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Abstract

Fine-grained recognition is challenging in computer vision and artificial intelligence. It

aims to identify under subcategories of given images but suffers from small inter-class

variance and large intra-class variance along with multiple object scales and complex

background, leading to a more complex problem space. Recently, deep neural networks

have extensively promoted the development of fine-grained recognition. However, the

existing methods still suffer from several issues, including data limitation, model in-

terpretation, and performance. In this thesis, we propose several data-transformation

models to address these challenges.

First, we develop a unified framework (MGN-CNN) based on a mixture of experts to

promote diversity among experts by combing a gradually-enhanced learning strategy

and a KullbackLeibler divergence based constraint. The strategy learns new experts

on the dataset with prior knowledge from former experts and adds them to the model

sequentially. At the same time, the introduced constraint forces the experts to produce

diverse prediction distributions. These drive the experts to learn the task from different

aspects, making them specialized in various subspace problems.

Second, we propose Intra-class Part Swapping (InPS) that produces new data by per-

forming attention-guided content swapping on input pairs from the same class. Com-

pared with previous approaches, InPS avoids introducing noisy labels and ensures a

likely holistic structure of objects in generated images. We demonstrate InPS outper-

forms the most recent augmentation approaches in both fine-grained recognition and

weakly object localization.

Finally, we explore fine-grained zero-shot learning and introduce a novel structure-aware

feature generation scheme, termed SA-GAN, to explicitly account for the topological

structure in learning both the latent space and the generative networks. This topology-

preserving mechanism enables our method to significantly enhance the generalization

capability on unseen-classes and consequently improve the classification performance.
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