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Map3k7 Mitogen-activated protein kinase 7 

min Minute 

mRNA Messenger ribonucleic acid 

mmol Millimole 

MSCV Mouse stem cell virus 

Mx1 MX dynamin-like GTPase 1 



xxv 
 

Mx2 MX dynamin-like GTPase 2 

NeuroD1 Neuronal differentiation 1 

ng nanogram 

Ngn3 Neurogenin3 

Nkx2.2 Nierenberg and Kim 2 homeobox 2 

Nkx6.1 Nierenberg and Kim 6 homeobox 1 

Nlrc5 NLR family, CARD domain containing 5 

NOD Non-obese diabetic 

NOD/scid Non-obese-diabetic/ severe combined immunodeficiency 

NTBC 2-(2-nitro-4-trifluoro-methylbenzoyl) 1,3-cyclohexedione 

Oas1a 2'-5' oligoadenylate synthetase 1A 

Oasl1 2'-5' oligoadenylate synthetase-like 1 

Oasl2 2'-5' oligoadenylate synthetase-like 2 

Pax4 Paired box 4 

Pax6 Paired box 6 

PC1 Processing endopeptidase 1  

PC2  Processing endopeptidase 2 

PCA Principal component analysis 

Pck1 Phosphoenolpyruvate carboxykinase 1, cytosolic gene 

PCR Polymerase chain reaction 

Pdx1 Pancreatic duodenal homeobox1 

PKR Protein Kinase R 

Pklr Pyruvate kinase liver and red blood cell gene 

Ptf1 Pancreatic specific transcription factor 1  

Ptf1a (or P48) Pancreatic specific transcription factor 1a 

Rsad2 Radical S-adenosyl methionine domain containing 2 

Rtp4 Receptor transporter protein 4 

RT-PCR Reverse transcriptase polymerase chain reaction  

RT-qPCR Quantitative reverse transcriptase polymerase chain reaction 

SAP Sensor augmented pump  

s.c Subcutaneous  

SCID Severe combined immunodeficiency  
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sec Second 

Sp100 Nuclear antigen Sp100 

SPINK 2 Serine protease inhibitor Kazal-type 2  

STZ  Streptozotocin 

T1D Type 1 diabetes  

T2D Type 2 diabetes  

TAC Transcriptome Analysis Console  

Tgtp1 T cell specific GTPase 1 

Tgtp2 T cell specific GTPase 2 

Th1 T helper1 

Th2 T helper 2 

Tlr3 Toll-like receptor 3 

Tu Transduction unit 

Usp18 Ubiquitin specific peptidase 18 

VCN Vector copy number 

vg Viral genome 

VSV-G Vesicular stomatitis virus envelope glycoprotein G 

Wnt Wingless-related integration site 

Xaf1 XIAP associated factor 1 

Zbp1 Z-DNA binding protein 1 

α-cell Alpha cell 

β-cell Beta-cell 

δ-cells Delta-cell 
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Abstract 
 

Type I diabetes mellitus (T1D) is a chronic metabolic disorder resulting from the 

autoimmune attack and destruction of the pancreatic β-cells, leading to insulin deficiency 

and hyperglycaemia. The condition is currently managed by insulin therapy, which delays 

but does not fully prevent the long-term complications of the disease. The only cure for 

T1D is pancreas or islet transplantation; however, due to the lack of available organs and 

the complications from immunosuppression, transplantation is not widely applied. Gene 

therapy is one treatment being considered to treat and/ or cure T1D. 

 

In earlier studies, our group delivered a lentiviral vector (HMD) carrying the furin-

cleavable human insulin gene (INS-FUR) to streptozotocin (STZ)-induced diabetic rats, 

non-obese-diabetic mice, pancreatectomised diabetic pigs and humanized FRG mice 

using intervallic infusion of the vectors in full flow occlusion (FFO), a surgical technique 

that isolated the liver from the circulation. Reversal of diabetes with normal glucose 

tolerance and the expression of key β-cell transcription factors in the liver tissue of the 

transduced animals were achieved.  

 

The main aim of the current study was to explore the possibility of reproducing the results 

of the HMD/INS-FUR transduction using less invasive transduction techniques. 

Traditional AAV8 vectors that have a higher tropism toward the hepatocytes were used 

to deliver the transgene INS-FUR, the β-cell transcription factors Pdx1 or NeuroD1. The 

liver specific promoter (LSP) was also incorporated into the vector system to limit the 

expression of the transgene(s) to the livers and allow the vectors to be delivered by a 

simple intraperitoneal injection.  

 

The expression of Pdx1 or NeuroD1 in the livers of the STZ-induced diabetic non-obese-

diabetic and severe immune incompetent (NOD/scid) mice by the AAV8-LSP system did 

not cure diabetes. The delivery of the INS-FUR gene by AAV8-LSP led to hypoglycaemia 

in both STZ-induced diabetic NOD/scid mice and autoimmune non-obese-diabetic 

(NOD) mice. The transcriptome analysis of the livers of the NOD mice transduced by 
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AAV8-INS-FUR alone showed that severe hypoglycaemia that was observed in the 

animals may have been caused by an activation of the glycolysis pathway and an 

inhibition of the gluconeogenesis pathway.  Using the same AAV8-LSP vector system to 

deliver INS-FUR with β-cell transcription factors (Pdx1 and/ or NeuroD1) caused 

hypoglycaemia in diabetic NOD/scid mice, while the combination of INS-FUR and Pdx1 

was ineffective in treating diabetes in NOD mice. The combination of the AAV8-INS-

FUR and FFO surgery or the empty HMD vector could not reverse diabetes in NOD mice 

either. In addition, the transcriptome analysis showed that the AAV8 transduction could 

also generate an antiviral immune reaction, but the AAV8 transduction with or without 

the FFO surgery may not cause any liver disease. 

 

In this project the hybrid AAV8/piggyBac that could facilitate the integration of the 

transgene into the host genome was also used to deliver the INS-FUR gene. The hybrid 

system had both the transposon and transposase constructs of the piggyBac system 

incorporated into the AAV8-LSP vectors (AAV8/piggyBac-INS-FUR). The delivery of 

the INS-FUR gene by the AAV8/piggyBac could not normalise the random blood glucose 

levels in the NOD mice, but normal glucose tolerance was achieved. By comparison NOD 

mice that received FFO surgery after the AAV8/piggyBac-INS-FUR transduction had 

normal blood glucose levels, normal glucose tolerance and possibly glucose-responsive 

insulin secretion without the expression of any endogenous β-cell transcription factors. It 

was thought that the stable blood glucose levels were achieved because the FFO surgery 

may have helped to reduce the number of transposases and allowed a more stable 

integration of the INS-FUR gene to the host genome. In addition, the results suggested 

that the clinical desirable outcomes (normal blood glucose levels and glucose tolerance) 

could be achieved without the expression of β-cell transcription factors. This is the first 

in vivo study using the hybrid AAV8/piggyBac system to treat T1D. The study suggested 

that AAV8/piggyBac system may be further developed to become an alternative therapy 

for the disease. 
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