

Design of Miniaturized On-Chip Passive Circuits in Silicon-Based Technology for 5G Communications

by Zeyu Ge

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of

Dr Xi Forest Zhu University of Technology Sydney, Australia

Associate Professor Roberto Gómez-García University of Alcala, Spain

Faculty of Engineering & IT University of Technology Sydney

07/2021

Certificate of Authorship/Originality

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Zeyu Ge declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering & IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: July 2021

ACKNOWLEDGEMENT

First and foremost, I would like to give my sincere thanks to my supervisor Dr. Forest Zhu and my co-supervisor Associate Prof. Roberto Gómez-García. They have taught me well with their knowledge throughout the period of this research. Without their enlightening advice, instructions, and corrections of my work, I would not have completed my thesis. Their suggestions and continuous support assuredly guided me in researching my postgraduate goals.

I would also like to thank my SEDE colleagues, Lang Chen, Lisheng Chen, Jefferson Hora, who helped so much during my design and test periods, for all their kindness and assistance. I appreciate having such wonderful friends in the same supervised team. They have become reliable connections for the rest of my life.

My wife Xinyin, my parents and my parents-in-law, gave me strong support both emotionally and financially. My wife's sacrifice of her own precious time and career enabled me to have less stress and more time to do my research.

Moreover, the following institutions and faculties should be acknowledged. Firstly, I thak the University of Technology Sydney, for giving me the opportunity to study. Secondly, appreciation goes to Andar Technologies in Melbourne for the switch testing. Thirdly, UTS Tech Lab was like a big warm family and I enjoyed working its staff like one big family.

Last but not least, I would give thanks to all my friends and family members, especially my young cousin, for all their encouragement and support.

TABLE OF CONTENTS

Certificate of Authorship/Originality	2
ACKNOWLEDGEMENT	3
TABLE OF CONTENTS	4
LIST OF FIGURES	6
LIST OF TABLES	9
Abstract	10
Chapter 1 Introduction	12
1.1 Background	12
1.1.1 5G and Millimeter-Wave	12
1.1.2 Filtering Technology Development	14
1.1.3 Advanced Semiconductor Technologies	. 16
1.1.4 Miniaturized Passive Devices	17
1.2 Challenges and Motivations	. 18
1.3 Contributions	. 20
1.4 Organization of the Thesis	21
Chapter 2: Literature Review	. 23
2.1 Theoretical Basics	. 23
2.1.1 The Basic Technical Indicators of the Filter	. 23
2.1.2 Design Methodologies for On-Chip mm-wave Filters	25
2.1.3 Manufacturing Technologies	25
2.2 Review of Related Passive Research	27
2.2.1 Interdigital Structure	28
2.2.2 Stepped Impedance Technique	33
2.2.3 Slow-Wave Structures	. 37
2.2.4 Coplanar Waveguide (CPW) Structures	38
2.2.5 Shielded Coplanar Waveguide	. 40
2.2.6 Meander-Liner Resonator	41
2.2.7 Closed- and Open-Loop Structures	. 43
2.3 Trends and Issues of the State-of-the-Art Designs	44
2.3.1 Issues with Wide-Band BPF Designs	44
2.3.2 Issues with BSF Designs	. 45
Chapter 3: On-Chip Millimeter-Wave Integrated Absorptive Bandstop Filter in (Bi)-CMOS	
Technology	. 47
3.1 Introduction	. 47
3.2 Design of On-Chip Passive-Integrated Millimeter-Wave Absorptive BSF	. 49
3.3 Experiment Results	55

3.4 Furtherwork	58
3.5 Conclusions	
Chapter 4: Millimeter-Wave Wide-Band Bandpass Filter in CMOS Technology Using a	
Two-Layered Highpass-Type Approach with Embedded Upper Stopband	62
4.1 Introduction	62
4.2 On-Chip Passive-Integrated Millimeter-Wave Wide-Band BPFs	64
4.2.1 Structure, Operational Principle and Parametric Analysis	64
4.2.2 Simplified Equivalent Lumped-Element Circuit Model	68
4.2.3 Extension of the Designed BPF presented in Section 4.2.1	71
4.3 Experimental Results	76
4.3.1 Fabrication, Simulation and Measurement	76
4.3.2 Comparison with the State-of-the-Art designs	80
4.4 Conclusions	81
Chapter 5: RF CMOS Broad-Band Bandpass Filters with 3-D Inductors	83
5.1 Introduction	83
5.2 UWB Bandpass Filters with 3-D Inductors	85
5.2.1 Four-3-D-Inductor BPF Cells designing	85
5.2.2 Equivalent Lumped-Element Circuit	87
5.3 Experimental Results	92
5.4 Conclusions	96
Chapter 6: Conclusions and Future Works	97
6.1 Conclusions	97
6.2 Future Work	98
Abbreviations	. 100
Bibliography	.104

LIST OF FIGURES

Figure 1.1. The pre-defined mm-wave spectrum for 5G NR	. 13
Figure 2.1. Metal stack-up in a 0.13-µm SiGe (Bi)CMOS	. 27
Figure 2.2. Schematic of the presented 5 th -order symmetric interdigital BPF in [30]	. 29
Figure 2.3. Die microphotograph of the designed BPF in Fig. 2.2	. 28
Figure 2.4. 3D view of the presented interdigital resonator and its equivalent circuit mod	lel
in [31]	. 30
Figure 2.5. Layout and die microphotograph of the designed BPF in Fig. 2.4	.31
Figure 2.6. Different resonator structures with loaded ECC [43]	. 32
Figure 2.7. Implementation BPF using ECC method [43]	.32
Figure 2.8. Die microphotograph [43]	29
Figure 2.9. The top-view of the presented 4 th -order cross-coupled SIR-MH BPF [33]	34
Figure 2.10. Die photograph of the 4th-order cross-coupled SIR-MH Bandpass Filter [33	3].
	.34
Figure 2.11. The designed BPF in [9], (a) the 3-D view, and (b) die microphotograph [34	4].
	.35
Figure 2.12. The 2-D view of the designed BPF using stepped-impedance resonator in [3	35].
	.36
Figure 2.13. The 3-D view of the designed BPF shown in Fig. 2.12 [35]	. 33
Figure 2.15. The top- and 3-D views for the designed filter in [36]	. 38
Figure 2.16. Illustration of the conventional combline type BPF [37]	39
Figure 2.17. The top-view of the designed BPF shown in Fig. 2.16	39
Figure 2.18. The 3-D view of the 2 nd combline-based BPF presented in [38]	.38
Figure 2.19. (a) Metal stack-up of a BiCMOS 9MW technology (b) the 3-D view of the	
S-CPW-based design [39]	. 41
Figure 2.20. Die microphotograph of the designed 1 st -order resonator shown in Fig. 2.19).40
Figure 2.21. The top- and the cross-section-views of the broadside-coupled resonator	
presented in [41]	.41
Figure 2.22. A BPF designed in [42], (a) 2D view of the three layers of the presented	
edge-coupled resonator, (b) the top view of the designed BPF with dimensions	. 43
Figure 2.23. The designed filter with illustration of [44]	.44
Figure 2.24. The structure of the folded loop dual mode resonator with its transmission l	ine
model [44]	. 44
Figure 3.1. Designed on-chip passive-integrated mm-wave absorptive BSF. (a) Layout	
(3-D view). (b) Layout (2-D view with indication of dimensions in μ m). (c)	
Equivalent lumped-element circuit (Z_0 : reference impedance; f_0 : BSF center freque	ncy;
$R_{\rm p}$, $L_{\rm p}$, and $C_{\rm p}$: resistance, inductance, and capacitance of the lossy parallel-type	
lumped-element resonators; J variables: 90°-admittance-inverter constants)	52
Figure 3.2. EM-simulated [layout in Figure 3.1(a) and (b) with dimensions therein	
indicated] and theoretical [equivalent lumped-element circuit in Figure 3.1(c) for Z	$_{0} =$
50 Ω , $f_0 = 25.5$ GHz, and BW _{3dB} = 4.58 GHz: $J_0 = J_1 = 0.02$ S, $J_2 = 0.01$ S, $R_p = 100$	Ω,
$L_p = 56.05 \text{ pH}$, and $C_p = 0.693 \text{ pF}$] power transmission ($ S_{21} $) and reflection ($ S_{11} $)	

responses of the designed absorptive BSF	53
Figure 3.3. EM-simulated S-parameters of the designed BSF with different values of W12	2.
Note: the left and right Y-axes are referred to S_{21} and S_{11} , respectively	54
Figure 3.4. EM-simulated S-parameters of the designed BSF with different values of W1.	
Note: the left and right Y-axes are referred to S_{21} and S_{11} , respectively	54
Figure 3.5. Sensitivity analysis of the designed on-chip passive-integrated mm-wave	
absorptive BSF in terms of EM-simulated power transmission ($ S_{21} $) and reflection	
(S_{11}) responses (variation of 5% of line widths and spacing with regard to the value	s
indicated in Fig. 3.1 (b))	55
Figure 3.6. Measurement results of the designed BSF, (a) simulated and measured power	
transmission ($ S_{21} $) responses of the designed absorptive BSF, and (b) simulated and	l
measured power-absorption rates of the designed absorptive BSF. Note that for a	
classic reflective-type BSF the power-absorption rate would be theoretically equal to	0
0% at any frequency	56
Figure 3.7. Die microphotograph of the designed BSF in Figure 3 5	57
Figure 3.8. EM simulated S-parameters for two cascaded BSFs. Note: the operatiton	
frequencies of these two BSFs are close to each other	59
Figure 3.9. EM simulated S-parameters for two cascaded BSFs. Note: the operatiton	
frequencies of these two BSFs are far from each other	60
Figure 4.1. Designed on-chip CMOS passive-integrated mm-wave wide-band BPF. (a)	
Layout (3-D view). (b) Layout (2-D view of the top layer with indication of	
dimensions in µm)	65
Figure 4.2. The concept of the designed BPF	65
Figure 4.3. (a) EM-simulated power transmission response ($ S_{21} $) of the top-layer structur	e
for different values of C_l : lower-TZ control ($C_m = 0.16 \text{ pF}$). (b) EM-simulated power	r
transmission response ($ S_{21} $) and input-reflection responses of the overall wide-band	•
BPF for different values of C_h : upper-TZ control ($C_m = 0.16$ pF and $C_l = 0.6$ pF). Th	e
values of the physical dimensions in all cases are as indicated in Figure 4.1(b)	67
Figure 4.4. Sensitivity analysis of the designed on-chip CMOS mm-wave wide-band BPF	7
in terms of EM-simulated power transmission ($ S_{21} $) and reflection ($ S_{11} $) responses	
[variation of 5% of line widths and of 10% of capacitance values with regard to the	
values indicated in Figure 4.1(b)]	68
Figure 4.5. Equivalent lumped-element circuit model of the passive-integrated mm-wave	
wide-band BPF in Figure 4.1 and application to an in-series-cascade two-stage BPF	
design	70
Figure 4.6. Comparison in terms of power transmission ($ S_{21} $) and input-reflection ($ S_{11} $)	
responses between the EM-simulated results in Figure 4.1 (b) ($C_h = 50$ fF) and its	
equivalent lumped-element circuit model in Figure 4.5 ($C_m = 0.2 \text{ pF}$, $C_c = 55 \text{ fF}$, $C_l = 0.2 \text{ pF}$, $C_c = 55 \text{ fF}$, $C_l = 0.2 \text{ pF}$, $C_c = 0.2 \text$	=
1.1 pF, $C_h = 60$ tF, $L_1 = L_2 = 0.16$ nF, $k_{12} = 0.5$, $L_3 = 0.1$ nH, and $L_4 = 0.08$ nH)	71
Figure 4. /. The 3-D view of the Design 2	12
Figure 4.8. Simulated frequency responses of Design 2 with different values of Ch applie	:d.
	12
Figure 4.9. The 3-D view of the Design 3	13

Figure 4.10. Simulated frequency responses of Design 3 with different values of Ch
applied73
Figure 4.11. Comparison in terms of power transmission ($ S_{21} $) and input-reflection ($ S_{11} $)
responses between the ideal lumped-element single-stage and two-stage designs in
Figure 4.9. (single-stage design: same parameters as in Figure 4.6; two-stage design:
$C_m = 0.3 \text{ pF}, C_c = 53 \text{ fF}, C_l = 1.6 \text{ pF}, C_h = 63 \text{ fF}, C_{\text{casc}} = 0.2 \text{ pF}, L_1 = 0.2 \text{ nF}, L_2 = 0.154$
nF , $k_{12} = 0.53$, $L_3 = 0.1 nH$, and $L_4 = 0.089 nH$)
Figure 4.12. Manufactured on-chip CMOS mm-wave wide-band BPF prototype (Design 1)
(a) Die microphotograph. (b) Simulated and measured power transmission ($ S_{21} $) and
input-reflection ($ S_{11} $) responses
Figure 4.13. Manufactured on-chip CMOS mm-wave resonator prototype, Design 2. (a)
Die microphotograph. (b) Simulated and measured power transmission ($ S_{21} $) and
input-reflection ($ S_{11} $) responses
Figure 4.14. Manufactured on-chip CMOS mm-wave resonator prototype, Design 3. (a)
Die microphotograph. (b) Simulated and measured power transmission (S_{21}) and
input-reflection ($ S_{11} $) responses
Figure 5.1. Geometrical view of the 3-D inductor
Figure 5.2. Series-cascading inductors in Figure 5.1 with MIM capacitors
Figure 5.3. Lumped-element model and microphotograph of the developed BPF chips with
3-D inductors (red color: 3-D inductors with parasitic capacitances C_p and C_q). and
Filter I./ Filter II
Figure 5.4. Simulated and measured power transmission ($ S_{21} $) and reflection ($ S_{11} $)
responses of the developed RF CMOS wide-band BPF chips with 3-D inductors for
sdFilter I. and Filter II
Figure 5.5. TZ control in (S_{21}) of the lumped-element circuit in Figure 5.3. (a) Lower-TZ
control (b) Upper-TZ control
Figure 5.6. Examples of (S_{21}) and (S_{11}) of the two-stage BPF90
Figure 5.7. 3-D view of Design 2
Figure 5.8. 3-D view of Design 3
Figure 5.9. Design 1. (a) Fabricated device (b) (S_{21}) and (S_{11}) comparison between
designed and experimental results
Figure 5.10. Design 2. (a) Die microphotograph (b) EM-simulated, and measured power
transmission ($ S_{21} $) and reflection ($ S_{11} $) responses
Figure 5.11. Design 3. (a) Die microphotograph (b) EM-simulated, and measured power
transmission ($ S_{21} $) and reflection ($ S_{11} $) responses

LIST OF TABLES

Table 4.1 Pe	erformance comparisons with state-of-the-art on-chip BPFs	81
Table 5.1 Co	omparisons with state-of-the-art BPFs	96

Abstract

In any given wireless communication system, the RF filter is an indispensable device. This is especially true for the RF front-end module, which is designed to process the selecting frequency band for different RF signals, and reduce any spurious items in the transmitter and receiver chain and interference signals outside the whole transceiver system. As far as on-chip filtering solutions are concerned, recently devised solutions mainly concentrate on different types of semiconductor processes, namely gallium arsenide (GaAs), and silicon-based ones, such as CMOS and silicon germanium (SiGe). In this research, some fundamental design challenges, especially device miniaturization, will be fully addressed through some novel design methodologies. To explain the low-cost requirements for both prototyping and mass production, a silicon-based technology is used. Consequently, the designs presented in this thesis may be suitable for some high-performance on-chip transceiver systems. In this thesis, designed miniaturized on-chip passive filters in silicon-based technology will be presented. Both BSF and BPFs are implemented and characterized in the mm-wave frequency region. Three unique design approaches will be presented.

The first approach is used to design an on-chip absorptive BSF in a 0.13- μ m complementary metal-oxide-semiconductor CMOS technology. Taking advantage of metal stack-up provided in this technology, this design utilizes a two-path transversal configuration in a multi-layer structure. It consists of a direct transmission line (TL) for the main path and two lossy edge-grounded spiral-shaped resonators. The TL is implemented in the top-most metal layer, namely TM2, while the resonators are implemented in a layer below TM2, known as TM1. They are coupled with each other through a broadside-coupled structure. Using this approach, a 24.5-GHz BSF is designed and it has a 10-dB-attenuation-referred absolute bandwidth of 1.54 GHz and maximum attenuation 23.1 dB. The maximum power attenuation level in the pass band region is 0.95 dB at 60 GHz and the size excluding pads is 0.316 × 0.12 mm². A good

agreement between simulated and measured results is obtained. The performance of this design can be considered for some systems which are isolator-less mm-wave transceivers.

The second approach serves to design a wideband BPF also based on a broadside-coupled structure. The design strategy for this work is that a highpass-type filtering response is obtained through a structure that is implemented by TM2, and an upper stopband frequency response is achieved by the bottom layer when the two structures are coupled. Consequently, a composite overall quasi-elliptic-type wide-band BPF functionality can be obtained. Using this approach for BPF design, a wideband 34.5-GHz BPF is devised. It has a 3-dB absolute bandwidth equal to 21.1 GHz and the minimum in-band insertion loss is 1.6 dB which is 0.264×0.124 mm² in size. This design is suitable for miniaturized broad-band RF transceivers when compared with previously published literature.

The final part of this work is an investigation of wideband BPF design using 3-D lumped inductors. In contrast to conventional studies that have been published in the literature, the approach presented here utilizes parasitic capacitances from the implemented 3-D inductor to introduce a transmission-zero (TZ) at upper stopband. For the purpose of proof-of-concept, a BPF prototype is designed and implemented. The on-wafer measurements show that the designed filter operates at center frequency with a 68.5% 3-dB bandwidth. Due to the proposed 3-D inductors, the overall size of the prototype excluding measurement pads is only 0.054 mm².