Examination of Pancreatic Transdifferentiation in the Livers of Animals

by Que Tran La

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of: Professor Ann M. Simpson and Doctor Najah T. Nassif

University of Technology Sydney Faculty of Science

March 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Que Tran La declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Life Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research was supported by an NHMRC grant (APP1086256, Simpson, Alexander, O'Brien) and by the Australian Government Research Training Program Scholarship.

Signature:

Production Note: Signature removed prior to publication.

Date: 26/03/2021

Acknowledgements

Firstly, I would like to thank my supervisors Prof. Ann Simpson and Dr. Najah Nassif for their guidance and support throughout the duration of my PhD studies. I am very grateful for the opportunities to develop my knowledge and skills in the field of gene therapy under their guidance. I would like to especially thank Dr. Binhai Ren (UTS) for performing the FFO surgeries, an important part of my experiments as well as A/ Prof. Bronwyn O'Brien for her helpful advice on my experiments. I would also want to show my appreciation to Prof. Ian Alexander, Dr. Grant Logan, Dr. Sharon Cunningham and Ms Neeta Khandekar [Children's Medical Research Institute (CMRI), Westmead] for producing the AAV8 vectors that were used in my experiments. I would also like to thank the staff of the Ernst Facility, who have assisted me in monitoring and caring for the animals and especially Ms Fiona Ryan and Ms Lalit Overlunde for coaching me in the aspects of animal care. I would like to thank all the laboratory and administrative staff at the School of Life Sciences, especially Ms Sarah Osvath and Ms Shannon Hawkins for their assistance. Finally, I would like to thank my fellow colleagues of the Simpson group and my friends for their support over the years.

List of Publications

- La, Q.T., Ren, B., Logan, G.J., Cunningham, S.C., Khandekar, N., Nassif, N.T., O'Brien, B.A., Alexander, I.E., and Simpson, A.M., Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice. Cells, 2020. 9(10): p. 2227.
- Ren, B., La, Q.T., O'Brien, B.A., Nassif, N.T., Tan, Y., Gerace, D., Martiniello-Wilks, R., Torpy, F., Dane, A.P., Alexander, I.E., and Simpson, A.M., *Partial* pancreatic transdifferentiation of primary human hepatocytes in the livers of a humanised mouse model. The Journal of Gene Medicine, 2018. 20(5): p. e3017.

List of Presentations

- La, Q.T., Ren, B., Logan, G.J., Cunningham, S.C., Khandekar, N., Nassif, N.T., O'Brien, B.A., Alexander, I.E., and Simpson, A.M., D The reversal of diabetes in non-obese-diabetes (NOD) mice using adeno associated viral vector (AAV) and furin-cleavable human insulin (*INSFUR*) gene . In: Australasian Diabetes Congress, Sydney, 2019.
- La, Q.T., Ren, B., Logan, G.J., Cunningham, S.C., Khandekar, N., Nassif, N.T., O'Brien, B.A., Alexander, I.E., and Simpson, A.M., Delivery of The Insulin gene Using an Integrating Adeno-Associated Viral Vector (AAV) to Diabetic NOD mice. In: The American Diabetes Association Scientific 79th Scientific Session, San Francisco, USA, 2019.
- La, Q.T., Ren, B., O'Brien, B.A., Nassif, N.T., Alexander, I.E, and Simpson, A.M., Reversal of diabetes in a humanised mouse model. In: Australasian Cell and Gene Therapy Society Biannual Meeting, Sydney, Australia, 2017.
- La, Q.T., Ren, B., O'Brien, B.A., Nassif, N.T., Alexander, I.E, and Simpson, A.M., Pancreatic transdifferentiation in the livers of a humanised mouse model engineered to express insulin. In: New Horizons Conference, Sydney, Australia, 2015.

Format of the Thesis

This is a thesis by compilation. The first chapter is the introduction to the research study and the review of the literature. Chapter 2 describes the experiments, general materials and methods, followed by chapter 3, 4 and 5 showing detailed methods, results and the discussion of each subset of experiments. Chapter 4 is a published peer reviewed journal article. The last chapter of this thesis is the general discussion and the recommendation for future studies.

Publication Included in the Thesis

Title: Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice

Authors: Que T. La ^{1,2}, Binhai Ren ^{1,2}, Grant Logan ³, Sharon C. Cunningham ³, Neeta, Khandekar ³, Najah T. Nassif ^{1,2}, Bronwyn A. O'Brien ^{1,2}, Ian E. Alexander ^{3,4} and Ann M. Simpson^{1,2}

- ¹ School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
- ² Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
- ³ Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Hospitals Network, University of Sydney, 214 Hawkesbury Rd, Westmead NSW 2145, Australia;
- ⁴ Discipline of Child and Adolescent Health, University of Sydney, Crn Hainsworth and Hawkesbury Rd, Westmead NSW 2145, Australia

Journal: Cells; Issue: 10

Received: 03 August 2020; Accepted: 30 September 2020; Published: 2 October 2020

Author Contributions

Ann M. Simpson¹, Ian E. Alexander ^{3,4}, and Bronwyn A. O'Brien ^{1,2} initiated the concept of this study and secured funding.

Ann M. Simpson¹ and Que T. La ^{1,2} wrote the draft article and all authors contributed to review of the final article and editing.

Binhai Ren^{1,2} produced the lentiviral vector and with Que T. La^{1,2}, contributed to experimental design, performed the animal experiments, immunohistochemistry, RT-PCR analysis and data analysis.

Grant Logan ³ designed the AAV vectors, contributed to experimental design and performed data analysis.

Sharon C. Cunningham ³ designed the AAV/*piggyBac* vectors and contributed to experimental design and data analysis.

Neeta, Khandekar³ produced the AAV vectors and performed VCN and data analysis.

Najah T. Nassif ^{1,2} contributed to the experimental design and performed primer design and data analysis.

Bronwyn A. O'Brien^{1,2} contributed to experimental design and data analysis.

All authors contributed to the interpretation of the data.

Signatures of the authors

Name	Signature
Que T. La	
	Production Note:
	Signature removed prior to publication.
Dr. Binhai Ren	
	Production Note:
	Signature removed prior to publication.
Dr. Grant Logan ³	
	Production Note:
	Signature removed prior to publication.
Dr. Sharon C. Cunningham3	
_	Production Note:
	Signature removed prior to publication.
Ms Neeta, Khandekar ³	
	Production Note:
	Signature removed prior to publication.
Dr. Najah T. Nassif ¹¹²	
5	Production Note:
	Signature removed prior to publication.
A.Prof. Bronwyn A. O'Brien	
5	Production Note:
	Signature removed prior to publication.
Prof. Ian E. Alexander ³¹⁴	
	Production Note:
	Signature removed prior to publication.
Prof. Ann M. Simpson	Production Note:
	Signature removed prior to publication.

Table of Contents

	Page
Certificate of Original Authorship	i
Acknowledgment	ii
List of Publications	iii
List of Presentations	iv
Format of the Thesis	v
Publication Included in the Thesis	vi
Author Contributions	vii
Table of Contents	ix
List of Figures and Tables	XV
List of Abbreviations	xxii
Abstract	xxvii

Char	pter1: Int	roduction	1
1.1	Introd	uction	2
1.2	Overvi	ew of insulin synthesis, storage, release and mechanism	4
	of actio)n	
1.3	The ro	les of pancreatic transcription factors in the development	8
	of pane	creatic β-cells	
	1.3.1	Forkhead box A2 (Foxa2)	12
	1.3.2	Pancreatic specific transcription factor 1 (Ptf1)	13
	1.3.3	Pancreatic duodenal homeobox $1(PdxI)$	13
	1.3.4	Neurogenin3 (Ngn3)	14
	1.3.5	Neuronal differentiation 1 (NeuroD1)	15
	1.3.6	Paired box 4 (Pax4)	15
	1.3.7	Nierenberg and Kim 2 homeobox 2 (Nkx2.2)	16
	1.3.8	Nierenberg and Kim 6 homeobox 1 (Nkx6.1)	16
	1.3.9	Paired box 6 (Pax6)	17
	1.3.10	V-maf musculoaponeurotic fibrosarcoma oncogene	17
		homolog A (MafA)	

1.4	Overv	iew of T1D	18
	1.4.1	Aetiology and pathogenesis	18
	1.4.2	Clinical features and complications of T1D	20
	1.4.3	Current treatments for type I diabetes mellitus	20
		1.4.3.1 Insulin therapy	20
		1.4.3.2 Pancreas or islet transplantation	21
1.5	Poten	tial treatments for type T1D	
	1.5.1	Stem cell therapy	22
	1.5.2	Gene therapy	23
1.6	Vecto	rs for gene therapy	23
	1.6.1	Retroviral and lentiviral vectors	25
	1.6.2	Herpes simplex viral vectors	27
	1.6.3	Adenoviral vectors and helper-dependent-adenoviral	28
		vectors	
	1.6.4	Recombinant adeno-associated viral vectors	29
1.7	Targe	t cells for T1D gene therapy	31
1.8	Liver-	-directed gene therapy	33
1.9	Aims	of the project	37
_		Iaterial and Methods	40
2.1		r constructs	41
	2.1.1	HMD (lentiviral) vector	41
	2.1.2	AAV8 and AAV8/piggyBac vector systems	41
2.2		al housing conditions, monitoring and care	44
	2.2.1	Housing conditions	44
	2.2.2	Animal monitoring and care	44
	2.2.3	Intraperitoneal injection of AAV vectors	45
	2.2.4	Intraperitoneal glucose tolerance test (IPGTT)	45
	2.2.5	Pre-operative care, anaesthesia and monitoring	46
	2.2.6	Intra-operative care, anaesthesia and monitoring	47
	2.2.7	Post-operative care	48
2.3	Tissue	e collection and storage	49

2.4	DNA e	extraction	from mouse livers	49
	2.4.1	DNA ex	traction	49
	2.4.2	Quality	and quantity assessment of isolated DNA	50
2.5	RNA e	extraction	from mouse tissue	50
	2.5.1	RNA ex	traction	50
	2.5.2	Quality	and quantity assessment of isolated RNA	51
2.6	Remov	val of DNA	A from RNA extract	51
2.7	Synthe	esis of con	nplimentary DNA (cDNA) by reverse	52
	transc	ription		
2.8	Prepa	ration of I	DNA standards for quantitative polymerase	53
	chain	reaction		
	2.8.1	Preparin	ng media for transformation and propagation of	54
		plasmid	s	
	2.8.2	Propaga	tion of the AAV8-eGFP and pGEMTEZ-GAPDH	54
		plasmid	s	
		2.8.2.1	Bacterial transformation of AAV8-eGFP	54
			plasmids	
		2.8.2.2	Bacterial transformation of pGEMTEZ-GAPDH	54
			plasmids	
		2.8.2.3	Generation of the AAV8-eGFP and the	54
			pGEMTEZ-GAPDH plasmid clones	
		2.8.2.4	Plasmid preparation	54
		2.8.2.5	Plasmid digestion and purification	55
2.9	Polym	erase chai	in reactions	56
	2.9.1	Oligonu	cleotide primers	56
	2.9.2	Detectio	on of target gene expression by reverse transcription	60
		polymer	rase chain reaction (RT-PCR)	
	2.9.3	RT-qPC	R using SYBR Green	61
	2.9.4	RT-qPC	R using TaqMan assays	63
	2.9.5	AAV8 v	vector copy number (VCN) quantitation by qPCR	64
		using SY	YBR Green	

2.10	Detecti	ion of the Reporter Fluorophores	65
	2.10.1	Slide fixation	65
	2.10.2	Microscopic detection of fluorescent reporter fluorophores	65
2.11	Statisti	ical analysis	66
Chap	ter 3: St	udying the effects of the AAV8 vectors transduction in	66
STZ-i	induced	diabetic NOD/scid mouse model	
3.1	Introd	uction	67
3.2	Specifi	ic aims	69
3.3	Materi	ial and methods	69
	3.3.1	Inducing diabetes in NOD/scid mice using STZ	69
		3.3.1.1 Preparation of STZ solution for injection	69
		3.3.1.2 Inducing diabetes in NOD/scid mice by STZ	70
		injections	
	3.3.2	In vivo transduction	70
	3.3.2	Quantitative PCR (qPCR) analysis of AAV8 vector copy	71
		number after transduction	
	3.3.4	Statistical analysis	72
3.4	Results	s	72
	3.4.1 The transduction of STZ-induced diabetic NOD/scid mice		72
		with AAV8-INS-FUR	
	3.4.2	The transduction of STZ-induced diabetic NOD/scid mice	75
		with AAV8-Pdx1	
	3.4.3	The transduction of STZ-induced diabetic NOD/scid mice	78
		with AAV-NeuroD1	
	3.4.4	The transduction of STZ-induced diabetic NOD/scid mice	81
		with the combination of AAV8-INS-FUR and AAV8-Pdx1	
	3.4.5	The transduction of STZ-induced diabetic NOD/scid mice	84
		with the combination of AAV8-INS-FUR and AAV8-	
		NeuroD1	

	3.4.6	Transduc	ction of STZ-induced diabetic NOD/scid mice with	87
		the comb	vination of AAV8-INS-FUR, AAV8-Pdx1 and	
		AAV8-N	leuroD1	
	3.4.7	RT-PCR	analysis of pancreatic gene expression in the	90
		transduce	ed livers of the STZ-induced diabetic NOD/scid	
		mice: De	termining evidence of transdifferentiation	
	3.4.8	The trans	sduction of STZ-induced diabetic NOD/scid mice	92
		with the	combination of AAV8-INS-FUR and FFO surgery	
3.5	Discus	sion		94
Chai	oter 4: St	udving the	e effects of the AAV8 vector transduction in	97
-		i c	-diabetic (NOD) mouse model	
4.1	Introd			98
4.2		er conclusi	ion	115
	I			
Chaj	pter 5: T	ranscripto	me analysis of the NOD mouse livers	116
trans	sduced b	y AAV8- <i>I</i> /	NS-FUR	
5.1	Introd	uction		117
5.2	Mater	ial and Me	thods	118
5.3	Result	s and discu	ission	121
	5.3.1	Summary	y of the microarray results	121
	5.3.2	Pathways	s, diseases and biological functions and	127
		hepatotox	xicity functions associated with the genes that	
		were diff	Ferentially expressed	
		5.3.2.1	Comparing the AAV group to the normal group	127
		5.3.2.2	Comparing the AAV+FFO group to the normal	133
			group	
		5.3.2.3	Comparing the AAV+FFO group to the AAV	138
			group	
	5.3.3	Comparin	ng the pathways of interest across the three groups	143
		of mice		

		5.3.3.1	The Adar1 editing deficiency immune response	143
			pathway	
		5.3.3.2	Glycolysis and gluconeogenesis	151
		5.3.3.3	Glycogen metabolism pathway	157
	5.3.4	Compari	ng the expression levels of the pancreatic genes of	161
		interest a	across all the experiments	
5.4	Conclu	ision and	future directions	163
Chap	ter 6: G	eneral dis	cussions	165
6.1	The eff	ficacy of t	he AAV8 vectors	166
	6.1.1	AAV8 d	elivery of INS-FUR and pancreatic transcription	166
		factor ge	enes could not induce the partial liver to pancreas	
		transdiff	erentiation	
	6.1.2	Transdue	ction efficiency of the AAV8 vectors	169
6.2	FFO s	urgery w	vas insufficient in inducing the liver-to-	170
	pancr	eas trans	differentiation after the AAV8	
	transc	luction		
6.3	The re	oles of th	e VSV-G capsid and the hybrid	171
	HIV/N	ASCV pr	omoters of the HMD vector in the	
	transc	lifferenti	ation	
6.4	The eff	ficacy of t	he AAV8/ <i>piggyBac</i> vectors system in delivering	172
	the IN.	S-FUR gei	ne	
6.5	Conclu	ision and	future recommendation	173
Refer	ences			175
Appe	ndices			190

List of Figures and Tables

Figur	Figure	
1.1	Processing of bioactive insulin from its inactive precursor	5
1.2	The mechanism of insulin secretion.	6
1.3	Insulin induces cellular glucose uptake	7
1.4	The expression of pancreatic transcription factors at various stages	9
	of pancreatic β-cell development	
1.5	Speculated pancreatic β-cell differentiation pathways	12
1.6	Immunological processes leading to pancreatic β -cell dysfunction	19
2.1	Schematic representation of the AAV8 construct maps	43
3.1	Immunofluorescent detection of the marker gene venus in a liver of	73
	a representative diabetic NOD/scid mouse transduced by AAV8-	
	INS-FUR	
3.2	BGLs and body weights of diabetic NOD/scid mice transduced by	74
	AAV8-INS-FUR or AAV8-venus	
3.3	AAV8 copy numbers in the livers of the diabetic NOD/scid mice	75
	transduced by AAV8-INS-FUR	
3.4	AAV8 copy numbers in the livers of diabetic NOD/scid mice	76
	transduced by AAV8-Pdx1	
3.5	BGLs and body weights of diabetic NOD/scid mice transduced by	77
	AAV8-Pdx1	
3.6	Expression of the marker gene cerulean in a liver of a representative	79
	diabetic NOD/scid mouse transduced by AAV8-NeuroD1	
3.7	BGLs and body weights of diabetic NOD/scid mice transduced by	80
	AAV8-NeuroD1 or AAV8-cerulean	
3.8	AAV8 copy numbers in the livers of diabetic NOD/scid mice	81
	transduced by AAV8-NeuroD1	
3.9	Transgene copy numbers in the livers of the diabetic NOD/scid	82
	mice transduced by the combination of AAV8-INS-FUR and	
	AAV8-Pdx1	

Figu	ure	
3.10	BGLs and body weights of diabetic NOD/scid mice transduced by	83
	the combination of AAV8-INS-FUR and AAV8-Pdx1	
3.11	Transgene copy numbers in the livers of the diabetic NOD/scid	84
	mice transduced by the combination of AAV8-INS-FUR and	
	AAV8-NeuroD1	
3.12	Daily BGLs and weights of diabetic NOD/scid mice transduced by	86
	the combination of AAV8-INS-FUR and AAV8-NeuroD1	
3.13	Transgene copy numbers in the livers of diabetic NOD/scid mice	88
	transduced by the combination of AAV8-INS-FUR, AAV8-Pdx1	
	and AAV8-NeuroD1	
3.14	BGLs and body weights of diabetic NOD/scid mice transduced by	89
	combinations of AAV8-INS-FUR, AAV8-Pdx1 and AAV8-	
	NeuroD1	
3.15	RT-PCR detection of transgene and other pancreatic gene	91
	expression in the AAV8 transduced diabetic NOD/scid mouse livers	
3.16	Weekly BGLs and weights of diabetic NOD/scid mice transduced	93
	by AAV8-INS-FUR and followed with FFO surgery	
5.1	PCA mapping of the microarray datasets from the AAV8-INS-FUR-	122
	venus transduced and the normal livers of the NOD mice	
5.2	Differential gene expression in the livers of the AAV-INS-FUR	123
	transduced NOD mice	
5.3	The differential gene expression of the AAV group in comparison to	124
	the normal group	
5.4	The differential gene expression of the AAV+FFO group in	125
	comparison to the normal group	
5.5	The differential gene expression of the AAV+FFO group in	126
	comparison to the AAV group	
5.6	The canonical pathways associated with the differential gene	129
	expression of the AAV group relatively to normal group	
5.7	Canonical pathways associated with the differential genes of the	135
	AAV+FFO group relatively to the normal group	

Figure		
5.8	Canonical pathways associated with the differentially expressed	140
	genes of the AAV+FFO group relatively to the AAV group	
5.9	Differential expression of the genes in the Adar1 editing deficiency	147
	immune response pathway of the AAV group relatively to the	
	normal group	
5.10	Differential expression of the genes in the Adar1 editing deficiency	148
	immune response pathway of the AAV+FFO group relatively the	
	normal group	
5.11	Differential expression of the genes in the Adar1 editing deficiency	150
	immune response pathway of the AAV+FFO group relatively to the	
	AAV group	
5.12	Differential expression of genes in the glycolysis and	153
	gluconeogenesis pathways in the AAV group relatively to the	
	normal group	
5.13	Differential expression of the genes in the glycolysis and	155
	gluconeogenesis pathways in the AAV+FFO group relatively to the	
	normal group	
5.14	Differential expression of the genes in the glycolysis and	156
	gluconeogenesis pathways of the AAV+FFO group relatively to the	
	AAV group	
5.15	Differential expression of the genes involves in the glycogen	158
	metabolism pathways of the AAV group relatively to the normal	
	group	
5.16	Differential expression of the genes involves in the glycogen	159
	metabolism pathways of the AAV+FFO group relatively to the	
	normal group	
5.17	Differential expression of the genes involves in the glycogen	160
	metabolism pathways of the AAV+FFO group relatively to the	
	AAV group	

Figu	re	Page
6.1	Summary of the BGLs, IPGTTs and the expression of endogenous	168
	pancreatic genes in the livers of the NOD/scid and NOD mice	
	transduced by AAV8 vectors	

Table		Page
1.1	Roles of pancreatic transcription factors in β -cells development	10
1.2	Characteristics of viral vectors used for gene therapy	24
2.1	List of AAV8 vector systems used in this research work	42
2.2	Reaction constituents for removal of contaminating genomic DNA	52
	from RNA samples by DNase digestion	
2.3	Components of the Omniscript [®] Reverse Transcriptase reaction	53
	mixture	
2.4	Components of the Tetro cDNA Synthesis Reverse Transcriptase	53
	reaction mixture	
2.5	Restriction digest reaction components for digestion of the AAV8-	56
	LSP-eGFP plasmid	
2.6	Components of the pGEMTEZ-GAPDH plasmid restriction reaction	56
	mixture	
2.7	Sequences of primers used to amplify and quantitate the expression	58
	of the target genes of interest	
2.8	Typical reaction constituents for PCR amplification reactions	60
2.9	RT-PCR amplification parameters	61
2.10	Components of the RT-qPCR reactions using the PowerUp ^{TM}	62
	SYBRGreen® Master Mix qPCR reaction mixture	
2.11	Fast RT-qPCR parameters for amplification using the PowerUp ^{TM}	62
	SYBRGreen® Master Mix	
2.12	Reaction components of RT-qPCR using TaqMan ® Fast Advance	63
	Master Mix qPCR reaction mixture	
2.13	RT-qPCR parameters for gene expression quantitation using the	64
	TaqMan ® Fast Advanced Master Mix	
2.14	Components of the RT-qPCR reactions using the PowerUp ^{TM}	65
	SYBRGreen® Master Mix qPCR reaction mixture	
3.1	Combinations of AAV8 vectors and dosages used in the liver	71
	transduction experiments	

Table		Page
5.1	The top 20 pathways identified by the TAC program as being	128
	associated with the differential gene expression in the comparison	
	between the AAV group and the normal group	
5.2	Top 10 canonical pathways with positive z-score associated with the	130
	differential gene expression of the AAV group relatively to normal	
	group	
5.3	Canonical pathways with negative z-score associated with the	130
	differential gene expression of the AAV group relatively to normal	
	group	
5.4	The top 5 diseases and bio functions associated with the	131
	differentially expressed genes of the AAV group relatively to	
	normal group	
5.5	Comparison of hepatotoxicity functions between the AAV group	133
	and the normal group	
5.6	The top 20 pathways identified by the TAC program as being	134
	associated with the differentially expressed genes of the AAV+FFO	
	group relatively to the normal group	
5.7	Pathways with positive z-score identified by the IPA program as	165
	being associated with the differentially expressed genes of the	
	AAV+FFO group relatively to the normal group	
5.8	Comparison of hepatotoxicity functions between the AAV+FFO	137
	group and the normal group	
5.9	Top diseases and bio functions associated with the differentially	138
	expressed genes of the AAV+FFO in comparison to the normal	
	group	
5.10	The top 20 pathways identified by the TAC program as being	139
	associated with the differentially expressed genes of the AAV+FFO	
	group relatively to the AAV group	
5.11	The top 5 diseases and bio functions and bio functions associated with	141
	the differentially expressed genes of the AAV+FFO group relatively	
	to the AAV group	

Table		Page
5.12	Comparison of hepatotoxicity functions between the AAV+FFO	142
	group and the AAV group	
5.13	Fold-changes in the expression levels of genes in the Adar1 editing	144
	deficiency immune response pathway	
5.14	Fold-changes in the expression levels of pancreatic genes of interest	162
	and endogenous control genes	

List of Abbreviations

9330175E14Rik	RIKEN cDNA 9330175E14 gene
AAV	Recombinant adeno-associated virus
Ad	Adenovirus
Adar	adenosine deaminase, RNA-specific
Adar1	Double-stranded RNA-specific adenosine deaminase 1
AIHW	Australian Institute of Health and Welfare
APC	Antigen presenting cells
Apol9a	apolipoprotein L 9a
Apol9b	apolipoprotein L 9b
Arx	Aristaless related homeobox
ATP	Adenosine triphosphate
BGL	Blood glucose levels
bHLH	basic helix-loop-helix
B-H-p-value	Benjamini-Hochberg-P-value
Ca^{2+}	Calcium ion
Ccl5	Chemokine (C-C motif) ligand 5
CD28	Cluster of Differentiation 28
CD40	Cluster of Differentiation 40
Cdc42	Cell division cycle 42
cDNA	Complementary deoxyribonucleic acid
CMRI	Westmead Children Medical Research Institute
CSII	Continuous subcutaneous insulin infusion
Cxcl10	chemokine (C-X-C motif) ligand 10
Cxcl11	chemokine (C-X-C motif) ligand 11
Ddx58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58
Ddx60	DEAD (Asp-Glu-Ala-Asp) box polypeptide 60
Dhx58	DEXH (Asp-Glu-X-His) box polypeptide 58
DNA	Deoxyribonucleic acid
eGFP	Enhanced green fluorescent protein

ER	Endoplasmic reticulum
FAH	Fumarylacetoacetate hydroxylase
FDR	False detection rate
FFO	Full flow occlusion
Foxa2	Forkhead box A2
G6pc	Glucose-6-phosphatase catalytic
Gbp3	Guanylate binding protein 3
Gbp6	Guanylate binding protein 6
GDM	Gestational diabetes mellitus
GK	Glucokinase
GLUT2 (Slc2a2)	Glucose transporter 2
GLUT4 (Slc2a4)	Glucose transporter 4
Gm4951(Isg15)	predicted gene 4951
GPCRs	G protein coupled receptors
Gyg	Glucogenin
Gys2	Glycogen synthase 2
h	Hour
H4IIE/ND	Rat liver cell line (H4IIE) transfected with NeuroD1 gene
H4IIEins/ND	Rat liver cell line (H4IIE) transfected with INSFUR and
	NeuroD1 genes
HDAd	Helper-dependent adenoviral vector
НК3	Hexokinase3
HIV	Human immunodeficiency virus
HLAs	High-risk human leukocyte antigens
HMD/INSFUR	Lentiviral vector carrying INSFUR gene
HMGA2	AT-hook2 gene
HNF1	Hepatocyte Nuclear Factor 1
HNF6	Hepatocyte Nuclear Factor 6
HSV	Herpes simplex virus
IDF	International Diabetes Federation
Ifi44	Interferon-induced protein 44
Ifit1	Interferon-induced protein with tetratricopeptide repeats 1

Ifit3	Interferon-induced protein with tetratricopeptide repeats 3
IFN-γ	Interferon γ
Ikbke	Inhibitor of nuclear factor kappa B kinase subunit epsilon
Ikbkg	Inhibitor of nuclear factor kappa B kinase regulatory subunit
	gamma
IL-1β	Interleukin 1 ^β
INS-FUR	Furin-cleavable insulin
i.p	intraperitoneal
IPA	Ingenuity Pathway Analysis
IPCs	Insulin-producing-cells
IRF	Interferon regulator factor
Irf7	Interferon regulatory factor 7
Isg15	ISG15 ubiquitin-like modifier; Predicted gene 9706
ITRs	Inverted terminal repeats
kb	Kilobase
kg	Kilogram
Keap1-Nrf2	Kelch-like ECH-associated protein 1-nuclear factor (erythroid-
	derived 2)-like 2
LSP	Apolipoprotein E (ApoE) enhancer and the human α 1-
	antitripsin (hAAT) promoter
LTRs	Long terminal repeats
Ly6a	Lymphocyte antigen 6 complex, locus A
Ly6c1	lymphocyte antigen 6 complex, locus C1; lymphocyte antigen 6
	complex, locus C2
MafA	V-maf musculoaponeurotic fibrosarcoma oncogene homolog A
MafB	V-maf musculoaponeurotic fibrosarcoma oncogene homolog B
Map3k7	Mitogen-activated protein kinase 7
min	Minute
mRNA	Messenger ribonucleic acid
mmol	Millimole
MSCV	Mouse stem cell virus
Mx1	MX dynamin-like GTPase 1

Mx2	MX dynamin-like GTPase 2
NeuroD1	Neuronal differentiation 1
ng	nanogram
Ngn3	Neurogenin3
Nkx2.2	Nierenberg and Kim 2 homeobox 2
Nkx6.1	Nierenberg and Kim 6 homeobox 1
Nlrc5	NLR family, CARD domain containing 5
NOD	Non-obese diabetic
NOD/scid	Non-obese-diabetic/ severe combined immunodeficiency
NTBC	2-(2-nitro-4-trifluoro-methylbenzoyl) 1,3-cyclohexedione
Oasla	2'-5' oligoadenylate synthetase 1A
Oasl1	2'-5' oligoadenylate synthetase-like 1
Oasl2	2'-5' oligoadenylate synthetase-like 2
Pax4	Paired box 4
Pax6	Paired box 6
PC1	Processing endopeptidase 1
PC2	Processing endopeptidase 2
PCA	Principal component analysis
Pck1	Phosphoenolpyruvate carboxykinase 1, cytosolic gene
PCR	Polymerase chain reaction
Pdx1	Pancreatic duodenal homeobox1
PKR	Protein Kinase R
Pklr	Pyruvate kinase liver and red blood cell gene
Ptf1	Pancreatic specific transcription factor 1
Ptfla (or P48)	Pancreatic specific transcription factor 1a
Rsad2	Radical S-adenosyl methionine domain containing 2
Rtp4	Receptor transporter protein 4
RT-PCR	Reverse transcriptase polymerase chain reaction
RT-qPCR	Quantitative reverse transcriptase polymerase chain reaction
SAP	Sensor augmented pump
S.C	Subcutaneous
SCID	Severe combined immunodeficiency

sec	Second
Sp100	Nuclear antigen Sp100
SPINK 2	Serine protease inhibitor Kazal-type 2
STZ	Streptozotocin
T1D	Type 1 diabetes
T2D	Type 2 diabetes
TAC	Transcriptome Analysis Console
Tgtp1	T cell specific GTPase 1
Tgtp2	T cell specific GTPase 2
Th1	T helper1
Th2	T helper 2
Tlr3	Toll-like receptor 3
Tu	Transduction unit
Usp18	Ubiquitin specific peptidase 18
VCN	Vector copy number
vg	Viral genome
VSV-G	Vesicular stomatitis virus envelope glycoprotein G
Wnt	Wingless-related integration site
Xafl	XIAP associated factor 1
Zbp1	Z-DNA binding protein 1
α-cell	Alpha cell
β-cell	Beta-cell
δ-cells	Delta-cell

Abstract

Type I diabetes mellitus (T1D) is a chronic metabolic disorder resulting from the autoimmune attack and destruction of the pancreatic β -cells, leading to insulin deficiency and hyperglycaemia. The condition is currently managed by insulin therapy, which delays but does not fully prevent the long-term complications of the disease. The only cure for T1D is pancreas or islet transplantation; however, due to the lack of available organs and the complications from immunosuppression, transplantation is not widely applied. Gene therapy is one treatment being considered to treat and/ or cure T1D.

In earlier studies, our group delivered a lentiviral vector (HMD) carrying the furincleavable human insulin gene (*INS-FUR*) to streptozotocin (STZ)-induced diabetic rats, non-obese-diabetic mice, pancreatectomised diabetic pigs and humanized FRG mice using intervallic infusion of the vectors in full flow occlusion (FFO), a surgical technique that isolated the liver from the circulation. Reversal of diabetes with normal glucose tolerance and the expression of key β -cell transcription factors in the liver tissue of the transduced animals were achieved.

The main aim of the current study was to explore the possibility of reproducing the results of the HMD/*INS-FUR* transduction using less invasive transduction techniques. Traditional AAV8 vectors that have a higher tropism toward the hepatocytes were used to deliver the transgene *INS-FUR*, the β -cell transcription factors *Pdx1* or *NeuroD1*. The liver specific promoter (LSP) was also incorporated into the vector system to limit the expression of the transgene(s) to the livers and allow the vectors to be delivered by a simple intraperitoneal injection.

The expression of *Pdx1* or *NeuroD1* in the livers of the STZ-induced diabetic non-obesediabetic and severe immune incompetent (NOD/scid) mice by the AAV8-LSP system did not cure diabetes. The delivery of the *INS-FUR* gene by AAV8-LSP led to hypoglycaemia in both STZ-induced diabetic NOD/scid mice and autoimmune non-obese-diabetic (NOD) mice. The transcriptome analysis of the livers of the NOD mice transduced by AAV8-*INS-FUR* alone showed that severe hypoglycaemia that was observed in the animals may have been caused by an activation of the glycolysis pathway and an inhibition of the gluconeogenesis pathway. Using the same AAV8-LSP vector system to deliver *INS-FUR* with β -cell transcription factors (*Pdx1* and/ or *NeuroD1*) caused hypoglycaemia in diabetic NOD/scid mice, while the combination of *INS-FUR* and *Pdx1* was ineffective in treating diabetes in NOD mice. The combination of the AAV8-*INS-FUR* and FFO surgery or the empty HMD vector could not reverse diabetes in NOD mice either. In addition, the transcriptome analysis showed that the AAV8 transduction could also generate an antiviral immune reaction, but the AAV8 transduction with or without the FFO surgery may not cause any liver disease.

In this project the hybrid AAV8/piggyBac that could facilitate the integration of the transgene into the host genome was also used to deliver the INS-FUR gene. The hybrid system had both the transposon and *transposase* constructs of the *piggyBac* system incorporated into the AAV8-LSP vectors (AAV8/piggyBac-INS-FUR). The delivery of the *INS-FUR* gene by the AAV8/*piggyBac* could not normalise the random blood glucose levels in the NOD mice, but normal glucose tolerance was achieved. By comparison NOD mice that received FFO surgery after the AAV8/piggyBac-INS-FUR transduction had normal blood glucose levels, normal glucose tolerance and possibly glucose-responsive insulin secretion without the expression of any endogenous β -cell transcription factors. It was thought that the stable blood glucose levels were achieved because the FFO surgery may have helped to reduce the number of transposases and allowed a more stable integration of the INS-FUR gene to the host genome. In addition, the results suggested that the clinical desirable outcomes (normal blood glucose levels and glucose tolerance) could be achieved without the expression of β -cell transcription factors. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat T1D. The study suggested that AAV8/*piggyBac* system may be further developed to become an alternative therapy for the disease.