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ABSTRACT
Social linking prediction is one of the most fundamental problems
in online social networks and has attracted researchers’ persis-
tent attention. Most of the existing works predict unobserved links
using graph neural networks (GNNs) to learn node embeddings
upon pair-wise relations. Despite promising results given enough
observed links, these models are still challenging to achieve heart-
stirring performance when observed links are extremely limited.
The main reason is that they only focus on the smoothness of node
representations on pair-wise relations. Unfortunately, this assump-
tion may fall when the networks do not have enough observed
links to support it. To this end, we go beyond pair-wise relations
and propose a new and novel framework using hypergraph neu-
ral networks with multi-level hyperedge distillation strategies. To
break through the limitations of sparsely observed links, we intro-
duce the hypergraph to uncover higher-level relations, which is
exceptionally crucial to deduce unobserved links. A hypergraph
allows one edge to connect multiple nodes, making it easier to learn
better higher-level relations for link prediction. To overcome the
restrictions of manually designed hypergraphs, which is constant
in most hypergraph researches, we propose a new method to learn
high-quality hyperedges using three novel hyperedges distillation
strategies automatically. The generated hyperedges are hierarchi-
cal and follow the power-law distribution, which can significantly
improve the link prediction performance. To predict unobserved
links, we present a novel hypergraph neural networks named HNN.
HNN takes the multi-level hypergraphs as input and makes the
node embeddings smooth on hyperedges instead of pair-wise links
only. Extensive evaluations on four real-world datasets demonstrate
our model’s superior performance over state-of-the-art baselines,
especially when the observed links are extremely reduced.
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1 INTRODUCTION
With the popularisation of online networks such as the world wide
web, citation networks, and social platforms, people transfer their
social life mostly online, thus resulting in considerable heteroge-
neous social interactions. Predicting these social relations plays a
fundamental role in analyzing users’ online behaviors and social
phenomena [34, 42]. It has been widely used in recommendation
systems [6, 13], anomaly detection [19], and sentiment analysis [32].
Formally, social linking prediction aims to distinguish whether a
pair of nodes in a network has a specific type of link or not. Al-
though researchers have paid much attention [4, 30, 40], there is
still significant potential for improvement, especially when the ob-
served links are extremely limited, which is universal in real-world
situations [45].

Previous studies usually leverage network sampling strategies
[26] to make node embeddings smooth on pair-wise links. For exam-
ple, Grover et al. [12] propose a bias random walk framework and
then use the Skip-gram model to maximize the probability of target
node given specific contents. Many variants such as metapath2vec
[9], HHNE [37], and HeteSpaceyWalk [17] come out recently to han-
dle heterogeneous relations following this idea. However, convert-
ing graphs to linear paths limits these models’ further improvement
because these paths can not reconstruct the original graphs without
missing information. To this end, graph neural networks (GNNs)
[39] have been recently introduced to this subject because they
have effectively addressed non-linear relations in graphs. Specifi-
cally, Wang et al. propose HAN [35], which integrates node-level
attention and semantic-level attention to learn node embeddings
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from heterogeneous graphs. Hu et al. [18] leverage generative ad-
versarial networks (GANs) to learn node distribution to generate
better negative samples for node embedding. Fu et al. [11] opti-
mise GNN-based methods with intra-metapath aggregation and
inter-metapath aggregation and make the model flexible. Although
performance has been further improved, these models heavily rely
on the network connectivity, which means the node smoothness
may be destroyed when the observed links are extremely limited.

To improve linking prediction performance on sparsely observed
networks, we need to explore higher-level relations to support un-
derlying links further. Most of the existing works learn higher-level
relations from ordinary local proximities. For example, Chen et al.
[5] put forward PME, which integrates first-order and second-order
proximities via metric learning. They first project node features to
different semantic spaces, and then tighten each pair of nodes on
pair-wise links. Similarly, Lu et al. [44] present RHINE, and they
utilise different models to exploit affiliation and interaction rela-
tions. Wang et al. [36] use their proposed model StHNE to learn
meta-path based first-order and second-order proximities, and then
optimise the distance of similar nodes with spectral theory. How-
ever, all these works learn high-order relations via minimising the
distance of similar nodes and maximising dissimilar nodes on ob-
served pair-wise links, which is far from expressive on sparsely
observed networks. Taking Figure 1 as an example, when we pre-
dict links only based on pair-wise relations, the model may easily
treats unobserved positive links as a negative node pair, making
this pair of nodes weakly correlated and the node embeddings are
under-smooth.

Unlike typical graph models, which only focus on pair-wise re-
lations, hypergraphs [31] can capture and preserve more diverse,
complicated, and higher-level semantics. Hypergraphs allow one
edge (a.k.a hyperedge) to connect multiple nodes, which are per-
fectly suitable for heterogeneous networks (HINs) and naturally
promising to improve the link prediction performance on HINs.
However, in many graph-structured datasets, hyperedges are not
always given. To apply hypergraph models, most of the existing
works have to assign hyperedges manually. For instance, Feng et al.
[10] design a hypergraph neural network via analogy with normal
graphs. They build hyperedges by calculating the distance between
nodes features. Zhang et al. [47] treat hyperedges as node feature
tuples and use the attention mechanism to fuse information within
a hyperedge. Jin et al. [21] propose a convolutional manifold net-
work guided by manually designed hyperedges. They construct
their hypergraphs with k-nearest nodes. Chen et al. [4] put forward
MGCN, and they discuss the impact of different manually created
hypergraphs. Jiang et al. [20] and Zhang et al. [48] study dynamic
networks using hypergraph learning. They treat hyperedges as
clusters and network neighbours. Although these works achieve
satisfactory results on various downstream tasks, they still suffer
from the limitation of toneless hyperedges, leading to over-smooth
expressiveness for pair-wise linking prediction. As shown in the
right of Figure 1, nodes in a toneless hyperedge can be also con-
verted as a complete graph, where each pair of nodes are tightened
no matter their real connections. This may easily make node em-
beddings over-smooth [8], leading to the opposite corner compared
with the models only based on pair-wise relations.

From the above discussion, we have realised that the vital barrier
for linking prediction on a sparsely observed network is how to
learn multi-level hyperedges automatically from data. To fill the
research gap, we need to solve the following challenges:

• Challenge 1: How to learn better higher-level relations on
sparsely observed networks. Traditional methods mostly
rely on pair-wise links heavily, and they usually follow the
idea that each pair of nodes should be closer on an observed
link but keep away from each other if there is no observed
link connecting them. However, when the observed links are
dramatically reduced, the smoothness can not be guaranteed
anymore, limiting the performance improvement.

• Challenge 2: How to learn multi-level hyperedges automati-
cally from data. Most of related works use manually designed
hyperedges. However, these hyperedges are far from hier-
archical and flexible, resulting in over-smooth problems for
linking prediction. To solve this problem, we need to break
away from constant hyperedges and generate multi-level
hyperedges automatically from data.

• Challenge 3: How to learn better node embeddings for link-
ing inference. Traditional works usually use matrix decompo-
sition and GNNs on typical graphs, which can not be directly
applied to hypergraphs. To integrate hyperedges informa-
tion, we need to design a uniform model from both pair-wise
links and hyperedges.

To address challenge 1, we go beyond limited observed pair-wise
links and use the hypergraph to learn latent higher-level informa-
tion. To address challenge 2, we present three delicate hyperedge ex-
pansion strategies to distill multi-level hyperedges. The hyperedges
are generated automatically, follow the long-tailed distribution,
and significantly improve link prediction performance. To address
challenge 3, we design a multi-level hypergraph neural network
for heterogeneous graphs, which can take both pair-wise links and
hyperedges together. In summary, our principal contributions are
as follows:

• We propose a novel hyperedge generation framework us-
ing three well-designed hyperedge expansion strategies. The
hyperedges start from basic graphlets and then expand them-
selves automatically. The generated hyperedges follow the
power-law distribution and outperform previous manually
designed hypergraphs on network embeddings.

• We focus on sparsely observed networks when predicting
links, which is more common in practical applications. To
overcome the limited links, we propose to leverage hyper-
graphs to learn better higher-level informations and put
forward a multi-level hypergraph neural network, which
can dramatically improve the performance.

• We extensively evaluate our approach with state-of-the-art
baselines on four real-world datasets. Experimental results
demonstrate that our method can achieve significant im-
provements over existing methods.

2 PRELIMINARY AND PROBLEM
FORMULATION

In this section, we briefly present related concepts and give the
formal definition of our target problem.
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Figure 1: pair-wise relations (left), multi-level hyperedges (middle), and toneless hyperedges (right).

Definition 1. (Heterogeneous Networks and Meta-path). A
heterogeneous network (HIN) refers to a graph like G = {V, E,Tv }

whereV denotes the objects, and E is the pair-wise relations between
these objects. Each object is treated as a node with a specific type,
and Tv denotes all node types. When |Tv | ≥ 2, the network becomes
heterogeneous. A meta-path is a pre-defined path scheme where each
position on the path has one assigned node type.

This paper studies three heterogeneous networks (DBLP, ACM,
Yelp), and one homogeneous network (Cora). We treat the homo-
geneous network as a special case of HINs, which means it only
contains one type of relation and the same kind of nodes. More
details on DBLP, ACM, Yelp, and Cora are summarised in section
4.1.

Definition 2. (Graphlets and Orbits). The graphlets of a given
large network are a set of smaller connected induced subgraphs, and
each graphlet is structurally distinct from all the other graphlets.
Nodes within the same graphlet and topologically identical with others
are put into the same orbits.

Take Figure 2 as an illustration, we present all graphlets with
2,3,4, and 5 nodes. There are 30 graphlets in total. For simplicity,
we only show these graphlets in a homogeneous graph. We can use
meta-path to extract different induced subgraphs and find graphlets
independently for the graph with multiple node types.

Definition 3. (Hypergraph). A hypergraph can be represented
as G▷ = {V▷, E▷}. HereV▷ denotes node set, and E▷ is the set of
edges in the hypergraph (a.k.a hyperedges). Different from normal
graphs, a hypergraph allows one hyperedge to connect multiple nodes,
which means each hyperedge can be denoted as a subset of nodes
e▷ = {v1,v2, · · · ,vk },vi ∈ V▷, e▷ ∈ E▷. k is the size of hyperedge
e▷.

The presence of nodes in hyperedges can be represented as an
incidence matrix H ∈ {0, 1} |V

▷ |× |E▷ | where each entry can be
calculated as follows:

H (i, j) =

{1, if node i is in hyperedge j
0, otherwise

Let Dv ∈ R |V
▷ |× |V▷ | and De ∈ R |E

▷ |× |E▷ | be two diagonal matri-
ces, which denote the degrees of nodes and hyperedges, respectively.

Figure 2: 2,3,4,5-node graphlets. There are 30 graphlets de-
noted by Gi , i = 0, · · · , 29. In each graphlet, we use different
colors to denote different orbits. Nodes in the same orbit are
topologically identical.

Then the degree of node i is defined as follows:

Dv (i, i) =

|E▷ |∑
j=1

Ue (j, j) · H (i, j)

where Ue ∈ R |E
▷ |× |E▷ | is a diagonal matrix, and the diagonal

entries are hyperedge weights. Likewise, the degree of hyperedge j
is defined as follows:

De (j, j) =

|V▷ |∑
i=1

Uv (i, i) · H(i, j)

where each diagonal entry in the diagonal matrixUv ∈ R |V
▷ |× |V▷ |

stands for the weights of nodes.

Definition 4. (Hyperedge Distillation) We define the hyper-
edge distillation as the process of generating multi-level hyperedges
automatically from data. The process starts from some basic graphlets
and then expands small-scaled hyperedges to develop multi-level hy-
peredges.

With the above concepts, our target problem can be formulated
as follows:

Problem 1. (Social Linking Prediction). Given a sparsely ob-
served networkG = {V, E,Tv }, and any pair of nodes

(
vi ,vj

)
,vi ,vj ∈

V , we wish to predict whether
(
vi ,vj

)
has a given type of pair-wise

relation or not, which is not observed before.
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Figure 3: The flowchart of our framework.

3 HYPERGRAPH LEARNINGWITH
MULTI-LEVEL EXPANSION

In this section, we first review our framework of social linking
prediction, and then introduce the principal components of our
model.

3.1 Model Overview
Our model framework is shown in Figure 3. The model is a stack
of multi-level hypergraph neural networks (HNNs), and each HNN
layer utilises the corresponding hypergraph, which is updated from
the previous state. The initial hyperedges are built on graphlets
shown in Figure 2. Afterwards, we design three hyperedge expan-
sion strategies (depth-first expansion, breadth-first expansion, and
hybrid expansion) to expand these simple hyperedges as higher-
level hyperedges. In the end, we output the final network embed-
dings and the hypergraph incidence matrix, which can hint the
hypergraph structure after multi-level hyperedge distillation. To
predict social links, we concatenate each layer’s latent represen-
tations and then send them to the downstream link prediction
classifier.

3.2 Graphlets-driven Hyperedges
As previously discussed, our first target is how to generate multi-
level hyperedges. Here we introduce graphlets as the initial hyper-
edges to launch later hyperedge distillation. We choose graphlets
because they are structurally complete, and each graphlet preserves
an exclusive structural unit. They go beyond pair-wise relations,
which means they are informative for link prediction on sparsely
observed networks. However, they are not sufficient to preserve
global structures and thus make the performance limit. Besides,
a larger network usually contains enormous graphlets, leading
to a large number of hyperedges. At last, graphlets are still not
hierarchical enough owing to their small number of nodes.

In light of these, we initialise our hyperedges with only 2,3,4,5-
node graphlets and ignore larger graphlets. For heterogeneous

networks, we induce subgraphs with different meta-paths and then
combine the graphlets in each subgraph. There are plenty of imple-
ments and algorithms [1, 28, 33] that can efficiently find graphlets,
making our initialisation entirely feasible. Each graphlet instance
is treated as an initial hyperedge. Then we design three hyperedge
expansion strategies (depth-first expansion, breadth-first expansion,
and hybrid expansion) so that these hyperedges can be expanded or
merged with other hyperedges, making the total hyperedge num-
ber reduced and hyperedge multi-level. We elaborate on this in the
following section.

3.3 Hyperedge Expansion
As shown in Figure 4, a hyperedge usually adjoins other hyperedges
with some shared nodes, making the hyperedge expansion exe-
cutable. The transition probability from one hyperedge to another
relies on two aspects: (i) the correlations of hyperedges, which can
be measured by the product of hyperedge representations; and (ii)
the connectivity between two hyperedges, which can be evaluated
by the Jaccard similarity.

Let the observed network be G◦ = {V, E◦} where V is node
set and E◦ contains observed pair-wise links. The initial hyperedge
set is E▷0 = {e1, e2, · · · , en } where each hyperedge includes a set
of nodes ei = {vi1 ,vi2 , · · · ,vim }. Let node representation be Zv ∈

R |V |×d where d is node embedding dimension, then we denote
hyperedges via the weighted summation over all nodes in the same
hyperedge:

Ze = D−1
e · Ue · HT · Uv · Zv (1)

With the above formula, the correlation between hyperedges i and
j can be calculated as :

α (i, j) = σ
(
ZTe · Ze

)
i j

(2)

where σ (·) is a normalization operator such as the sigmoid func-
tion. To measure the connectivity between hyperedges i and j, we
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Figure 4: Three hyperedge expansion strategies. top: depth-
first expansion;middle: breadth-first expansion; bottom: hy-
brid expansion.

calculate the Jaccard similarity of i and j as follows:

β (i, j) =

∑ |V |

k=1 H (k, i) · H (k, j)∑ |V |

p=1 H (p, i) +
∑ |V |

q=1 H (q, j)
(3)

With the above definitions, we define the transition probability
from hyperedge i to hyperedge j as follows:

p (j |i) =
α (i, j) + β (i, j)∑

k ∈Ni (α (i,k) + β (i,k))
(4)

where Ni denote all hyperedges sharing nodes with hyperedge i .
Based on formula (4), we present three novel hyperedge expansion
strategies to distil multi-level hyperedges: depth-first expansion,
breadth-first expansion, and hybrid expansion.

3.3.1 Depth-First Expansion. Depth-first expansion follows the
idea that a hyperedge has the momentum to accommodate other
hyperedges along a hyperedge path without revisiting the same
hyperedges. As shown in the top of Figure 4, there exists a hyper-
edge path starting from e1 and ending at e3, which can be denoted
as: e1 → e2 → e3. When we expand e1, it will first choose one
adjacent hyperedge such as e2 with the corresponding transition
probability, then it continues to select the next hyperedge from
the neighbours of e2 which has never been visited before (such as
e3). We use pa (0 ≤ pa ≤ 1) to represent how aggressive the depth-
first expansion wants to continue. At each step, the process has
the probability of pa to keep going or stop with the possibility of
1 − pa . More details on the depth-first expansion can be seen in
Algorithm 1. Note that each hyperedge can be expanded indepen-
dently because they only rely on the initial hyperedge set E▷0 , thus
the depth-first expansion algorithm can be efficiently conducted in
parallel.

3.3.2 Breadth-First Expansion. Breadth-First Expansion first ex-
plores a sampled neighbours of the target hyperedge ei , then adds

Algorithm 1: Depth-First Expansion Algorithm
Input: aggressive parameter pa ; initial hyperedges E▷0 ;

hyperedge’s adjacent set {N1, · · · ,Nn };
Output: updated hyperedges E▷1 = {e1, e2, · · · , em };

1 E▷1 = ∅.
2 for ei ∈ E▷0 do
3 P : ei1 → ei2 → · · · eit , ei1 ∈ Nei
4 //generate a hyperedge random walk path using formula

(4) with the stop probability 1 − pa .
5 e▷i = ei ∪ ei1 ∪ ei2 ∪ · · · eit
6 E▷1 = E▷1 ∪ e▷i .
7 end
8 remove duplicated hyperedges in E▷1 .
9 return E▷1

Algorithm 2: Breadth-First Expansion Algorithm
Input: sampled ratio r ; initial hyperedges E▷0 ; hyperedge’s

adjacent set {N1, · · · ,Nn };
Output: updated hyperedges E▷1 = {e1, e2, · · · , em };

1 E▷1 = ∅.
2 for ei ∈ E▷0 do
3 Ci = {ei1, ei2 · · · , eik }, where ei j ∈ Nei , j = 1, · · · ,k ,

k = r × |Nei |. //sample k adjacent hyperedges from
Nei for ei using formula (4).

4 e▷i = ei ∪ ei1 ∪ ei2 ∪ · · · eik
5 E▷1 = E▷1 ∪ e▷i
6 end
7 remove duplicated hyperedges in E▷1 .
8 return E▷1

Algorithm 3: Hybrid Expansion Algorithm
Input: aggressive parameter pa ; sampled ratio r ; initial

hyperedges E▷0 ; hyperedge’s adjacent set
{N1, · · · ,Nn };

Output: updated hyperedges E▷1 = {e1, e2, · · · , em };
1 E▷1 = ∅.
2 for ei ∈ E▷0 do
3 Ci = {ei1, ei2 · · · , eik }, where ei j ∈ Nei , j = 1, · · · ,k ,

k = r × |Nei |. //sample k adjacent hyperedges from
Nei for ei using formula (4).

4 for ei j ∈ Ci do
5 P : e1i j → e2i j → · · · eti j , e

1
i j ∈ Nei j

6 //generate a hyperedge random walk path using
formula (4) with the stop probability 1 − pa .

7 e▷i j = ei j ∪ e1i j ∪ e2i j · · · ∪ eti j
8 end
9 e▷i = e▷i1 ∪ e▷i2 · · · ∪ e▷ik

10 E▷1 = E▷1 ∪ e▷i
11 end
12 remove duplicated hyperedges in E▷1 .
13 return E▷1 .
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all nodes in the visiting hyperedges to ei . Take the middle of Fig-
ure 4 as an example; when we expand hyperedge e1, breadth-first
expansion first select a portion of the neighbours of e1 such as e2
and e3, then e1 adopts all nodes in e2 and e3. We use r to denote the
sampled ratio of e1’s neighbour hyperedges, and then present the
breadth-first expansion strategy in Algorithm 2.

3.3.3 Hybrid Expansion. Intuitively, depth-first expansion intends
to check remote hyperedges, building connections between differ-
ent regions in the network. On the contrary, breadth-first expansion
tries to enlarge the hyperedge with the nearest neighbours, which
allows hyperedges to have more overlap. Based on depth-first ex-
pansion and breadth-first expansion strategies, we further fuse
them and propose a hybrid expansion strategy shown in Algorithm
3. As depicted in the bottom of Figure 4, hybrid expansion first
selects a portion of e1’s neighbours such as e2 and e4, then for each
selected neighbour, it generates a hyperedge path and treats all
nodes in these hyperedges as the new members of e1.

To further illustrate the multiple levels of the hyperedges gener-
ated by our proposed expansion strategies, we take Figure 5 as an
example. When we try to expand hyperedges e1 and e2, they may
all succeed and include with each other. As a result, the previous
two hyperedges now overlap and are reduced as one hyperedge. On
the other case, e1 may manage to swallow e2, but e2 fail to embrace
e1, thus e1 becomes larger than before while e2 stay unchanged,
making the hyperedges hierarchical with multilayer structures. We
can learn the optimal hyperedge numbers, hyperedge hierarchy,
and keep the best balance between local and global structures. Next,
we present a hypergraph neural network to integrate learned hy-
peredges and node features for linking prediction.

3.4 HNN: Hypergraph Neural Network for
Linking Prediction

Having obtained the hyperedges generated by our proposed hy-
peredge expansion strategies, we now present a novel hypergraph
neural network (HNN) to handle each level’s hypergraph. The
model takes hyperedges from each level as input and then aggre-
gate node representations via node-level attention, hyperedge-level
attention, and semantic-level attention.

3.4.1 Node-level Attention. Nodes in the same hyperedge usually
have different importance, and the mutual influences are not uni-
form. To this end, we use the node-level attention to learn the
correlations of nodes within the same hyperedge. Let zli ∈ R1×d

and zlj ∈ R1×d be the input representations of nodes i and j at
level l . Here level l means we use the hypergraph generated by
the l-th hyperedge expansion for l-th HNN layers. The conditional
probability of node i given j within hyperedge e can be defined as
follows:

plv (i |j, e) =
exp

(
σ
(
Hl (i, e) · Ulv (i, i) ·

[
zli ⊕ zlj

]
· p⊺l

))
∑ |V |

t=1 exp
(
σ
(
Hl (t , e) · Ulv (t , t) ·

[
zlt ⊕ zlj

]
· p⊺l

))
(5)

where pl ∈ R1×2d is the fusion parameter. Hl is the hypergraph
incidence matrix, which can be obtained after hyperedges expan-
sions at the l-th level. Ulv is the pre-defined node weight at l-th

Figure 5: Hyperedges expansion cases. Through hyperedge
expansion, we can reduce the number of hyperedges and
construct multi-level hyperedges.

level. In this paper, nodes’ weights are given with the original net-
works and keep unchanged, thus we have U0

v = U1
v = · · ·UL

v . We
let plv (i |j, e) = 0 if node j is not in hyperedge e . With the above
formula, we update node i within hyperedge e as zli |e , which can
be aggregated from other nodes in the same hyperedge using cor-
responding coefficients:

zli |e = σ
©«
|V |∑
j=1

Ulv (j, j)Hl (j, e)

Dl
e (e, e)

· plv (i |j, e) · zlj
ª®¬ (6)

Note that when l = 0, the input representation z0j is the initial
feature of node j.

3.4.2 Hyperedge-level Attention. Many nodes in the network be-
long to multiple hyperedges because these hyperedges are hierar-
chical, and the impact from different hyperedges is also diverse.
To evaluate this impact, we first obtain hyperedge representations,
and then calculate each hyperedge’s weight. Specifically, the repre-
sentation of hyperedge e can be calculated as follows:

ml
e =

|V |∑
i=1

Hl (i, e) · zli |e (7)

whereml
e is the representation of hyperedge e . Following the above,

the weight of hyperedge e is defined as follows:

α le = σ
(
Ue (e, e) · tanh

(
ml
e ·W

l
α + b

l
α

)
· q⊺l

)
(8)

whereWl
α , blα , and ql are all learnable variables.

Note that previous equations (5)-(8) are all calculated under the
same meta-path. For simplicity, we omit the meta-path notation Φ
without loss of generality. To deal with heterogeneous networks, we
just need to generate induced graphs according to different meta-
paths, and then obtain corresponding notations simultaneously.
Furthermore, the representation of node i under meta-path Φ can
be aggregated by all hyperedges which includes i:

zl |Φi =

|E
▷|Φ
l |∑
t=1

Hl |Φ (i, t)

Dl |Φ
v (i, i)

· α
l |Φ
et · zl |Φi |et (9)
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Here zl |Φi is the representation of node i after aggregated by all
hyperedges under meta-path Φ. E▷ |Φl is the hyperedge set under
meta-path Φ generated after l-th hyperedge expansion.

3.4.3 Semantic-level Attention. Note that the node embeddings
from just one meta-path only reflect one aspect of information.
Therefore we need to fuse the information from all candidate meta-
paths. The importance of each meta-path can be defined as the
average weights of all node embeddings in the same meta-path:

βlΦi =
exp

(∑ |V |

j=1 tanh
(
Wl

β · zl |Φij + blβ

)
· fTl

)
∑P
t=1 exp

(∑ |V |

j=1 tanh
(
Wl

β · zl |Φtj + blβ

)
· fTl

) (10)

where P is the total number of all meta-paths.Wl
β , b

l
β , and fl are

learnable parameters. Based on formula (10), the final embedding
is aggregated by all selected meta-paths:

Zl+1 =
P∑
i=1

βlΦi · Z
l |Φi (11)

3.5 Training Framework for Linking Prediction
Let us assume there exist L HNN layers in our framework. HNN
at l-th layer takes the previous embedding Zl as input, and utilises
the hypergraph generated by l-th hyperedges expansion to gen-
erate Zl+1. Then we present the training framework for linking
prediction as follows:

3.5.1 Training Method. To train our framework efficiently, we
first train the 1-st layer by minimising the Cross-Entropy over all
observed pair-wise links and sampled negative links. Then we start
the 1-st hyperedge expansion and generate a new hypergraph. With
the new hypergraph and the node embedding of the 1-st layer, we
then fix the 1-st layer and start to train the 2-nd layer. We repeat
this process until the L-th layer training is finished.

3.5.2 Negative Sampling. To train and test our model, we also need
to generate some negative links. In this paper, we use a bidirectional
negative sampling strategy mentioned in [5], which will draw K
negative samples from both sides of a positive link, and generate
2K negative links in total.

3.5.3 Linking Prediction. To predict a pair-wise link with a type
ϕ, we concatenate all the embeddings from layer 1 to layer L, and
send them to a multilayer perceptron (MLP) for linking prediction.
The predicted score is defined as follows:

p (i, j |ϕ) = MLPϕ

(
f
(
z1i ⊕ z2i ⊕ · · · zLi

)
⊕ f

(
z1j ⊕ z2j ⊕ · · · zLj

))
(12)

where ⊕ is the concatenation operator, f (·) is a fully connected
network to reduce the dimensions of the input vectors.MLPϕ (·) is
the multilayer perceptron predicting pair-wise links with type ϕ.
f (·) andMLPϕ (·) are also trainable using the cross-entropy loss.

4 EXPERIMENTAL SETTINGS
4.1 Datasets
We conduct our experiments on the following widely used datasets:

Table 1: Statistics of the datasets

Datasets Node Type #Number Relation Type #Number Ave. Degree Ave. Path Length

Cora Paper (P) #2,708 P-P #5,429 3.9 6.3

DBLP

Paper (P) #14,376 P-A #41,794 2.9 2.9
Author (A) #14,475 P-C #14,376 2.0 2.0
Conference (C) #20 P-T #114,624 9.8 7.9
Term (T) #8,811

ACM
Paper (P) #3,025 P-A #9,744 2.4 11.1
Author (A) #5,835 P-S #3,025 2.0 2.0
Subjects (S) #58

Yelp

User (U) #1,286 B-U #30,838 15.8 4.1
Service (S) #2 B-S #2,614 2.0 2.0

Business (B) #2,614 B-R #2,614 2.0 2.0
Star Level (L) #9 B-L #2,614 2.0 2.0
Reservation (R) #2

If the network is not connected, we calculate the average path length for the largest connected component.

• Cora [24]: It is a citation network which contains 2,708 pa-
pers from 7 research areas. Each paper has a one-hot code
denoting the presence of 1433 unique words. There are 5,429
pair-wise links in this dataset, which stand for the citation
relations of papers.

• DBLP [44]: It is an academic network that includes four types
of nodes and three types of relations. There are 14,376 paper
nodes (P), 14,475 author nodes (A), 20 conference nodes (C),
and 8,811 term nodes (T) in total. The network has 41,794
P-A links, 14,376 P-C links, and 114,624 P-T links. In this
paper, we predict both P-A links and P-C links. We transfer
P-T links as one-hot codes and treat them as the features of
papers.

• ACM [35]: The ACM dataset contains 3,025 papers and 5,835
authors related to 58 subjects. The network comprises two
types of relations: 9,744 paper-author links and 3025 paper-
subject links.

• Yelp [44]: Yelp is an online social network. The dataset con-
tains five types of nodes, including user (U), service (S), busi-
ness (B), star level (L), and reservation (R), and four types
of relations: B-U, B-S, B-R, and B-L. In this paper, we only
predict links with types of B-U and B-L.

Specifically, we use Cora, DBLP, ACM, and Yelp to evaluate linking
prediction performance with only 10% training links. Then we
discuss more profound topics on our model using the Cora dataset.
We use Cora for further analysis because it has only one type
of relation, which can eliminate unnecessary disturbance from
relations types and more clearly uncover our model’s properties.
More details on these datasets are illustrated in Table 1.

4.2 Baselines
We compare our model with the following state-of-the-art methods:

• Metapath2vec [9]: This method samples a corpus of walk
paths from the network according to different meta-paths
and maximises the conditional probability of the target node
given its context.

• PME [5]: This method first projects node embeddings into
different semantic spaces and then measures each pair of
nodes’ distance. It learns node embeddings via minimising
nodes distances on positive links and maximising the dis-
tances on negative links.

• HAN [35]: Thismethod uses novel-level attention and semantic-
level attention on normal graphs and learn node embeddings
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Table 2: Link prediction results (10% observed links)

Metrics Methods Cora (P-P) DBLP (P-C) DBLP (P-A) ACM (P-A) ACM (P-S) Yelp (B-U) Yelp (B-L)

AUC

Ours 0.6288 0.7251 0.6661 0.6284 0.5975 0.5672 0.5924
Metapath2vec 0.5013 0.5534 0.5429 0.5432 0.5367 0.5016 0.5035

PME 0.5187 0.6070 0.5859 0.5509 0.5477 0.5054 0.5002
HAN 0.5564 0.6206 0.6032 0.5673 0.5564 0.5203 0.5326
HGNN 0.5552 0.6531 0.5678 0.5298 0.5435 0.5191 0.5498
MGCN 0.5673 0.6904 0.6035 0.5964 0.5975 0.5367 0.5564

AP

Ours 0.1455 0.1606 0.1469 0.1868 0.1438 0.1104 0.1206
Metapath2vec 0.0993 0.1025 0.1054 0.1003 0.0997 0.0993 0.0919

PME 0.0979 0.1009 0.1033 0.0941 0.0913 0.0930 0.0914
HAN 0.1203 0.1326 0.1207 0.1154 0.1207 0.1069 0.1204
HGNN 0.1133 0.1393 0.1061 0.0943 0.1372 0.1009 0.1165
MGCN 0.1208 0.1524 0.1203 0.1206 0.1438 0.1096 0.1201

F1

Ours 0.8705 0.8804 0.8742 0.8972 0.8964 0.7506 0.8002
Metapath2vec 0.5602 0.6932 0.7321 0.5564 0.6037 0.5735 0.5942

PME 0.6336 0.7348 0.7675 0.6194 0.6857 0.6015 0.6088
HAN 0.7806 0.8802 0.8697 0.8742 0.8703 0.7562 0.8009
HGNN 0.7952 0.8697 0.8635 0.8597 0.8713 0.7438 0.7929
MGCN 0.8079 0.8702 0.8633 0.8864 0.8806 0.7506 0.8002

via the cross-entropy loss over all labeled nodes. In this pa-
per, we concatenate the embeddings of a pair of nodes and
then predict whether they have a link or not.

• HGNN [10]: This method uses a hypergraph convolutional
network to learns node embeddings from a pre-defined hy-
pergraph. The hypergraph is manually designed via features
clustering and keeps fixed in the whole learning process.

• MGCN [4]: This method first uses a graph convolutional net-
work to learn a temporal node embeddings, and then further
refines these embeddings via a hypergraph neural network.
The hypergraph is manually constructed via community
finding, and each community is treated as one hyperedge.

4.3 Evaluation Metrics and Parameter Settings
We compare our model’s performance with other baselines on AUC
(a.k.a AUC@ROC), AP (a.k.a AUC@PR), and F1 value. For a fair
comparison, the dimension of node embeddings is set as 100 for all
models. We sampled 10 negative links for each positive link, then
sample 10% links as training set, 10% links as valid set, and another
10% links as testing set. We also change the training ratio from 30%
to only 1% to further evaluate our model’s reliability and potential.
For all models, we use PP as a meta-path in Cora. The meta-paths
considered in DBLP include PAP, and PCP. The meta-paths in ACM
include PAP and PSP. The meta-paths in Yelp are BUB, BLB, BSB,
and BRB.

Parameters settings for the baselines are selected by the grid
search method. For Metapath2vec, we set the number of walks
n = 5, walk length ℓ = 10, window size w = 5; For PME, we set
margin m = 10. For our model, we expand hyperedges 3 times
and get 4 hypergraphs, which are numbered from level 0 to level
3. Each level uses one layer HNN and an MLP with two layers. In

the hyperedge expansion algorithm, we let r = 0.3, pa = 0.65. The
model is trained using Adam optimizer with learning rate 0.001 and
weight decay 0.0005.

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we analyse the experimental results. Before all, we
wish to answer the following research questions (RQ):

• RQ1: How does our model work compared to the other
baselines?

• RQ2: How do the hyperedge expansion strategies designed
for multi-level hyperedges work?

• RQ3: How robust and potential when our model deal with
network sparsity?

• RQ4: How does our model benefit from different hyperedge
expansion strategies?

• RQ5: How does hyperedge expansion level impact the per-
formance?

5.1 Effectiveness Analysis on Linking
Prediction (RQ1)

We predict social links with type P-P on Cora, P-C and P-A on
DBLP, P-A, P-S on ACM, and B-U, B-L on Yelp. Note that all these
datasets follow the power-law distribution, which means they are
all sparse networks. Based on these networks, we sampled only 10%
observed links as training set to further evaluate how these models
perform with extremely limited links. We compare our model and
the other baselines within 50 epoch and repeat the evaluation for
10 times. Then we report the averaged AUC, AP, and F1 values in
Table 2.

From Table 2, we find that our model outperforms all the other
baselines. Specifically, on the Cora dataset, our model exceeds the
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(a) hyperedge distribution at level 0 (b) hyperedge distribution at level 1 (c) hyperedge distribution at level 2 (d) hyperedge distribution at level 3

(e) node distribution at level 0 (f) node distribution at level 1 (g) node distribution at level 2 (h) node distribution at level 3

Figure 6: Hyperedges/nodes distributions after multi-level expansions

second at least 1.1% in AUC, 2% in AP, and 7.7% in F1. When pre-
dicting the P-C relation on the DBLP dataset, our model beats the
second by 5% in AUC, 5.4% in AP, and 1.2% in F1. The relative im-
provements are also observed on the other link types and datasets,
from which we can confirm the significant performance of our
model.

Consistent with our previous discussion, we notice that GNN-
based methods such as HAN, HGNN, and MGCN achieve better
performance than Metapath2vec, which only sample the graph as
linear paths. This suggests the importance of information aggre-
gation when we learn node embeddings because it can make the
embeddings smooth on neighbours. However, when the observed
links are extremely limited, the GNN model on normal graphs such
as HAN, is challenging to beat hypergraph-based methods such as
HGNN and MGCN, demonstrating the advantages of hypergraphs
when the network is sparsely observed. Compared with manually
designed hypergraphs, our approach uses hyperedge expansion
strategies to learn multi-level hyperedges and significantly im-
proves the performance, which can be reflected in the comparison
to HGNN and MGCN.

5.2 Hierarchy Analysis on Hyperedge
Expansion (RQ2)

Compared with manually designed hypergraphs, our model uses
hyperedge expansion to distill multi-level hyperedges, significantly
improving linking prediction results. To further illustrate the hier-
archy of our generated hyperedges, we use depth-first hyperedge
expansion strategy to generate hyperedges with 4 levels. Then we
count the hyperedge size and node size in the hypergraph, and
draw Figure 6, which presents the distributions of the hyperedge

size and the node degree (the number of hyperedges a node has) in
each level hypergraph.

Before the hyperedge expansion, we treat graphlets with 2,3,4,5
nodes as the starting hyperedges. The distributions of the hyperedge
size and the node degree at level 0 are shown in Figure 6a and Figure
6e, fromwhich we can see the initial hyperedges only suggest a very
weak hierarchy and are insufficient to support better performance.
However, after the hyperedge expansion, both node degree and
hyperedge size show the power-law distribution obviously, which
can be seen in Figure 6b, 6c, 6d, and 6f, 6g, 6h. The distributions are
very similar to Manh et al. [8], in which they discuss a simulated
hypergraph with multi-level structures and also suggest similar
hyperedge distributions. Through these analyses, we can find that
our hyperedge expansion methods successfully learn multi-level
hyperedges automatically from data.

5.3 Analysis on Network Sparsity (RQ3)
To further explore the potential of exiting methods and analyse the
stability of our model, we also reduce the ratio of training links
from 30% to only 1%. The performance of our model and other
baselines is shown in Figure 7, from which we have the following
observations:

When the training links reduced to only 1%, most baselines have
dropped down to the ground bottom (nearly 0.5 in AUC and 0.0909
in AP, which is the worst case for the dataset). This means most
baselines have been infeasible to learn useful representations for
link predictions. Compared with baselines, our model still keeps
meaningful performance on AUC and AP. The improvements are
even more considerable when the training ratio increases from
1% to 5%, which can further demonstrate our model’s outstanding
performance in sparsely observed networks. With the training ratio
increase from 5% to 30%, most baselines start to work. In particular,
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(a) AUC (b) AP (c) F1

Figure 7: Performance w.r.t observed links ratio

GNN-based methods such as HAN, HGNN, and MGCN are earlier
to improve their performance, while Metapath2vec and PME begin
to show improvement when the training ratio is larger than 10%.
This observation suggests that GNN-based methods perform better
in making node embeddings smooth on pair-wise links.

With the above analysis, we can confirm that our model is robust
and keeps ahead with larger tolerance to the observed link ratio.
This is especially helpful in the real-world situations because most
social networks are sparsely connected or sparsely observed.

5.4 Analysis on Different Hyperedge
Expansion Strategies (RQ4)

To figure out the impact on our proposed hyperedge expansion
strategies, we repeat the evaluation for linking prediction with
different hyperedge expansion strategies on Cora (P-P), DBLP (P-C,
P-A), ACM (P-A, P-S), and Yelp (B-U, B-L).

Figure 8: Performance w.r.t hyperedge expansion strategies

As depicted in Figure 8, we notice that the hybrid expansion
leads by a narrow margin in most cases such as Cora (P-P), DBLP
(P-A), ACM (P-A, P-S), and Yelp (B-L). The advantage of the hybrid
expansion is more observable in Yelp (B-U). However, in DBLP
(P-C), depth-first expansion beats hybrid expansion and keep to
the top. Compare the depth-first expansion with the breadth-first
expansion, we can find that the breadth-first expansion performs
better in Yelp (B-U), keeps similar performances with breadth-first
expansion in Yelp (B-L), ACM (P-S), and DBLP (P-A), and shows
lower results in the rest cases.

Considering the network properties, we can conclude that breadth-
first expansion does better when the nodes in a network have larger
degrees. Depth-first expansion is better than the breadth-first ex-
pansion if the network contains longer paths. Although the hybrid
expansion does better than the other strategies in most cases, it
relies on both depth-first and breadth-first expansion strategies
and inherits two external parameters (aggressive parameter pa , and
sampled ratio r ), which need more work to fit data.

Figure 9: Performance w.r.t hyperedge expansion level

5.5 Impact on Hyperedges Expansion Levels
(RQ5)

Intuitively, hypergraphs’ hierarchical structures should be achieved
within limited expansion levels, which means there is no more
need to expand existing hyperedges and thus save the training time.
Take depth-first expansion as an example, if we expand hyperedges
too many times, we have to reduce the aggressive parameter pa
at higher levels so that the sizes of learned hyperedges are in a
reasonable range. To illustrate this, we use depth-first expansion
strategy with the aggressive parameter pa = 0.65 to expand the
initial hyperedges for 8 times and report the results at each level
in Figure 9 where the horizontal axis is the hyperedge expansion
level, the vertical axis in left is AUC and F1 results, and the right
vertical axis is AP values.
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As shown in Figure 9, we can see that our model’s performance
becomes better with the hyperedge expansion level increase. How-
ever, this trend turns to grow slowly after we conduct 4 times
of hyperedge expansion. This means we do not need to conduct
more hyperedge expansions because only a few times of hyperedge
expansions are sufficient to make the hyperedges hierarchal and
support our model to achieve the best performance.

6 RELATEDWORK
In this section, we discuss related topics in our paper, including
network embedding, hypergraph learning, and link prediction.

6.1 Network Embedding
Network embedding aims to learn low-dimensional representations
for nodes in the network. Traditional methods [12, 26] usually sam-
ple paths from the network and then use the skip-gram method
to preserve neighbouring proximity in the path. Following this
idea, some extensions [17, 37] have been proposed recently so that
the model can deal with heterogeneous networks. Besides these
works, other researches leverage graph neural networks such as
attention networks [35] and convolutional networks [16] to learn
high-quality embeddings via information aggregation [3]. For ex-
ample, Hu et al. [18] design an adversarial learning framework with
a relation generator and discriminator to learn node embeddings
preserving the heterogeneous information in the network. Fu et
al. [11] propose a new information aggregation method based on
meta path. The model includes intra-metapath and inter-metapath
aggregations so that their learned embeddings can fit multiple se-
mantics well. Similarly, Wang et al. [36] also leverage meta-path
to calculate nodes proximities and learn node embeddings for dy-
namic networks. In summary, most of the related works pursue the
smoothness of node embeddings so that the learned representations
can support the downstream task such as node classification and
link prediction. The smoothness of nodes plays a crucial role in the
performance on these tasks, and most of these works achieve node
smoothness using pair-wise links. However, when the pair-wise
links are limited, it will be hard to keep smoothness on the network.

6.2 Hypergraph Learning
Recently, hypergraph learning has been widely used in relational
inference [7], location-based social networks [41], personality per-
ception [49], and recommender systems [50] because of its capacity
for modelling high-level relations. To benefit from hypergraphs,
researchers need to study hypergraph structures and have raised
many interesting works. For example, Zhang et al. [46] propose an
EM algorithm to predict whether a set of objects belong to the same
tulpe, which they called hyperlink. Yoon et al. [43] research the cor-
relation between the hyperedge size and the hyperedge prediction,
and find the limitations of pair-wise interactions. Zhang et al. [48]
study the dynamic hypergraph structure for node classification us-
ing spectral theory. Manh et al. [8] analyse a simulated hypergraph
and demonstrate the importance of hierarchical structures for the
hypergraphs. Besides hypergraph structures, there also exist some
works trying to learn node embeddings from hypergraphs. Inspired
by graph neural networks on normal graphs, hypergraph neural
networks on hypergraphs are also proposed recently. For example,

Feng et al. [10] offer a hypergraph convolutional networks based
on spectral factorization on the Laplacian matrix of a hypergraph.
Zhang et al. [47] use self-attention to learn node embeddings from
the hypergraph. Jiang et al. [20] conduct the convolutional oper-
ation on both vertices and hyperedges and then they present the
hypergraph neural networks on dynamic data. Although much
progress has been achieved, most related works still need to use
manually created hyperedges, which are far from multi-level.

6.3 Linking Prediction
Linking prediction aims to predict whether a pair of nodes in the
graph has a link with the specific type. This problem can be ex-
plored by learning effective node embeddings, which can preserve
neighbour proximity [5, 14, 44]. Recently, GNN-based methods
have been widely applied to this area and suggest the advantages
over traditional methods [4]. For example, Li et al. [23] use a graph
attention network to learn the representations of two networks and
then present a type-aware algorithm to align nodes from the two
networks. Qu et al. [27] predict continuous-time links via temporal
graph neural networks. In real-world situations, most networks fol-
low power-law distributions, which means many nodes have only
limited neighbours. To fit this situation, Hao et al. [15] use nodes’
external attributes to find the most likely positions of nodes. How-
ever, this work can only be used in attributed graphs. To rely less
on external attributes, Ostapuk et al. [25] propose to learn link em-
beddings via active learning. But this work needs persistent manual
annotations. To further improve the performance, researchers have
realised the importance of higher-level relations on the network
[2, 29]. For example, Shao et al. study the correlations between
network community and link prediction, then they propose a link
prediction method based on low-rank matrix completion. Wang et
al. [38] extract multi-level subgraphs and then use a graph neural
network to learn the representations of each pair of nodes for link
prediction. Joshi et al. [22] further propose a method to prune net-
work subgraphs to that the neighbour proximity can be learned
more effectively in knowledge graphs. Although these works have
achieved good performance, rare works try to consider how their
models keep stable results when the observed links are extremely
limited, and most of them still heavily rely on pair-wise links. In
the real world, however, most pair-wise relations are not easy to be
observed, making the linking prediction under sparsely observed
networks still challengeable.

7 CONCLUSION
In this paper, we aim to predict social links on sparsely observed
networks, and propose a novel hypergraph-based framework. We
uncover the importance of hyperedge hierarchy in the linking pre-
diction and present three novel methods to generate multi-level
hyperedges. We use a well-designed hypergraph neural network to
learn node embeddings, and the experimental results confirm the
superiorities of our model over state-of-the-art methods.
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