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Abstract

In any given wireless communication system, the RF filter is an indispensable

device. This is especially true for the RF front-end module, which is designed to process

the selecting frequency band for different RF signals, and reduce any spurious items in

the transmitter and receiver chain and interference signals outside the whole transceiver

system. As far as on-chip filtering solutions are concerned, recently devised solutions

mainly concentrate on different types of semiconductor processes, namely gallium

arsenide (GaAs), and silicon-based ones, such as CMOS and silicon germanium (SiGe).

In this research, some fundamental design challenges, especially device miniaturization,

will be fully addressed through some novel design methodologies. To explain the

low-cost requirements for both prototyping and mass production, a silicon-based

technology is used. Consequently, the designs presented in this thesis may be suitable

for some high-performance on-chip transceiver systems. In this thesis, designed

miniaturized on-chip passive filters in silicon-based technology will be presented. Both

BSF and BPFs are implemented and characterized in the mm-wave frequency region.

Three unique design approaches will be presented.

The first approach is used to design an on-chip absorptive BSF in a 0.13-μm

complementary metal-oxide-semiconductor CMOS technology. Taking advantage of

metal stack-up provided in this technology, this design utilizes a two-path transversal

configuration in a multi-layer structure. It consists of a direct transmission line (TL) for

the main path and two lossy edge-grounded spiral-shaped resonators. The TL is

implemented in the top-most metal layer, namely TM2, while the resonators are

implemented in a layer below TM2, known as TM1. They are coupled with each other

through a broadside-coupled structure. Using this approach, a 24.5-GHz BSF is

designed and it has a 10-dB-attenuation-referred absolute bandwidth of 1.54 GHz and

maximum attenuation 23.1 dB. The maximum power attenuation level in the pass band

region is 0.95 dB at 60 GHz and the size excluding pads is 0.316 × 0.12 mm². A good
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agreement between simulated and measured results is obtained. The performance of this

design can be considered for some systems which are isolator-less mm-wave

transceivers.

The second approach serves to design a wideband BPF also based on a

broadside-coupled structure. The design strategy for this work is that a highpass-type

filtering response is obtained through a structure that is implemented by TM2, and an

upper stopband frequency response is achieved by the bottom layer when the two

structures are coupled. Consequently, a composite overall quasi-elliptic-type wide-band

BPF functionality can be obtained. Using this approach for BPF design, a wideband

34.5-GHz BPF is devised. It has a 3-dB absolute bandwidth equal to 21.1 GHz and the

minimum in-band insertion loss is 1.6 dB which is 0.264 × 0.124 mm² in size. This

design is suitable for miniaturized broad-band RF transceivers when compared with

previously published literature.

The final part of this work is an investigation of wideband BPF design using 3-D

lumped inductors. In contrast to conventional studies that have been published in the

literature, the approach presented here utilizes parasitic capacitances from the

implemented 3-D inductor to introduce a transmission-zero (TZ) at upper stopband. For

the purpose of proof-of-concept, a BPF prototype is designed and implemented. The

on-wafer measurements show that the designed filter operates at center frequency with a

68.5% 3-dB bandwidth. Due to the proposed 3-D inductors, the overall size of the

prototype excluding measurement pads is only 0.054 mm2.
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