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SEISMIC PERFORMANCE FACTORS FOR WOOD FRAME BUILDINGS IN 

CHILE 

ABSTRACT 

Seismic performance factors are an engineering tool to estimate force and displacement 

demands on structures designed through linear methods of analysis. In Chile, the NCh433 

standard provides the regulations, requirements, and factors for the seismic design of several 

structural typologies and systems. However, when it comes to wood frame structures, previous 

research has found that the NCh433 provisions are highly restrictive and result in over-

conservative designs. Therefore, this project presents an experimental and numerical 

investigation aimed at proposing new, less restrictive seismic performance factors for wood 

frame buildings. Following the FEMA P-695 guidelines, this research embraced: (1) testing of 

materials, connections, and full-scale specimens, (2) developing of detailed and simplified 

nonlinear numerical models, (3) developing of a new FEMA P-695 ground motion set for 

subduction zones, and (4) analyzing the seismic performance of a comprehensive set of 

structural archetypes. 201 buildings were analyzed and results showed that changing the 

NCh433 performance factors from R = 5.5 & Dmax = 0.002 to R = 6.5 & Dmax = 0.004 decreases 

the average collapse ratio of wood frame structures by 13.3% but keeps the collapse probability 

below 20% for all the archetypes under study. Besides, it improves the cost-effectiveness of 

the buildings and enhances their competitiveness when compared to other materials, since 

savings of 40.4% in nailing, 15.9% in OSB panels, and 7.3% in timber studs were found for a 

5-story building case study. Further analyses showed that the buildings designed with the new 

factors reached the “enhanced performance objective” as defined by the ASCE 41-17 standard, 

guaranteeing a neglectable structural and non-structural damage under highly recurring seismic 

events. Finally, dynamic results revealed that 87% of archetypes collapsed on the first and 

second floors, and that the minimum base shear requirement Cmin of the NCh433 standard is 

somewhat restrictive for soil classes A, B, and C, leading to conservative results compared to 

archetypes where the Cmin requirement did not control the structural design. 
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FACTORES DE DISEÑO SÍSMICO PARA EDIFICACIONES DE MADERA 

MARCO-PLATAFORMA EN CHILE 

RESUMEN 

Los factores de diseño sísmico son una herramienta ingenieril para estimar las demandas de 

fuerza y desplazamiento en estructuras diseñadas a través de métodos lineales de análisis. En 

Chile, la normativa NCh433 proporciona las regulaciones, requerimientos, y factores para el 

diseño sísmicos de varias tipologías y sistemas estructurales. Sin embargo, cuando se trata de 

estructuras de madera marco-plataforma, investigaciones anteriores han encontrado que las 

disposiciones de la normativa NCh433 son altamente restrictivas y resultan el diseños sobre-

conservadores. Por lo tanto, este proyecto presenta una investigación numérica y experimental 

que apunta a proponer factores de diseño sísmico menos restrictivos para edificaciones marco-

plataforma. Siguiendo la metodología FEMA P-695, esta investigación abarcó: (1) pruebas 

experimentales de materiales, conexiones, y especímenes a escala real, (2) desarrollo de 

modelos numéricos no-lineales detallados y simplificados, (3) creación de un nuevo set de 

registros sísmicos FEMA P-695 para zonas de subducción, y (4) análisis del desempeño 

sísmicos de un exhaustivo conjunto de arquetipos estructurales. Se analizaron 201 

edificaciones y los resultados mostraron que cambiar los factores de diseño sísmicos NCh433 

de R = 5.5 & Dmax = 0.002 hacia R = 6.5 & Dmax = 0.004 reduce el margen de colapso de 

estructuras marco-plataforma en 13.3% pero mantiene la probabilidad de colapso bajo 20% 

para todos los arquetipos analizados. Además, mejora la relación costo-beneficios de las 

edificaciones e incrementa su competitividad al compararlas con otros sistemas estructurales, 

ya que se encontraron ahorros del 40.4% en clavado, 15.9% en paneles de OSB, y 7.3% en pie-

derechos para el caso de estudios de una edificación de cinco pisos. Análisis adicionales 

mostraron que las edificaciones diseñadas con los nuevos factores propuestos alcanzaron el 

“enhanced performance objective” definido por el estándar ASCE 41-17, garantizando un daño 

estructural y no estructural despreciable bajo demandas sísmicas de alta recurrencia. 

Finalmente, los resultados dinámicos revelaron que 87% de los arquetipos colapsaron en los 

pisos primero y segundo, y que el corte mínimo Cmin requerido en el estándar NCh433 es algo 

restrictivo para tipos de suelo A, B, y C, llevando a resultados conservadores al compararlos 

con arquetipos donde el requerimiento de Cmin no controló el diseño estructural. 
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PREFACE 

TIMBER ENGINEERING: A NEW PARADIGM FOR MID-RISE CONSTRUCTION 

IN CHILE 

The Chilean real estate market is mainly dominated by masonry for low-rise houses and 

reinforced concrete for mid- to high-rise buildings. Given the high seismic risk of the region, 

the local engineering community has developed a robust know-how regarding the seismic 

design of buildings employing these well-known materials. As a consequence, previous 

research has shown that the Chilean reinforced concrete buildings are capable of withstanding 

strong earthquakes with minor damage at the structural and non-structural level (Westenenk et 

al. 2012). Furthermore, during the last decades, the local industry has developed the 

mechanisms to provide good quality materials for the construction sector with an unbeatable 

benefit-cost ratio. In this context, an important question arises. Why moving towards timber 

construction? Three main points should be considered to answer this question: (1) local timber 

industry, (2) environmental footprint, and (3) engineering advantages.  

The data provided by the Chilean Forestry Institute (INFOR 2016) shows that the local timber 

industry accounts for 2.6% of Chile's gross domestic product, and generates employment 

(direct and indirect) for more than 300,000 workers across the country (CORMA 2014), which 

is about 4% of the total number of people employed in Chile. However, recent research (INFOR 

2017a) revealed that in 2016, only 30% of the wood sawn and produced in Chile was used 

inside the country, while the remainder was exported to countries such as China, the USA, 

Brazil, among others. The construction sector has a major role in this low level of timber 

domestic use. Recent data show that in Chile only 32% of the residential homes use timber, 

and at present, there is a ~0% of mid-rise timber buildings (Santa María et al. 2017), which is 

a relatively low figure when compared to rates in other countries such as New Zealand or the 

USA, where 90% of houses use timber as the main material (Ajay 1995; Buckett 2014). 

Therefore, pushing the growth of the timber construction industry will boost the internal use 

of wood across different sectors significantly contributing to the country’s economy. 

In terms of environmental footprint, Chile has been struggling against pollution problems in 

several areas across the country in the past few years, as a consequence of highly populated 

cities and poor airflow through the high mountain ranges of the region. For instance, in 2016 
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the city of Coyhaique in the south of Chile was declared the most polluted city in Latin America 

(WHO 2016). Given the high demand for housing in the big cities, the timber construction 

sector may significantly contribute to mitigating this issue. For instance, studies have shown 

that the energy consumption of concrete houses is 60-80% higher compared to timber houses 

(Börjesson & Gustavsson 2000), and that the CO2 production during the life span of a concrete 

building is 30-130 kg/m2 greater (Gustavsson, Pingoud & Sathre 2006). In countries with very 

marked seasons such as Chile, it has been calculated that a timber house consumes between 

15% and 16% less energy for heating/cooling when compared to a concrete or steel house. 

Over a period of 100 years, it is estimated that a timber house could reduce the net emissions 

of greenhouse gases by between 20% and 50% when compared to traditional systems (Upton 

et al. 2008). 

From an engineering performance perspective, it is universally acknowledged that timber 

structures have several engineering advantages that make them highly attractive when 

designing buildings in seismic prone areas (van de Lindt 2004). Their low seismic mass and 

high flexibility result in low design forces and economically efficient structures (Dechent et al. 

2016; Follesa et al. 2018). Furthermore, their high capacity of inelastic deformation (ductility) 

allows them to achieve high performance levels when subjected to ground motions of low 

exceedance probability (Jayamon, Line & Charney 2017). This latter follows the current 

seismic design philosophy for earthquake-resistant buildings, which requires the structure to 

be able to withstand large inelastic deformations before collapse. Based on the information 

described above, although it would not be indisputable to affirm that timber buildings are the 

absolute solution for new constructions, it stands out that this structural system has several 

advantages over the others in terms of the local economy, environmental footprint, and 

engineering performance. Nevertheless, due to very conservative regulations, the growth of 

timber structures has slowed down over the last few years in Chile.  

To tackle this issue, this thesis presents the results of a research project aimed at quantifying a 

new set of less conservative regulations for wood frame buildings in Chile. Following a rational 

methodology, the feasibility of employing a new R factor and elastic drift limit Dmax is verified, 

aiming at improving the efficiency and cost of the wood frame buildings across the different 

zones of the country, and without compromising their safety during moderate and severe 

earthquakes. 
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HYPOTHESES AND OBJECTIVES 

HYPOTHESES 

GENERAL: It is possible to employ less conservative seismic performance factors when 

designing wood frame buildings in Chile in order to improve the cost-benefit ratio of such 

structures. 

SPECIFIC 1: A new numerical model can be developed to efficiently compute the nonlinear 

response of 'strong' wood frame walls under lateral loads. 

SPECIFIC 2: A continuous rod hold-down anchorage allows wood frame walls to withstand 

large lateral and overturning loads without showing a brittle or premature failure. 

SPECIFIC 3: It is possible to develop a ground motion set for zones prone to subduction 

earthquakes keeping consistency with the guidelines provided by the FEMA P-695 

methodology. 

OBJECTIVES 

GENERAL: To statistically prove the feasibility of employing less conservative seismic 

performance factors for wood frame structures in Chile. 

SPECIFIC 1: To develop a new efficient numerical model to reproduce the nonlinear response 

of ‘strong’ wood frame walls under large lateral loads. 

SPECIFIC 2: To validate the lateral response of wood frame walls with continuous rod hold-

down anchorages through experimental tests. 

SPECIFIC 3: To develop a new ground motion set consistent with the FEMA P-695 

methodology and suitable to conduct dynamic analyses in areas prone to subduction 

earthquakes.  
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THESIS STRUCTURE AND ORGANIZATION 

This thesis has been developed following an article-based format; therefore, each chapter of 

this document corresponds to published or publishable content. Besides, each chapter was 

designed to address one of the objectives proposed for this research project. Chapter 1 presents 

the overall project, methodology, and results, and Chapters 2, 3, and 4 present detailed support 

studies carried out to back up the main research in Chapter 1. This way, even though all the 

content of this thesis is strongly connected and interrelated, each chapter is self-contained and 

presents independent research that might be read and understood by itself. Aiming at achieving 

self-contained chapters, some concepts and explanations might be found more than once across 

this document for the sake of clarity. However, there is no research overlapped between 

chapters and sections. The content of this thesis has been organized as follows: 

Chapter 1 addresses the General Objective proposed for this project. It presents the formulation 

of the project, background, methodology, and results of the new proposed seismic performance 

factors for wood frame buildings in Chile. Further analyses regarding the seismic response of 

wood frame structures are also presented in this chapter. 

Chapter 2 addresses the Specific Objective 1. It presents a support investigation carried out to 

develop a new numerical model for wood frame walls. This new numerical model is employed 

in Chapter 1 to study the seismic response of mid-rise wood frame structures. 

Chapter 3 addresses the Specific Objective 2. It presents a support experimental investigation 

that tested real-scale wood frame walls with continuous rod hold-downs. The results of this 

section fed the numerical models employed in Chapter 1 and provided a better understanding 

of the behavior of wood frame walls. 

Chapter 4 addresses the Specific Objective 3. It presents the development of a new set of 

ground motions for subduction zones. This new set was employed as a dynamic input in the 

seismic performance analyses carried out in Chapter 1. 

Chapter 5 presents the main findings and conclusions of this research project. In order to 

highlight the contributions to each field addressed in this thesis, conclusions were sorted out 

and grouped by chapters. 
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Finally, Appendixes A, B, C, and D present additional information about the structural 

archetypes analyzed in this thesis and their fragility functions for different performance levels.  
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