Investigation of optically trapped lanthanide ions doped nanoparticles

by Xuchen Shan

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr. Fan Wang, Prof. Dayong Jin, Dr. Peter Reece

University of Technology Sydney Faculty of Science

3/11/2021

Certificate of Original Authorship

I, Xuchen Shan declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences, Faculty of Science, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program and the China Scholarship Council Scholarship.

Signature: Production Note: Signature removed prior to publication.

Date: 3/11/2021

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my supervisors. I am particularly grateful to the following: Prof. Jin for offering the opportunity to pursue a PhD on such a great research topic; Dr Wang for the patient advises and guidance in the experiment designs and modelling simulations; and Dr Peter Reece in optical engineering. I also appreciate Dr Peter Qian Su for his mentoring on the subject of biological engineering. I would like to thank each of them for their constructive criticisms and helpful discussions on my PhD thesis. Their research attitudes always inspire me to work happily and professionally.

I would like to address a special thanks to Dr Laixu Gao, David Zhiguang Zhou and Chao Mi for the optical system design, Dr Chaohao Chen and Mr Lei Ding for the optical system setup and experiment design, Mr Baolei Liu for helping develop the image process algorithm and Mr Yongtao Liu for helping with the energy level simulations. I would like to acknowledge Mrs Xiangjun Di, Mr Dejiang Wang and Mr Baoming Wang for their help with the cell culture involved in this thesis. I also appreciate Dr Jiayan Liao and Dr Shihui Wen for the high-quality upconversion nanoparticle synthesis.

I would like to mention all the members of the IBMD (past and present), who provided technical support or suggestions and assistance regarding the experiments. I enjoy working with these lovely people and appreciate their help whenever I encountered any experimental difficulties. I would like to thank all the friends I have who live outside the realm of research during my four years in Sydney.

I would like to thank my family members for their continuous support and love throughout my life. In particular I thank my wife Yiqiao Wang, for her understanding and incalculable contribution to our little family. Finally, I would like to acknowledge the Australian Government Research Training Program and the China Scholarship Council Scholarship for providing me with a scholarship and research opportunities.

Format of Thesis

This thesis has a conventional format and consists of seven chapters as illustrated by the flow chart below.

Chapter 1 is an introduction chapter about optical tweezers and nanoprobes. The advantages of different types of optical tweezers and nanoprobes are discussed in detail.

Chapter 2 provides detailed methods of optical trapping theory and laser beam control used in the results-based chapters.

Chapter 3 investigates the trap stiffness detecting method and highlights the principle and methodology for the PSD detecting and video tracking methods.

Chapter 4 describes the strategy to enhance the trap stiffness of optically trapped nanoparticles by doping lanthanide ions.

Chapter 5 focuses on the machine learning prediction demonstration results for UCNPs size prediction.

Chapter 6 is concerned with the nanomaterials video display by optimizing lanthanide ion-doped upconversion nanoparticles.

Chapter 7 summarizes the key research results of the projects undertaken and suggestions for future research work based on the current progress described in this thesis.

List of Publications

I. Journal Articles

- <u>Nature Nanotechnology (2021)</u> X. Shan[†], F. Wang[†], D. Wang, S. Wen, C. Chen, X. Di, P. Nie, J. Liao, Y. Liu, L. Ding, P. J. Reece and D. Jin, "Optical tweezers beyond refractive index mismatch using highly doped nanoparticles", vol. 16, 5,2021
- <u>Nanoscale (2020)</u> L. Gao, X. Shan, X. Xu, Y. Liu, B. Liu, S. Li, S. Wen, C. Ma, D. Jin and F. Wang" Video-rate upconverting display by optimizing lanthanide ions doped upconversion nanoparticles", vol. 12, 36, 2020
- <u>Advanced Materials (2021)</u> C. Chen, B. Liu, Y. Liu, J. Liao, X. Shan, F. Wang and D. Jin. "Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Super-Resolution Nanoscopy", vol. 33, 23, 2021
- <u>Nature Communication (2018)</u> C. Chen[†], F. Wang^{*†}, S. Wen, Q. P. Su, M. C.L. Wu, Y. Liu, B. Wang, D. Li, X. Shan, M. Kianinia, I. Aharonovich, M. Toth, S. P. Jackson, P. Xi and D. Jin, "Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles", vol. 9(1), 4, 2018.
- <u>Nano letters (2020)</u> B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, "Upconversion nonlinear structured illumination microscopy", vol. 20, 7, 2020
- <u>Small (2020)</u> Y. Liu, F. Wang, H. Lu, G, Fang, S. Wen, C. Chen, X. Shan, X. Xu, L. Zhang, M. Stenzel and D. Jin, "Super-Resolution Mapping of Single Nanoparticles inside Tumor Spheroids", 1905572, 2020

II. Conference Articles

- <u>CLEO (2020)</u> B. Liu, X. Shan, J. Zhu, C. Chen, Y. Liu, F. Wang, D. McGloin, "Self-optimizing ghost imaging with a genetic algorithm", pp. 1-2, 2020.
- <u>SPIE (2020)</u> Y. Liu, F. Wang, H. Lu, S. Wen, C. Chen, X. Shan, G. Fang and D. Jin, "Deep tissue super-resolution microscopy mapping single nanoparticles inside multicellular spheroids", vol. 11468, 2020.
- <u>SPIE (2019)</u> C. Chen, F. Wang, S. Wen, Y. Liu, X. Shan, and D. Jin, "Upconversion nanoparticles assisted multi-photon fluorescence saturation microscopy", vol. 10891, 2019.

III. Patents

- 10. L. Gao, F. Wang, X. Shan, S. Li, A two-dimensional display device based on upconversion luminescent material, Patent Number: CN 211786516U
- 11. L. Gao, F. Wang, **X. Shan**, S. Li, Three-dimensional display device based on upconversion luminescent material, Patent Number: CN 211786462U

([1,2,10,11] are closely related to my PhD program)

	1	• 4	
Ah	brey	/191 1	ons

UCNPs	upconversion nanoparticles
3D	three dimensional
AOM	acoustic optical modulator
SLM	spatial light modulator
НОТ	holographic optical tweezers
TEM	transmission electron microscopy
DNA	deoxyribonucleic acid
RNA	ribonucleic acid
PSD	position sensor detector
RI	refractive index
PVA	polyvinyl acetate
2D	two-dimensional
DMD	digital micromirror device
AOD	acousto-optic deflector
FPGA	field-programmable gate array
LC	liquid crystal
LUT	look up table
TPA	two photon absorption
SPAD	single-photon avalanche diode

NP	nanoparticle	
VTM	video tracking method	
FPS	frame per second	
PSF	point spread function	
CMOS	complementary metal-oxide-semiconductor	
CCD	charge-coupled device	
VTA	video tracking analysis	
STORM	stochastic optical reconstruction microscopy	
DNN	deep neural networks	
СМ	Clausius-Mossotti	
rCM	real part of the Clausius-Mossotti factor	
iCM	imaginary part of the Clausius-Mossotti factor	
EM	electromagnetic	
NIR	near-infrared	
CW	continuous wave	
ROI	region of interest	

Table of Contents

Certificate of Original AuthorshipI
Acknowledgements II
Format of ThesisIV
List of PublicationsV
Abbreviations VII
Table of ContentsIX
List of IllustrationsXIV
List of TablesXX
AbstractXXI
CHAPTER 1 Introduction1
1.1 Optical Tweezers1
1.1.1 The principle of optical tweezers1
1.1.2 The types of optical tweezers
1.1.3 Applications of optical tweezers
1.2 Force probe in optical trapping techniques11
1.2.1 Polymer beads11
1.2.2 Gold nanoparticles
1.2.3 Silicon nanoparticles14

1.2.4 Upconversion nanoparticles (UCNPs)15
1.3 Thesis aims and outline20
CHAPTER 2 Optical tweezers theory and beam control25
2.1 Theory of optical trapping25
2.1.1 Geometrical region27
2.1.2 Rayleigh region28
2.1.3 Intermediate region
2.2 Laser beam control by AOM
2.3 Laser beam control by SLM
2.3.1 SLM principles
2.3.2 SLM calibration
2.3.3 3D trapping beam control
CHAPTER 3 Trap stiffness detection
3.1 PSD measuring stiffness
3.1.1 PSD principle
3.1.2 Power spectrum analysis methodology46
3.2 Video tracking method measuring stiffness
3.2.1 Theory of Video tracking method
3.2.2 Methodology of the Video tracking method

54	3.2.3 Accuracy of the video tracking method
s58	3.3 Machine learning-based 3D tracking method measuring stiffness
58	3.3.1 Machine learning-based video tracking theory
60	3.3.2 Machine learning-based video tracking methodology
63	CHAPTER 4 Trap stiffness enhanced by lanthanide ion doping
64	4.1 The theory of nanoparticles trap stiffness enhancement
64	4.1.1 Lanthanide ions doping oscillation
74	4.1.2 Theory of optical trapping beam
76	4.1.3 Theory of optical trapping force
78	4.1.4 Modelling of oscillator number in NaYF4 crystal
81	4.2 Trap stiffness enhanced by doping lanthanide ions
90	4.3 Trap stiffness enhanced by different doped concentrations
90	4.3.1 Simulation of oscillated ions concentration
93	4.3.2 Effect of oscillated ions concentration
	4.4 Trap stiffness enhanced by different volumes
100	4.4.1 Trap temperature analysis
101	4.4.2 Effect of lanthanide-doped particles volume
	4.5 Trap stiffness enhanced by zeta potential
d polarizability	4,5,1 Analytical interpretation of zeta potential induced
105 xi	enhancement

4.5.2 Tuning the zeta potential values of lanthanide ion-doped nanoparticles.
4.6 Scattering spectrum measurement of lanthanide ion-doped nanoparticles 108
4.7 Cells treated by lanthanide ion-doped nanoparticles
CHAPTER 5 Machine learning-based size prediction121
5.1 Training the machine learning system122
5.2 Machine learning-based prediction
5.3 Size prediction of optically trapped UCNPs
CHAPTER 6 Video-rate display by optimizing lanthanide ion-doped upconversion
nanoparticles
6.1 Theory of display by UCNPs131
6.1.1 AOM modulation scanning132
6.1.2 Materials of the screen
6.2 Optical properties of UCNPs
6.2.1 Energy transfer upconversion process
6.2.2 Doping concentration of the UCNPs
6.2.3 Excitation power for display140
6.3 Display by UCNPs143
6.4 Conclusions145
CHAPTER 7 Conclusion and perspective147

7.1 Conclusion	147
7.2 Perspective	149
Bibliography	

List of Illustrations

Figure 1.1.1 The principle of the first optical tweezers system
Figure 1.1.2 The principle of single beam trapping
Figure 1.1.3 The multiple trapping system. One single beam laser can be modulated
by AOM to two trapping beams
Figure 1.1.4 The holographic optical tweezers system. One single beam laser can be
modulated by SLM to multiple trapping in 3D
Figure 1.1.5 The different sizes of the trapped particles
Figure 1.1.6 The zebrafish behaviors on laser focus on otolith7
Figure 1.1.7 Optical trapping of a single cell
Figure 1.1.8 Optical trapping of a single red blood cell
Figure 1.1.9 Optical trapping inside living cells10
Figure 1.2.1 The single kinesin studied with optical trapping12
Figure 1.2.2 Different sizes of the optically trapped gold nanoparticles detected13
Figure 1.2.3 Silicon nanoparticle is trapped in a fixed orientation aligned with the
polarization axis of the trapping laser14
Figure 1.2.4 The characterization of the upconversion nanoparticles
Figure 1.2.5 The trapped upconversion nanoparticles applied for thermal sensing.
Figure 1.2.6 The thermal sensing of the optically trapped rotating microparticle18

Figure 1.2.7 Laser refrigeration of hydrothermal nanocrystals (UCNPs)19
Figure 1.2.8 Optical trapping forces at the nanoscale20
Figure 2.1.1 The optical trapping regions
Figure 2.1.2 The geometrical region trapping force
Figure 2.2.1 The piezo and crystal make up an AOD
Figure 2.2.2 The 2D control AOM optical system
Figure 2.2.3 The front and back panels of the AOM control LabVIEW code32
Figure 2.2.4 The laser beam split into 4 laser beams by AOM
Figure 2.2.5 The laser trapping particles moving and spin modulated by AOM33
Figure 2.3.1 The structure of the SLM
Figure 2.3.2 The setup of the optical system with SLM
Figure 2.3.3 The setup of the optical system for SLM LUT
Figure 2.3.4 The LabVIEW code for SLM grey level modulation
Figure 2.3.5 Optimizing the pupil size and position by SLM
Figure 2.3.6 Zernike mode calibration by SLM
Figure 3.1.1 A light beam detected by a quadrant sensor
Figure 3.1.2 Experiment optical system for PSD calibration and detection46
Figure 3.1.3 The distribution of the trapped nanoparticle47
Figure 3.2.1 The power spectrum for the trapped nanoparticle

Figure 3.2.2 Different sized and refractive index particles
Figure 3.2.3 Experiment setup of the video tracking system
Figure 3.2.4 TEM and the imaging of the trapped UCNPs
Figure 3.2.5 The position shift distribution of the trapped UCNPs in water
Figure 3.2.6 The position shift distribution fitting with Gaussian distribution54
Figure 3.2.7 The scatter and power spectrum of the trapped polystyrene sphere56
Figure 3.3.1 Training the machine learning process for video tracking at z-direction.
Figure 3.3.2 Measuring the machine learning process for video tracking in the z-
direction
Figure 3.3.3 The 3D distribution detected by machine learning method at x, y and z
direction
Figure 4.1.1 Lanthanide ion-doped nanocrystal65
Figure 4.1.2 The Yb ³⁺ doping nanocrystal energy level and the resonance transitions.
Figure 4.1.3 The electromagnetic susceptibility of Yb ³⁺ 68
Figure 4.1.4 The electromagnetic susceptibility of Er ³⁺ 70
Figure 4.1.5 The electromagnetic susceptibility of Nd ³⁺ 71
Figure 4.1.6 The simplified energy level for Yb^{3+} and Er^{3+} doped NaYF ₄ crystals.

Figure 4.1.7 Simulated oscillated concentration dependent on excitation power...80 XVI

Figure 4.2.1 Comparison between optical trapping of low refractive index
nanoparticles with or without doping by lanthanide ions
Figure 4.2.2 Illustration of energy levels of Yb^{3+} doped in NaYF ₄ nanocrystals83
Figure 4.2.3 Simplified energy level diagrams of Yb^{3+} , Er^{3+} and Nd^{3+} doped
nanocrystals84
Figure 4.2.4 The calculated Clausius-Mossotti factors (CM) for Yb ³⁺ , Er ³⁺ and Nd ³⁺
doped nanocrystals85
Figure 4.2.5 The trap stiffness for Yb ³⁺ , Er ³⁺ and Nd ³⁺ doped nanocrystals87
Figure 4.2.6 Position distribution histograms for lanthanide ion-doped nanocrystals.
Figure 4.3.1 rCM and iCM for different oscillator concentrations90
Figure 4.3.2 The simulation of the trapping force
Figure 4.3.3 Simulation result of an optically trapped nanoparticle
Figure 4.3.4 Diagram of distribution and transition of the excited state Yb^{3+} carriers.
Figure 4.3.5 The experimentally measured trap stiffness for Yb ³⁺ doped
nanoparticles, varying with doping concentration
Figure 4.3.6 TEM images of the six batches of lanthanide ion-doped nanoparticles
used in Figure 4.3.596
Figure 4.3.7 Position distribution histograms for lanthanide-doped nanocrystals
doped with Yb ³⁺ concentration from 10% to 70%97

Figure 4.3.8 The trap stiffness for different emitters (Er^{3+} and Tm^{3+}) with the same
sensitizer and emitter concentrations
Figure 4.3.9 TEM images of lanthanide ion-doped nanoparticles used in Figure 4.3.8.
Figure 4.4.1 TEM images of six typical batches of nanoparticles101
Figure 4.4.2 Averaged values of diagonal diameters, heights and the averaged values
of zeta potentials of the above nanoparticles
Figure 4.4.3 The trap stiffness values of single lanthanide-doped nanoparticles. 103
Figure 4.4.4 Position distribution histograms for lanthanide-doped nanocrystals
doped with Yb ³⁺ concentration from 10% to 70%104
Figure 4.4.5 The experimental measured 2D position distribution of an optically
trapped lanthanide-doped nanoparticle105
Figure 4.5.1 Trap stiffness measurement for lanthanide ion-doped nanoparticles with
different zeta potential values
Figure 4.6.1 Interferometric scattering microscopy (iSCAT) measurement of
lanthanide-doped nanoparticles111
Figure 4.6.2 Scattering strength extracted from iSCAT images112
Figure 4.7.1 MTT assay to evaluate the toxicity of lanthanide-doped nanoparticles
to cells
Figure 4.7.2 Co-localization image of a single cell

Figure 4.7.3 The escape velocity measurement to quantify the trap stiffness for HeLa
cells
Figure 5.1.1 The PSF simulation of the different size particles123
Figure 5.2.1 The principle of deep learning system for different sized particles127
Figure 5.3.1 Size prediction result and TEM image
Figure 6.1.1 TEM images of NaYF ₄ : 20%Yb ³⁺ , x%Tm ³⁺ (x= a. 0.5, b. 1, c. 2, d. 4
and e. 6)134
Figure 6.2.1 Schematic diagram of an energy transfer upconversion process136
Figure 6.2.2 The rising and decay curve of upconversion nanoparticles138
Figure 6.2.3 Comparison of emission luminescence intensity between single UCNPs
with different Tm ³⁺ doping concentration139
Figure 6.2.4 Measured upconversion luminescence intensities of single UCNPs.
Figure 6.2.5 The rising time and lifetime of single UCNPs
Figure 6.3.1 UCNPs film display with AOD modulation144
Figure 7.2.1 The machine learning system of different doping concentrations of
UCNPs
Figure 7.2.2 Diagram of electrical field sensing

List of Tables

Table 4.1.1 Parameters used to simulate Yb ³⁺ susceptibility
Table 4.1.2 Parameters used to simulate Er ³⁺ susceptibility71
Table 4.1.3 Parameters used to simulate Nd ³⁺ susceptibility
Table 4.1.4 Parameters in the rate equation of Yb^{3+} and Er^{3+} co-doped systems
Table 4.3.1 The characteristic parameters of the six batches of lanthanide ion-doped
nanoparticles used in Figure 4.3.5
Table 4.3.2 Parameters of lanthanide ion-doped nanoparticles used in Figure 4.3.8 99
Table 6.2.1 All the Parameters in internal transition. 137

Abstract

Nanoscale optical force probe for optical tweezers provides a new non-contact forcesensing technology with a high spatial resolution, one that is to break the limitations in conventional methods. The developing of optical trapping nanosensor can map out interactive information in the nanoscale region in water. However, the low refractive index from functional nanoparticles results in a reduced magnitude of the scattering field, which complicated its optical force measurement, hindering the application of optical trapping on these particles.

Here, applying machine learning involved video tracking analysis on the optically trapped nanoparticle, we achieved the 3D optical trapping force measurement for nanoparticles with refractive index 1.5. Applying optical astigmatism modification, we achieved nanoscale 3D localizing of optically trapped upconversion nanoparticles (UCNPs) and thus the construction of 3D force. This work offers a unique solution to investigate the optical manipulation of low refractive index nanoparticles, also enables high resolution sensing for a range of environment variations. Based on the video tracking technology, we found that it applies a resonance effect that enhances the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude. This effectively bypasses the requirement of refractive index mismatch at the nanoscale. The result shows that under resonance conditions, highly doped lanthanide ions in NaYF4 nanocrystals makes the real part of the Clausius-Mossotti factor approaches its asymptotic limit.

Besides, we further use machine learning technology to analysing the point spread function of nanoparticles, to predict the size of the trapped luminescent nanoparticles in the water environment. Keywords: upconversion nanoparticles, optical tweezers, video tracking, machine learning