growth rate in relation to 
genome size across species, including 
intracellular species. 646 species, 
r2 = .0066. Dotted lines are density 
contours. Habitat and copiotrophy–
oligotrophy coding as in Figure A1
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F I G U R E  A 3   Temperature-adjusted 
maximum growth rate in relation to cell 
radial diameter across species, including 
intracellular species. 529 species, 
r2 = .00044. Habitat and copiotrophy–
oligotrophy coding as in Figure A1

F I G U R E  A 4   Genome size in 
relation to cell radial diameter across 
species, including intracellular species. 
3,502 species, r2 = .019. Habitat and 
copiotrophy–oligotrophy coding as in 
Figure A1
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F I G U R E  A 5   Temperature-adjusted 
maximum growth rate in relation to 
genome size across species, showing 
archaea vs bacteria and excluding 
intracellular species. Species identified in 
the literature (Table A1) as copiotrophs or 
oligotrophs are denoted by squares and 
triangles respectively

F I G U R E  A 6   Temperature-adjusted 
maximum growth rate in relation to 
mean cell radial diameter across species, 
distinguishing archaea from bacteria
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F I G U R E  A 7   Genome size in relation to 
mean cell radial diameter across species, 
distinguishing archaea from bacteria

F I G U R E  A 8   Relationship across 
species between ribosomal RNA operon 
copy number and temperature-adjusted 
maximum growth rate; r2 = .30 across 
389 species. rRNA operon counts have 
been averaged across multiple records 
within species, where available, hence 
noninteger counts sometimes appear. 
Host-associated species were attributed 
to endotherm or ectotherm hosts, or 
to “other” if they came from external 
animal surface or were associated with 
plants, algae, or fungi, or had no habitat 
attributed. Species identified in the 
literature (Table A1) as copiotrophs or 
oligotrophs are denoted by squares and 
triangles, respectively
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F I G U R E  A 9   Genome size in relation 
to rRNA operon copy number; r2 = .14 
across 2,727 species, or if those with 
growth temperature >50°C are excluded, 
r2 = .048 across 1,666 species. In the 
habitat classification (color scheme), fresh 
and marine waters include both water and 
sediment. Host-associated species are 
attributed to endotherm or to ectotherm 
hosts if they multiply within the host body 
or gut, or to “other” if they grow on the 
host’s external surface or are associated 
with plants, algae, or fungi, or have no 
habitat attributed. Species identified in 
the literature (Table A1) as copiotrophs or 
oligotrophs are denoted by squares and 
triangles, respectively

F I G U R E  A 1 0   Cell radial diameter in 
relation to rRNA operon copy number; 
r2 = .023 across 926 species. In the 
habitat classification (color scheme), 
fresh and marine waters include both 
water and sediment. Host-associated 
species are attributed to endotherm or to 
ectotherm hosts if they multiply within 
the host body or gut, or to “other” if they 
grow on the host’s external surface or are 
associated with plants, algae, or fungi, or 
are not attributed to any habitat. Species 
identified in the literature (Table A1) as 
copiotrophs or oligotrophs are denoted by 
squares and triangles, respectively
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F I G U R E  A 11   Mean cell radial 
diameter in relation to genome size, 
separating rod-shaped bacilli from near-
spheroidal cocci and coccobacilli. Species 
identified in the literature (Table A1) as 
copiotrophs and oligotrophs are denoted 
by squares and triangles, respectively
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TA B L E  A 1   Species identified in the literature as definitely oligotroph or definitely copiotroph and indicated accordingly in the figures. 
Species nomenclature follows GTDB taxonomy

Species
Oligotroph or 
copiotroph Habitat in brief Reference

Gimesia maris Oligotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Pseudoalteromonas distincta Copiotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Paraglaciecola atlantica Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Burkholderia cepacia Oligotroph Host Tada and Inoue (2000)

Escherichia dysenteriae Copiotroph Host Boutte and Crosson (2013)

Serratia marcescens_I Copiotroph Host Pekkonen et al. (2013)

Photobacterium angustum Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Vibrio cholerae Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Aliivibrio fischeri Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Vibrio vulnificus Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Flavobacterium lindanitolerans Copiotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5

Rhodococcus erythropolis Oligotroph Host Ohhata et al. (2007)

Roseobacter denitrificans Oligotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Novosphingobium capsulatum Oligotroph Host Pekkonen et al. (2013)

Sphingomonas paucimobilis Oligotroph NA Tada and Inoue (2000)

Alteromonas abrolhosensis Copiotroph Marine Ivars-Martinez et al. (2008)

Vibrio coralliirubri Copiotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Erythrobacter_C litoralis Oligotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5

Bradyrhizobium oligotrophicum Oligotroph Soil Ohta and Hattori (1983)

Novosphingobium aromaticivorans Oligotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5

Shewanella frigidimarina Copiotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Shewanella baltica Copiotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Ruegeria_B pomeroyi Copiotroph Marine Cottrell and Kirchman (2016)

Sphingopyxis alaskensis Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Halonatronum saccharophilum Copiotroph NA Zhilina et al. (2001)

Caulobacter vibrioides_A Oligotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5

Nonlabens sp000153385 Copiotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Rhizorhabdus wittichii Oligotroph Host Lauro et al. (2009) and Lever et al. (2015) Table S5

Shewanella denitrificans Copiotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Pelagibacter_A ubique_B Oligotroph Marine (Lever et al. (2015) Table S5 citing to Cho and Giovannoni 
(2004); Könneke et al. (2005)).

Yoonia vestfoldensis_A Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Rhodopirellula baltica Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

EhC01 sp000013565 Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Polaromonas sp000013865 Oligotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5

Sphingomonas oligophenolica Oligotroph Soil Ohta et al. (2004)

Pararheinheimera texasensis Oligotroph Fresh Merchant et al. (2007)

Sphingobium sp000153545 Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Nitrosopumilus maritimus Oligotroph NA (Lever et al. (2015) Table S5 citing to Cho and Giovannoni 
(2004); Könneke et al. (2005)).

Shewanella loihica Copiotroph Therm Lauro et al. (2009) and Lever et al. (2015) Table S5

BACL14 sp000168995 Oligotroph Marine Lauro et al. (2009) and Lever et al. (2015) Table S5

Yoonia sp000169435 Oligotroph NA Lauro et al. (2009) and Lever et al. (2015) Table S5
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APPENDIX B

PRE VIOUS REPORTS OF POSITIVE CORREL ATION AMONG MA XIMUM G ROW TH R ATE ,  CELL S IZE ,  AND G ENOME 
SIZE
Kempes et al. (2016), with precursors in (DeLong et al., 2010; Kempes et al., 2012), developed arguments about upper and lower limits of cell 
size in bacteria and archaea. In the course of this, they reported positive scaling of genome size and of maximum growth rate with cell volume. 
We have come to the view that the difference between their results and ours traces mainly to differences in the sets of species included.

Consider first the positive relationship between maximum growth rate and cell size reported by DeLong et al. (2010) (RMA slope 0.73, data 
in their Table S2). Although this relationship was significant, it had an r2 of only .16 across 35 species. Further, the significance arose from 
inclusion of four mycoplasma species, three of which have particularly small cell sizes and slow maximum growth rates. With mycoplasmas 
excluded, the relationship was not significant (r2 = .02, df = 31, p = .40). Figure B1 shows the relationship to volume across 383 species from 
our data, and the correlation is negligible either excluding (r2 = .00046) or including (r2 = .00043) species that make a living inside eukaryote 
cells. These intracellular species contribute only 7/383 (<2%) in our data, versus 4/35 (>10%) in DeLong et al. (2010).

Kempes et al. (2016) reported a log–log scaling slope of 0.21 between genome size and cell volume across 145 taxa. Their data were com-
piled from three previous reports (DeLong et al., 2010; Shuter et al., 1983; West & Brown, 2005). Kempes et al Table S1 provides the data 
but not the species names, and we have not been able to elicit them otherwise, except for Shuter et al who published names along with data. 
Consequently, we have only been able to investigate the consequences of including particular species where our coverage overlaps with 
Shuter et al. (1983). Across Shuter’s 49 records, r2 was .73. One mycoplasma species with notably small genome and cell size contributed to 

TA B L E  A 3   Coefficients ± SE for the model for log10 maximum growth rate fitted in Figure 2, treating each species as an independent 
item of evidence. Coefficients for each habitat are relative to fresh water, which is the intercept

Coefficient ± SE Probability p

Intercept (freshwater habitat) −0.175 ± 0.099 .079

log10 cell radial diameter 0.242 ± 0.538 .65

(log10 cell radial diameter)2 −3.173 ± 0.534 5.26e−09 ***

Habitat Marine 0.190 ± 0.129 .14

Habitat Soil −0.051 ± 0.126 .69

Habitat Thermal 0.300 ± 0.113 .0081**

Habitat Endotherm 0.616 ± 0.125 1.03e−06***

Habitat Ectotherm −0.105 ± 0.160 .51

Habitat Other 0.096 ± 0.105 .36

TA B L E  A 2   Correlation R2 from phylogenetic generalized least squares among the three key traits considered here, all log-scaled. Number 
of phylogenetic tree nodes for each trait pair given next to the correlation

Trait Genome size Cell radial diameter

Temperature-adjusted max growth rate 0.00147 (n = 268) 0.000192 (n = 219)

Genome size 0.00968 (n = 948)

Model R2 df

1. growth ~ cell_diam .000456 519

2. growth ~ genome_size .00425 618

3. growth ~cell_diam * genome_size .0156 382

4. growth ~ cell_diam + cell_diam^2 .0538 518

5. growth ~ genome_size + genome_size^2 .00443 617

6. growth ~ habitat .124 882

7. growth ~ cell_diam + cell_diam^2 + habitat .154 512

8. growth ~ (cell_diam + cell_diam^2) * habitat .174 500

9. growth ~ (cell_diam + cell_diam^2) * genome_size * habitat .232 344

TA B L E  A 4   Models with successively 
more terms for predicting temperature-
adjusted maximum growth rate, 
showing multiple R2 and associated 
df. All quantitative traits are log10 
scaled. Asterisk instead of + indicates 
interactions are included. Models shown 
here use all data rows for which variables 
in that particular model are available; 
hence, for the simpler models, they have 
more degrees of freedom than in Table 2



     |  3975WESTOBY et al.

this, but was not solely responsible. Across our dataset’s records for 12 species that also occurred in Shuter et al, the relationship was simi-
larly positive with r2 = .30. Across our dataset as a whole (Figure B2), the relationship was notionally positive but very much weaker (slope 
0.044 ± 0.006 CI compared with 0.22 ± 0.019 for Shuter et al) even including the 14 intracellular species. Similar to the relationship between 
maximum growth rate and cell size, this indicates the difference between their results and ours lies mainly in coverage of species, rather than 
in different estimates for the same species. For our dataset (Figure B2), it can be seen that intracellular species do tend to lie toward lower left, 
but they are not sufficient in number to create a strong positive relationship.

In summary, our opinion is that our results indicating little to no correlation between cell size and maximum growth rate or genome size are 
more representative than the positive relationships reported by Kempes et al. (2016). For maximum growth rate, their positive relationship 
depends entirely on including mycoplasmas. For genome size, the very weak correlation with cell size reported in our results is based on 3,466 
species for cell diameter or 2,628 species for cell volume compared with 145 observations in Kempes et al. (2016).

F I G U R E  B 1   Maximum growth rate in 
relation to cell volume across 390 species, 
including intracellular, from our data. 
R2 = .00043, F-statistic 0.1659 on 1 and 
382 df, p-value .684

F I G U R E  B 2   Genome size in relation to 
cell volume across 2,628 species, including 
intracellular, from our data. R2 = .01989, F-
statistic 53.32 on 1 and 2,627 df. Leaving 
out the 14 intracellular species R2 = .0119, 
F-statistic 31.69 on 1 and 2,613 df
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APPENDIX C

TEMPER ATURE ADJUS TMENTS TO MA XIMUM G ROW TH R ATE
Maximum growth rates are influenced by the growth temperature where they were measured. An ideal adjustment of maximum growth for 
temperature would express them relative to the fastest growth rates that could potentially be achieved by species that had over evolutionary 
time fully optimized their physiology in relation to the temperature. However, there is no consensus how this could be done.

The simplest adjustments apply a Q10 increase factor (usually 2 or 1.5) per 10°C increase in temperature to metabolic rates or growth rates. 
When a Q10 of 2 is applied to adjust maximum growth rates to a standard growth temperature of 37°C, many thermophiles have decidedly 
slow growth rates. We cannot tell whether this is biologically realistic—for example, the protein adjustments needed for high temperatures 
might prevent rapid metabolism—versus whether a Q10 of 2 is too steep. Thermophilic enzymes are in general stiffened to counteract the 
increased molecular motion associated with higher temperatures. When operating at room temperature, they typically have either lower or 
similar activities compared to their mesophilic homologs (Chang et al., 2020).

It is well established that Q10 itself changes with temperature. Considering soil respiration and decomposition rates, meta-analysis showed 
Q10 around 4–6 at 0°C declining to 2 at around 25°C and continuing around 2 out to 50°C (Hamdi et al., 2013). A review of theoretical equa-
tions for temperature response (Noll et al., 2020) considered 19 models that are variations on Arrhenius (linear response of ln growth or meta-
bolic rate to reciprocal of absolute temperature) from 1946 up to the present. Several of these equations have growth rates declining above 
some optimal temperature. If these were applied, the effect would be for species growing at 70–100°C to have their growth rates increased 
rather than decreased when adjusted down to 37°C. Different mechanisms are invoked by different models, but enzyme adaptation is not 
among them.

In absence of a consensus method for temperature-adjusting maximum growth rates, we have adopted residuals after regression of log10 
max growth rate on growth temperature. These residuals measure how much faster or slower a species grows compared with the mean at that 
growth temperature. The regression on temperature in deg C did not have noticeably inferior fit compared with Arrhenius regression on 1/
absolute temperature (r2 = .110 vs. .114).


