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Abstract

Current dynamic networks and dynamic pruning methods
have shown their promising capability in reducing theo-
retical computation complexity. However, dynamic sparse
patterns on convolutional filters fail to achieve actual ac-
celeration in real-world implementation, due to the extra
burden of indexing, weight-copying, or zero-masking. Here,
we explore a dynamic network slimming regime, named Dy-
namic Slimmable Network (DS-Net), which aims to achieve
good hardware-efficiency via dynamically adjusting filter
numbers of networks at test time with respect to different
inputs, while keeping filters stored statically and contigu-
ously in hardware to prevent the extra burden. Our DS-Net
is empowered with the ability of dynamic inference by the
proposed double-headed dynamic gate that comprises an
attention head and a slimming head to predictively adjust
network width with negligible extra computation cost. To
ensure generality of each candidate architecture and the
fairness of gate, we propose a disentangled two-stage train-
ing scheme inspired by one-shot NAS. In the first stage, a
novel training technique for weight-sharing networks named
In-place Ensemble Bootstrapping is proposed to improve the
supernet training efficacy. In the second stage, Sandwich
Gate Sparsification is proposed to assist the gate training
by identifying easy and hard samples in an online way. Ex-
tensive experiments demonstrate our DS-Net consistently
outperforms its static counterparts as well as state-of-the-art
static and dynamic model compression methods by a large
margin (up to 5.9%). Typically, DS-Net achieves 2-4× com-
putation reduction and 1.62× real-world acceleration over
ResNet-50 and MobileNet with minimal accuracy drops on
ImageNet.1

1. Introduction
As deep neural networks are becoming deeper and wider

to achieve higher performance, there is an urgent need to
explore efficient models for common mobile platforms, such

1Code release: https://github.com/changlin31/DS-Net
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Figure 1. Universally accuracy-complexity comparison of our DS-
Net and Universally Slimmable Network (US-Net) [72] (based on
MobileNetV1 [26]).

Table 1. Latency comparison of ResNet-50 with 25% channels
(on GeForce RTX 2080 Ti). Both masking and indexing lead to
inefficient computation waste, while slicing achieves comparable
acceleration with ideal (the individual ResNet-50 0.25×).

method full masking indexing slicing (ours) ideal

latency 12.2 ms 12.4ms 16.6 ms 7.9 ms 7.2 ms

as self-driving cars, smartphones, drones and robots. In
recent years, many different approaches have been pro-
posed to improve the inference efficiency of neural net-
works, including network pruning [43, 50, 21, 22, 51, 53],
weight quantization [33], knowledge distillation [2, 56, 23],
manually and automatically designing of efficient net-
works [60, 57, 77, 55, 3, 75, 10, 18, 41, 76] and dynamic
inference [4, 30, 64, 63, 44, 29, 14].

Among the above approaches, dynamic inference meth-
ods, including networks with dynamic depth [4, 30, 64, 63,
44] and dynamic width [14, 29, 9] have attracted increasing
attention because of their promising capability of reducing
computational redundancy by automatically adjusting their
architecture for different inputs. As illustrated in Fig. 2, the
dynamic network learns to configure different architecture
routing adaptively for each input, instead of optimizing the
architecture among the whole dataset like Neural Architec-
ture Search (NAS) or Pruning. A performance-complexity
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Figure 2. The motivation for designing dynamic networks to achieve efficient inference. Left: A simulation diagram of accuracy-complexity
comparing a series of static networks (searched by NAS) with 20 dynamic inference schemes of different resource allocate proportion for
easy and hard samples on a hypothetical classification dataset with evenly distributed easy and hard samples. Right: Illustration of dynamic
networks on efficient inference. Input images are routed to use different architectures regarding their classification difficulty.

trade-off simulated with exponential functions is also shown
in Fig. 2, the optimal solution of dynamic networks is su-
perior to the static NAS or pruning solution. Ideally, dy-
namic network routing can significantly improve model per-
formance under certain complexity constraints.

However, networks with dynamic width, i.e., dynamic
pruning methods [14, 29, 9], unlike its orthogonal counter-
parts with dynamic depth, have never achieved actual acceler-
ation in a real-world implementation. As natural extensions
of network pruning, dynamic pruning methods predictively
prune the convolution filters with regard to different input
at runtime. The varying sparse patterns are incompatible
with computation on hardware. Actually, many of them are
implemented as zero masking or inefficient path indexing,
resulting in a massive gap between the theoretical analysis
and the practical acceleration. As shown in Tab. 1, both
masking and indexing lead to inefficient computation waste.

To address the aforementioned issues in dynamic net-
works, we propose Dynamic Slimmable Network (DS-Net),
which achieves good hardware-efficiency via dynamically
adjusting filter numbers of networks at test time with respect
to different inputs. To avoid the extra burden on hardware
caused by dynamic sparsity, we adopt a scheme named dy-
namic slicing to keep filters static and contiguous when
adjusting the network width. Specifically, we propose a
double-headed dynamic gate with an attention head and
a slimming head upon slimmable networks to predictively
adjust the network width with negligible extra computation
cost. The training of dynamic networks is a highly entangled
bilevel optimization problem. To ensure generality of each
candidate’s architecture and the fairness of gate, a disentan-
gled two-stage training scheme inspired by one-shot NAS
is proposed to optimize the supernet and the gates separately.
In the first stage, the slimmable supernet is optimized with a
novel training method for weight-sharing networks, named
In-place Ensemble Bootstrapping (IEB). IEB trains the
smaller sub-networks in the online network to fit the output
logits of an ensemble of larger sub-networks in the momen-
tum target network. Learning from the ensemble of different

sub-networks will reduce the conflict among sub-networks
and increase their generality. Using the exponential mov-
ing average of the online network as the momentum target
network can provide a stable and accurate historical repre-
sentation, and bootstrap the online network and the target
network itself to achieve higher overall performance. In the
second stage, to prevent dynamic gates from collapsing into
static ones in the multiobjective optimization problem, a
technique named Sandwich Gate Sparsification (SGS) is
proposed to assist the gate training. During training, SGS
identifies easy and hard samples online and further generates
the ground truth label for the dynamic gates.

Overall, our contributions are three-fold as follows:
• We propose a new dynamic network routing regime,

achieving good hardware-efficiency by predictively ad-
justing filter numbers of networks at test time with
respect to different inputs. Unlike dynamic pruning
methods, we dynamically slice the network parameters
while keeping them stored statically and contiguously
in hardware to prevent the extra burden of masking,
indexing, and weight-copying. The dynamic routing is
achieved by our proposed double-headed dynamic gate
with negligible extra computation cost.

• We propose a two-stage training scheme with IEB and
SGS techniques for DS-Net. Proved experimentally,
IEB stabilizes the training of slimmable networks and
boosts its accuracy by 1.8% and 0.6% in the slimmest
and widest sub-networks respectively. Moreover, we
empirically show that the SGS technique can effectively
sparsify the dynamic gate and improves the final perfor-
mance of DS-Net by 2%.

• Extensive experiments demonstrate our DS-Net outper-
forms its static counterparts [71, 72] as well as state-of-
the-art static and dynamic model compression methods
by a large margin (up to 5.9%, Fig. 1). Typically, DS-
Net achieves 2-4× computation reduction and 1.62×
real-world acceleration over ResNet-50 and MobileNet
with minimal accuracy drops on ImageNet. Gate visu-
alization proves the high dynamic diversity of DS-Net.
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Figure 3. Architecture of DS-Net. The width of each supernet stage is adjusted adaptively by the slimming ratio ρ predicted by the gate.

2. Related works
Anytime neural networks [38, 30, 27, 44, 39, 74, 72, 24]
are single networks that can execute with their sub-networks
under different budget constraints, thus can deploy instantly
and adaptively in different application scenarios. Anytime
neural networks have been studied in two orthogonal di-
rections: networks with variable depth and variable width.
Networks with variable depth [38, 30, 27, 44] are first
studied widely, benefiting from the naturally nested struc-
ture in depth dimension and residual connections in ResNet
[20] and DenseNet [31]. Network with variable width was
first studied in [39]. Recently, slimmable networks [74, 72]
using switchable batch normalization and in-place distil-
lation achieve higher performance than their stand-alone
counterparts in any width. Some recent works [6, 73, 24]
also explore anytime neural networks in multiple dimensions,
e.g. depth, width, kernel size, etc.
Dynamic neural networks [63, 64, 46, 68] change their
architectures based on the input data. Dynamic networks
for efficient inference aim to reduce average inference cost
by using different sub-networks adaptively for inputs with
diverse difficulty levels. Networks with dynamic depth
[4, 30, 64, 63, 44] achieve efficient inference in two ways,
early exiting when shallower sub-networks have high classi-
fication confidence [4, 30, 44], or skipping residual blocks
adaptively [64, 63]. Recently, dynamic pruning meth-
ods [29, 14, 9] using a variable subset of convolution filters
have been studied. Channel Gating Neural Network [29] and
FBS [14] identify and skip the unimportant input channels at
run-time. In GaterNet [9], a separate gater network is used
to predictively select the filters of the main network. Please
refer to [19] for a more comprehensive review of dynamic
neural networks.
Weight sharing NAS [5, 1, 3, 48, 7, 66, 18, 41, 6, 42], aim-
ing at designing neural network architectures automatically
and efficiently, has been developing rapidly in recent two
years. They integrate the whole search space of NAS into
a weight sharing supernet and optimize network architec-
ture by pursuing the best-performing sub-networks. These
methods can be roughly divided into two categories: jointly
optimized methods [48, 7, 66], in which the weight of the
supernet is jointly trained with the architecture routing agent
(typically a simple learnable factor for each candidate route);

and one-shot methods [5, 1, 3, 18, 41, 6, 42], in which the
training of the supernet parameters and architecture routing
agent are disentangled. After fair and sufficient training, the
agent is optimized with the weights of supernet frozen.

3. Dynamic Slimmable Network
Our dynamic slimmable network achieves dynamic rout-

ing for different samples by learning a slimmable supernet
and a dynamic gating mechanism. As illustrated in Fig. 3,
the supernet in DS-Net refers to the whole module under-
taking the main task. In contrast, the dynamic gates are a
series of predictive modules that route the input to use sub-
networks with different widths in each stage of the supernet.

In previous dynamic networks [63, 64, 46, 68, 4, 30, 44,
29, 14, 9], the dynamic routing agent and the main net-
work are jointly trained, analogous to jointly optimized NAS
methods [48, 7, 66]. Inspired by one-shot NAS methods
[5, 1, 3, 18, 41], we propose a disentangled two-stage train-
ing scheme to ensure the generality of every path in our
DS-Net. In Stage I, we disable the slimming gate and train
the supernet with the IEB technique, then in Stage II, we fix
the weights of the supernet and train the slimming gate with
the SGS technique.

3.1. Dynamic Supernet
In this section, we first introduce the hardware efficient

channel slicing scheme and our designed supernet, then
present the IEB technique and details of training Stage I.
Supernet and Dynamic Channel Slicing. In some of dy-
namic networks, such as dynamic pruning [29, 14] and con-
ditional convolution [68, 45], the convolution filtersW are
conditionally parameterized by a function A(θ,X ) to the
input X . Generally, the dynamic convolution has a form of:

Y =WA(θ,X ) ∗ X , (1)

whereWA(θ,X ) represents the selected or generated input-
dependent convolution filters. Here ∗ is used to denote a
matrix multiplication. Previous dynamic pruning methods
[29, 14] reduce theoretical computation cost by varying the
channel sparsity pattern according to the input. However,
they fail to achieve real-world acceleration because their
hardware-incompatible channel sparsity results in repeatedly
indexing and copying selected filters to a new contiguous
memory for multiplication. To achieve practical acceleration,
filters should remain contiguous and relatively static during
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Figure 4. Training process of slimmable supernet with In-place
Ensemble Bootstrapping.

dynamic weight selection. Base on this analysis, we design
a architecture routing agent A(θ) with the inductive bias of
always outputting a dense architecture, e.g. a slice-able archi-
tecture. Specifically, we consider a convolutional layer with
at most N output filters and M input channels. Omitting the
spatial dimension, its filters can be denoted as W ∈ RN×M .
The output of the architecture routing agent A(θ) for this
convolution would be a slimming ratio ρ ∈ (0, 1] indicating
that the first piece-wise ρ × N of the output filters are se-
lected. Then, a dynamic slice-able convolution is defined as
follows:

Y = W[ : ρ×N ] ∗ X , (2)
where [ : ] is a slice operation denoted in a python-like style.
Remarkably, the slice operation [ : ] and the dense matrix
multiplication ∗ are much more efficient than an indexing
operation or a sparse matrix multiplication in real-world
implementation, which guarantees a practical acceleration
of using our slice-able convolution.

After aggregating the slice-able convolutions sequentially,
a supernet executable at different widths is formed. Paths
with different widths can be seen as sub-networks. By dis-
abling the routing agent, the supernet is analogous to a
slimmable network [74, 72], and can be trained similarly.
In-place Ensemble Bootstrapping. The sandwich rule and
in-place distillation techniques [72] proposed for Universally
Slimmable Networks enhanced their overall performance. In
in-place distillation, the widest sub-network is used as the
target network generating soft labels for other sub-networks.
However, acute fluctuation appeared in the weight of the
widest sub-network can cause convergence hardship, espe-
cially in the early stage of training. As observed in BigNAS
[73], training a more complex model with in-place distilla-
tion could be highly unstable. Without residual connection
and special weight initialization tricks, the loss exploded at
the early stage and can never converge. To overcome the con-
vergence hardship in slimmable networks and improve the
overall performance of our supernet, we proposed a training
scheme named In-place Ensemble Bootstrapping (IEB).

In recent years, a growing number of self-supervised
methods with bootstrapping [16, 17, 8] and semi-supervised
methods based on consistency regularization [37, 61] use
their historical representations to produce targets for the on-
line network. Inspired by this, we propose to bootstrap on
previous representations in our supervised in-place distilla-
tion training. We use the exponential moving average (EMA)
of the model as the target network that generates soft labels.
Let θ and θ′ denote the parameters of the online network and
the target network, respectively. We have:

θ′t = αθ′t−1 + (1− α)θt, (3)

where α is a momentum factor controlling the ratio of the
historical parameter and t is a training timestamp which is
usually measured by a training iteration. During training, the
EMA of the model are more stable and more precise than
the online network, thus can provide high quality target for
the slimmer sub-networks.

As pointed out in [58, 59], an ensemble of teacher net-
works can generate more diverse, more accurate and more
general soft labels for distillation training of the student net-
work. In our supernet, there are tons of sub-models with
different architectures, which can generate different soft la-
bels. Motivated by this, we use different sub-networks as a
teacher ensemble when performing in-place distillation. The
overall train process is shown in Fig. 4. Following the sand-
wich rule [72], the widest (denoted with L), the slimmest
(denoted with S) and n random width sub-networks (denoted
with R) are sampled in each training step. Sub-network at
the largest width is trained to predict the ground truth label
Y; n sub-networks with random width are trained to predict
the soft label generated by the widest sub-network of the
target network, Y ′L(θ′); the slimmest sub-network is trained
to predict the probability ensemble of all the aforementioned
sub-networks in the target network:

Ŷ ′L,R(θ′) =
1

n+ 1

(
Y ′L(θ

′) +
n∑
i=1

Y ′R(θ
′)

)
. (4)

To sum up, the IEB losses for the supernet training are:
LIEBL (θ) = LCE(YL(θ),Y),

LIEBR (θ) = LCE(YR(θ),Y ′L(θ
′)),

LIEBS (θ) = LCE(YS(θ), Ŷ ′L,R(θ′)),

(5)

3.2. Dynamic Slimming Gate
In this section, we design the channel gate function

A(θ,X ) that generates the factor ρ in Eqn. (2) and present
the double-headed design of the dynamic gate. Then, we
introduce the details of training stage II with an advanced
technique that is sandwich gate sparsification (SGS).
Double-headed Design. There are two possible ways to
transform a feature map into a slimming ratio ρ in Eqn. (2):
(i) scalar design directly output a sigmoid activated scalar
ranging from 0 to 1 to be the slimming ratio; (ii) one-hot
design use an argmax/softmax activated one-hot vector to
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choose the respective slimming ratio ρ in a discrete candidate
list vector Lρ. Both of the implementations are evaluated
and compared in Sec. 4.4. Here, we thoroughly describe our
dynamic slimming gate with the better-performing one-hot
design. To reduce the input feature map X to a one-hot
vector, we divide A(θ,X ) to two functions:

A(θ,X ) = F(E(X )), (6)

where E is an encoder that reduces feature maps to a vector
and the function F maps the reduced feature to a one-hot
vector used for the subsequent channel slicing. Consider-
ing the n-th gate in Fig. 3, given a input feature X with
dimension ρn−1Cn ×Hn ×Wn, E(X ) reduces it to a vector
XE ∈ Rρn−1Cn which can be further mapped to a one-hot
vector. By computing the dot product of this one-hot vector
and Lρ, we have the newly predicted slimming ratio:

ρn = A(θ,X ) · Lρ. (7)

Similar to prior works [28, 70] on channel attention and
gating, we simply utilize average pooling as a light-weight
encoder E to integrate spatial information. As for feature
mapping function F , we adopt two fully connected layers
with weights W1 ∈ Rd×Cn and W2 ∈ Rg×d (where d repre-
sents the hidden dimension and g represents the number of
candidate slimming ratio) and a ReLU non-linearity layer σ
in between to predict scores for each slimming ratio choice.
An argmax function is subsequently applied to generate a
one-hot vector indicating the predicted choice:

F(XE) = argmax(W2(σ(W1[:, : ρn−1Cn](XE)))). (8)

Note that input X with dynamic channel number ρ × C is
projected to a vector with fixed length by the dynamically
sliced weight W1[:, : ρn−1Cn].

Our proposed channel gating function has a similar form
with recent channel attention methods [28, 70]. The attention
mechanism can be integrated into our gate with nearly zero
cost, by adding another fully connected layer with weights
W3 that projects the hidden vector back to the original chan-
nel number ρn−1Cn. Based on the conception above, we
propose a double-headed dynamic gate with a soft chan-
nel attention head and a hard channel slimming head.The
channel attention head can be defined as follows:
X̂ = X ∗ δ(W3[: ρn−1Cn, :](σ(W1[:, : ρn−1Cn](X )))), (9)

where δ(x) = 1 + tanh(x) is the activation function adopted
for the attention head. Unlike the slimming head, the channel
attention head is activated in training stage I.
Sandwich Gate Sparsification. In training stage II, we
propose to use the end-to-end classification cross-entropy
loss Lcls and a complexity penalty loss Lcplx to train
the gate, aiming to choose the most efficient and effec-
tive sub-networks for each instance. To optimize the non-
differentiable slimming head of dynamic gate with Lcls, we
use gumbel-softmax [34], a classical way to optimize neu-
ral networks with argmax by relaxing it to differentiable
softmax in gradient computation.

However, we empirically found that the gate easily col-
lapses into a static one even if we add Gumbel noise [34] to
help the optimization of gumbel-softmax. Apparently, us-
ing only gumbel-softmax technique is not enough for this
multi-objective dynamic gate training. To further overcome
the convergence hardship and increase the dynamic diversity
of the gate, a technique named Sandwich Gate Sparsification
(SGS) is further proposed. We use the slimmest sub-network
and the whole network to identify easy and hard samples
online and further generate the ground truth slimming factors
for the slimming heads of all the dynamic gates.

As analysed in [72], wider sub-networks should always
be more accurate because the accuracy of slimmer ones can
always be achieved by learning new connections to zeros.
Thus, given a well-trained supernet, input samples can be
roughly classified into three difficulty levels: a) Easy sam-
ples Xeasy that can be correctly classified by the slimmest
sub-network; b) Hard samples Xhard that can not be cor-
rectly classified by the widest sub-network; c) Dependent
samples Xdep: Other samples in between. In order to min-
imize the computation cost, easy samples should always
be routed to the slimmest sub-network (i.e. gate target
T (Xeasy) = [1, 0, . . . , 0]). For dependent samples and hard
samples, we always encourage them to pass through the
widest sub-network, even if the hard samples can not be
correctly classified (i.e. T (Xhard) = T (Xdep) = [0, . . . , 0, 1]).
Another gate target strategy is also discussed in Sec. 4.4.

Based on the generated gate target, we define the SGS
loss that facilitates the gate training:

LSGS = Tslim(X ) ∗ LCE(X , T (Xeasy))
+ (¬Tslim(X )) ∗ LCE(X , T (Xhard))

(10)

where Tslim(X ) ∈ {0, 1} represents whether X is truely
predicted by the slimmest sub-network and LCE(X , T ) =

−
∑
T ∗ log(X ) is the Cross-Entropy loss over softmax

activated gate scores and the generated gate target.

4. Experiments
Dataset. We evaluate our method on two classification
datasets (i.e., ImageNet [12] and CIFAR-10 [36]) and a stan-
dard object detection dataset (i.e., PASCAL VOC [13]). The
ImageNet dataset is a large-scale dataset containing 1.2 M
train set images and 50 K val set images in 1000 classes.
We use all the training data in both of the two training stages.
Our results are obtained on the val set with image size of
224× 224. We also test the transferability of our DS-Net on
CIFAR-10, which comprises 10 classes with 50,000 training
and 10,000 test images. Note that few previous works on
dynamic networks and network pruning reported results on
object detection. We take PASCAL VOC, one of the stan-
dard datasets for evaluating object detection performance,
as an example to further test the generality of our dynamic
networks on object detection. All the detection models are
trained with the combined dataset from 2007 trainval and
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2012 trainval and tested on VOC 2007 test set.
Architecture details. Following previous works on static
and dynamic network pruning, we use two representative
networks, i.e., the heavy residual network ResNet 50 [20]
and the lightweight non-residual network MobileNetV1 [26],
to evaluate our method.

In Dynamic Slimmable ResNet 50 (DS-ResNet), we in-
sert our double-headed gate in the begining of each residual
blocks. The slimming head is only used in the first block of
each stage. Each one of those blocks contains a skip connec-
tion with a projection layer, i.e. 1× 1 convolution. The filter
number of this projection convolution is also controlled by
the gate to avoid channel inconsistency when adding skip
features with residual output. In other residual blocks, the
slimming heads of the gates are disabled and all the layers
in those blocks inherit the widths of the first blocks of each
stage. To sum up, there are 4 gates (one for each stage) with
both heads enabled. Every gates have 4 equispaced candi-
date slimming ratios, i.e. ρ ∈ {0.25, 0.5, 0.75, 1}. The total
routing space contains 44 = 256 possible paths with differ-
ent computation complexities. All batch normalization (BN)
layers in DS-ResNet are replaced with group normalization
to avoid test-time representation shift caused by inaccurate
BN statistics in weight-sharing networks [74, 72].

Unlike DS-ResNet, we only use one single slimming gate
after the fifth depthwise separable convolution block of Dy-
namic Slimmable MobileNetV1 (DS-MBNet). Specifically,
a fixed slimming ratio ρ = 0.5 is used in the first 5 blocks
while the width of the rest 8 blocks are controlled by the gate
with the candidate slimming ratios ρ ∈ [0.35 : 0.05 : 1.25].
This architecture with only 18 paths in its routing space
is similar to an uniform slimmable network [74, 72], guar-
anteeing itself the practicality to use batch normalization.
Following [72], we perform BN recalibration for all the 18
paths in DS-MBNet after the supernet training stage.
Training details. We train our supernet with 512 total batch
size on ImageNet, using SGD optimizer with 0.2 initial
learning rate for DS-ResNet and 0.08 initial learning rate
for DS-MBNet, respectively. We use cosine learning rate
scheduler to reduce the learning rate to its 1% in 150 epochs.
Other settings are following previous works on slimmable
networks [74, 72, 71]. For gate training, we use SGD op-
timizer with 0.05 initial learning rate for a total batch size
of 512. The learning rate decays to 0.9× of its value in
every epoch. It takes 10 epochs for the gate to converge.
For transfer learning experiments on CIFAR-10, we follow
similar settings with [35] and [32]. We transfer our supernet
for 70 epochs including 15 warm-up epochs and use cosine
learning rate scheduler with an initial learning rate of 0.7 for
a total batch size of 1024. For object detection task , we train
all the networks following [49] and [47] with a total batch
size of 128 for 300 epochs. The learning rate is set to 0.004
at the first, then divided by 10 at epoch 200 and 250.

Table 2. Comparison of state-of-the-art efficient inference methods
on ImageNet. Brown denotes network pruning methods, Blue
denotes dynamic inference methods, Orange denotes architecture
search methods and Purple denotes our method.

Method MAdds Top-1 Acc.

3B
MAdds

SFP [21] 2.9B 75.1
ThiNet-70 [53, 52] 2.9B 75.8
MetaPruning 0.85 [51] 3.0B 76.2
ConvNet-AIG-50 [63] 3.1B 76.2
AutoSlim [71] 3.0B 76.0
DS-ResNet-L (Ours) 3.1B 76.6

2B
MAdds

ResNet-50 0.75× [20] 2.3B 74.9
S-ResNet-50 [74] 2.3B 74.9
ThiNet-50 [53, 52] 2.1B 74.7
CP [22] 2.0B 73.3
MetaPruning 0.75 [51] 2.0B 75.4
MSDNet [30] 2.0B 75.5
AutoSlim [71] 2.0B 75.6
DS-ResNet-M (Ours) 2.2B 76.1

1B
MAdds

ResNet-50 0.5× [20] 1.1B 72.1
ThiNet-30 [53, 52] 1.2B 72.1
MetaPruning 0.5 [51] 1.0B 73.4
GFNet [65] 1.2B 73.8
DS-ResNet-S (Ours) 1.2B 74.6

Method MAdds Latency Top-1 Acc.

500M
MAdds

MBNetV1 1.0× [26] 569M 63ms 70.9
US-MBNetV1 1.0× [72] 569M - 71.8
AutoSlim [71] 572M - 73.0
DS-MBNet-L (Ours) 565M 69ms 74.5

300M
MAdds

MBNetV1 0.75× [26] 317M 48ms 68.4
US-MBNetV1 0.75× [72] 317M - 69.5
NetAdapt [69] 284M - 69.1
Meta-Pruning [51] 281M - 70.6
EagleEye [40] 284M - 70.9
CG-Net-A [29] 303M - 70.3
AutoSlim [71] 325M - 71.5
DS-MBNet-M (Ours) 319M 54ms 72.8

150M
MAdds

MBNetV1 0.5× [26] 150M 33ms 63.3
US-MBNetV1 0.5× [72] 150M - 64.2
AutoSlim [71] 150M - 67.9
DS-MBNet-S (Ours) 153M 39ms 70.1

4.1. Main Results on ImageNet
We first validate the effectiveness of our method on Im-

ageNet. As shown in Tab. 2 and Fig. 5, DS-Net with
different computation complexity consistently outperforms
recent static pruning methods, dynamic inference methods
and NAS methods. First, our DS-ResNet and DS-MBNet
models achieve 2-4× computation reduction over ResNet-50
(76.1% [20]) and MobileNetV1 (70.9% [26]) with minimal
accuracy drops (0% to -1.5% for ResNet and +0.9% to -0.8%
for MobileNet). We also tested the real world latency on
efficient networks. Compare to the ideal acceleration tested
on channel scaled MobileNetV1, which is 1.31× and 1.91×,
our DS-MBNet achieves comparable 1.17× and 1.62× ac-
celeration with much higher performance. In paticular, our
DS-MBNet surpasses the original and the channel scaled
MobileNetV1 [26] by 3.6%, 4.4% and 6.8% with similar
MAdds and minor increase in latency. Second, our method
outperforms classic and state-of-the-art static pruning meth-
ods in a large range. Remarkably, DS-MBNet outperforms
the SOTA pruning methods EagleEye [40] and Meta-Pruning
[51] by 1.9% and 2.2%. Third, our DS-Net maintain supe-
riority comparing with powerful dynamic inference methods
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Figure 5. Accuracy vs. complexity on ImageNet.

Table 3. Comparison of transfer learning performance on CIFAR-
10. GT stands for gate transfer.

Model MAdds Top-1 Acc.

ResNet-50 [20, 35] 4.1B 96.8
ResNet-101 [20, 35] 7.8B 97.6
DS-ResNet w/o GT 1.7B 97.4
DS-ResNet w/ GT 1.6B 97.8

Table 4. Performance comparision of DS-MBNet and MobileNet
with FSSD on VOC object detection task.

Model MAdds mAP

MBNetV1 + FSSD [26, 47] 4.3B 71.9
DS-MBNet-S + FSSD 2.3B 70.7
DS-MBNet-M + FSSD 2.7B 72.8
DS-MBNet-L + FSSD 3.2B 73.7

with varying depth, width or input resolution. For example,
our DS-MBNet-M surpasses dynamic pruning method CG-
Net [29] by 2.5%. Fourth, our DS-Net also consistently
outperforms its static counterparts. Our DS-MBNet-S sur-
passes AutoSlim [71] and US-Net [72] by 2.2% and 5.9%.

4.2. Transferability
To evaluate the transferability of DS-Net and its dynamic

gate, we perform transfer learning in two settings: (i) DS-
Net w/o gate transfer: we transfer the supernet without
slimming gate to CIFAR-10 and retrain the dynamic gate.
(ii) DS-Net w/ gate transfer: we first transfer the supernet
then load the ImageNet trained gate and perform transfer
leaning for the gate. The results along with the transfer
learning results of the original ResNets are shown in Tab. 3.
Gate transfer boosts the performance of DS-ResNet by 0.4%
on CIFAR-10, demonstrating the transferability of dynamic
gate. Remarkably, both of our transferred DS-ResNet out-
performs the original ResNet-50 in a large range (0.6% and
1.0%) with about 2.5 × computation reduction. Among
them, DS-ResNet with gate transfer even outperforms the
larger ResNet-101 with 4.9× fewer computation complexity,
proving the superiority of DS-Net in transfer learning.
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Figure 6. Evaluation accuracy of the slimmest sub-network during
supernet training with three different training schemes.

Table 5. Ablation analysis of In-place Ensemble Bootstrapping.
EMA Ensemble slimmest widest

66.5 74.0
X 68.1 74.3
X X 68.3 74.6

4.3. Object Detection
In this section, we evaluate and compare the performance

of original MobileNet and DS-MBNet used as feature ex-
tractor in object detection with Feature Fusion Single Shot
Multibox Detector(FSSD) [47]. We use the features from
the 5-th, 11-th and 13-th depthwise convolution blocks (with
the output stride of 8, 16, 32) of MobileNet for the detector.
When using DS-MBNet as the backbone, all the features
from dynamic source layers are projected to a fixed channel
dimention by the feature transform module in FSSD [47].

Results on VOC 2007 test set are given in Tab. 4. Com-
paring to MobileNetV1, DS-MBNet-M and DS-MBNet-L
with FSSD achieves 0.9 and 1.8 mAP improvement with
1.59× and 1.34× computation reduction respectively, which
demonstrates that our DS-Net remain its superiority after
deployed as the backbone network in object detection task.

4.4. Ablation study
In-place Ensemble Bootstrapping. We statistically anal-
ysis the effect of IEB technique with MobileNetV1. We
train a Slimmable MobileNetV1 supernet with three set-
tings: original in-place distillation, in-place distillation with
EMA target and our complete IEB technique. As shown in
Tab. 5, the slimmest and widest sub-network trained with
EMA target surpassed the baseline by 1.6% and 0.3% re-
spectively. With IEB, the supernet improves 1.8% and 0.6%
on its slimmest and widest sub-networks comparing with
in-place distillation. The evaluation accuracy progression
curves of the slimmest sub-networks trained with these three
settings are illustrated in Fig. 6. The beginning stage of
in-place distillation is unstable. Adopting EMA target im-
proves the performance. However, there are a few sudden
drops of accuracy in the middle of the training with EMA
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target. Though being able to recover in several epochs, the
model may still be potentially harmed by those fluctuation.
After fully adopting IEB, the model converges to a higher
final accuracy without any conspicuous fluctuations in the
training process, demonstrating the effectiveness of our IEB
technique in stablizing the training and boosting the overall
performance of slimmable networks.
Effect of losses. To examine the impact of the three losses
used in our gate training, i.e. target loss Lcls, complexity
loss Lcplx and SGS loss LSGS , we conduct extensive exper-
iments with DS-ResNet on ImageNet, and summarize the
results in Tab. 6 and Fig. 7 left. Firstly, as illustrated in Fig.
7 left, models trained with SGS (red line) are more efficient
than models trained without it (purple line). Secondly, as
shown in Tab. 6, with target loss, the model pursues bet-
ter performance while ignoring computation cost; complex-
ity loss pushes the model to be lightweight while ignoring
the performance; SGS loss itself can achieve a balanced
complexity-accuracy trade-off by encouraging easy and hard
samples to use slim and wide sub-networks, respectively.
SGS strategy. Though we always want the easy samples to
be routed to the slimmest sub-network, there are two possible
target definition for hard samples in SGS loss: (i) Try Best:
Encourage the hard samples to pass through the widest sub-
network, even if they can not be correctly classified (i.e.
T (Xhard) = [0, . . . , 0, 1]). (ii) Give Up: Push the hard
samples to use the slimmest path to save computation cost
(i.e. T (Xhard) = [1, 0, . . . , 0]). In both of the strategies,
dependent samples are encouraged to use the widest sub-
network (i.e. T (Xdependent) = [0, . . . , 0, 1]). The results for
both of the strategies are shown in Tab. 6 and Fig. 7 left. As
shown in the third and fourth lines in Tab. 6, Give Up strategy
lowers the computation complexity of the DS-ResNet but
greatly harms the model performance. The models trained
with Try Best strategy (red line in Fig. 7 left) outperform
the one trained with Give Up strategy (blue dot in Fig. 7
left) in terms of efficiency. This can be attribute to Give
Up strategy’s optimization difficulty and the lack of samples
that targeting on the widest path (dependent samples only
account for about 10% of the total training samples). These
results prove our Try Best strategy is easier to optimize and

Table 6. Ablation analysis of losses on ImageNet. Results in bold
that use SGS loss achieve good performance-complexity trade-off.

Target Complexity SGS MAdds Top-1 Acc.

X 3.6B 76.8
X 0.3B 66.2

X Give Up 1.5B 73.7
X Try Best 3.1B 76.6

X X 2.0B 75.0
X X Try Best 1.2B 74.6

X X X Try Best 2.2B 76.1

Table 7. Ablation analysis of gate design on DS-ResNet.
weight sharing slimming head MAdds Top-1 Acc.

X scalar 2.3B 73.6
one-hot 3.0B 72.7

X one-hot 3.1B 76.6

can generalize better on validation set or new data.
Gate design. First, to evaluate the effect of our weight-
sharing double-headed gate design, we train a DS-ResNet
without sharing the the first fully-connected layer for com-
parison with SGS loss only. As shown in Tab. 7 and Fig. 7
left, the performance of DS-ResNet increase substantially
(3.9%) by applying the weight sharing design (green dot vs.
red line in Fig. 7 left). This might be attribute to overfit-
ting of the slimming head. As observed in our experiment,
sharing the first fully-connected layer with attention head
can greatly improve the generality. Second, we also trained
a DS-ResNet with scalar design (refer to Sec 3.2) of the
slimming head to compare with one-hot design. Both of the
networks are trained with SGS loss only. The results are
present in Tab. 7 and Fig. 7 left. The performance of scalar
design (orange dot in Fig. 7 left) is much lower than the
one-hot design (red line in Fig. 7 left), indicating that the
scalar gate could not route the input to the correct paths.
4.5. Gate visualization

To demonstrate the dynamic diversity of our DS-Net,
we visualize the gate distribution of DS-ResNet over the
validation set of ImageNet in Fig. 7 right. In block 1 and
2, about half of the inputs are routed to the slimmest sub-
network with 0.25 slimming ratio, while in higher level
blocks, about half of the inputs are routed to the widest
sub-network. For all the gate, the slimming ratio choices
are highly input-dependent, demonstrating the high dynamic
diversity of our DS-Net.

5. Conclusion
In this paper, we have proposed Dynamic Slimmable

Network (DS-Net), a novel dynamic network on efficient
inference, achieving good hardware-efficiency by predic-
tively adjusting the filter numbers at test time with respect
to different inputs. We propose a two stage training scheme
with In-place Ensemble Bootstrapping (IEB) and Sandwich
Gate Sparsification (SGS) technique to optimize DS-Net.
We demonstrate that DS-Net can achieve 2-4× computation
reduction and 1.62× real-world acceleration over ResNet-50
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and MobileNet with minimal accuracy drops on ImageNet.
Proved empirically, DS-Net and can surpass its static coun-
terparts as well as state-of-the-art static and dynamic model
compression method on ImageNet by a large margin (>2%)
and can generalize well on CIFAR-10 classification task and
VOC object detection task.
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Appendix
A. Implementation Details

Losses in Stage II. Complexity penalty loss Lcplx is used to
increase the model efficiency in training stage II. To provide
a stable and fair constraint, we use the number of multiply-
adds on the fly, MAdds(X , θ), as the metrics of model com-
plexity. Specifically, the complexity penalty is given by:

Lcplx(X , θ) = (
MAdds(X , θ)

T
)2, (11)

where T is a normalize factor set to the total MAdds of the
supernet in our implementation. Note that this loss term
always pushes the gate to route towards a faster architecture,
towards an architecture with target MAdds, which can effec-
tively prevent routing easy and hard instances to the same
architecture.

Overall, the slimming gate can be optimized with a joint
loss function:

L(X , θ) = λ1Lcls + λ2Lcplx + λ3LSGS . (12)

The three balancing factors are set to λ1 = 1, λ2 = 0.5, λ3 = 1

in our experiments. Different target MAdds is reached by
adjusting the routing space during gate training. For instance,
when training the gate of DS-MBNet-S, we set ρ ∈ [0.35 :
0.05 : 0.5] to prevent routing to heavier sub-networks.
Equispaced channel group. Following previous works [72,
71], we set the the smallest division of channel number to
8. When using 0.05 as the interval of ρ, rounding channels
by 8 may result in different intervals, which could lead to
training failure when using Group Normalization [67]. To
prevent such problem, we always adopt a consistent interval
(e.g. 8, 16, 32) in a single layer, instead of multiplying ρ
and rounding the channel. This results in a difference of the
slimming ratio between our implemented architecture and
our design.
Additional details. Weight decay is set to 1−4 in all of
our experiments on ImageNet. To stablize the optimization,
weight decay of all the layers in the dynamic gate is removed.
The weight γ of the last normalization layer of each residual
block is initialized to zeros following [73]. The weight of the
fully-connected layer in channel attention head, W3 in Eqn.
8, is also zero-initialized to ease the optimization following
[70]. Additional training techniques include [15, 11]. We do
not use label smoothing [54], DropPath [38] and RMSProp
[62], which are popularly used in previous works [60, 25,
71, 72].

B. Experiments on EfficientNet

We also applied our method on EfficientNet [60], a state-
of-the-art network family with high efficiency. Similar to
our DS-MBNet, Dynamic Slimmable EfficientNet-B0 (DS-
EffNet) has only one slimming gate after its 8-th inverted

Table 8. Comparison of EfficientNet-B0 and DS-EffNet on Ima-
geNet.

Method MAdds Top-1 Acc.

400M
MAdds

EffNet-B0 [60] (repro.) 399M 76.0
DS-EffNet-L (Ours) 400M 76.7

200M
MAdds

EffNet-B0 0.75× [60] 267M 74.6
DS-EffNet-S (Ours) 270M 75.4

Table 9. Ablation analysis of slimming gate.
model MAdds Top-1 Acc.

supernet (DS-MBNet) 140M 69.3
DS-MBNet-S 153M 70.1

supernet (DS-ResNet) 1.1B 73.4
DS-ResNet-S 1.2B 74.6

Table 10. Ablation analysis of distillation temperature τ (40
epochs).

τ slimmest widest

1 59.2 65.6
4 49.0 67.6

residual block, controlling the rest 8 blocks. The fixed slim-
ming ratio for the first 8 blocks is 0.5, while a uniform
dynamic slimming ratio ρ ∈ [0.75 : 0.05 : 1.75] is used
for the last 8 blocks. This supernet with 20 paths in total is
trained with a similar config with the supernet of DS-ResNet
and DS-MBNet.

We train the supernet with 512 total batch size using 0.2
learning rate that decays with a cosine scheduler in 150
epochs. To enable direct comparision, we opt to reproduce
the EfficientNet results using our training setup, with a 150
epoch schedule and no extra enhancement of DropPath [38],
RMSProp [62], etc.

The result is shown in Tab. 8. DS-EffNet outperforms
the original EfficientNet-B0 by 0.7% and 0.8%, proving its
efficacy on recent methods with inverted bottleneck blocks
[57] and Squeeze-and-Excitation module [28].
C. Additional Ablations

Slimming gate. We analysis the improvement brought by
slimming gate by comparing the performance of DS-Net and
its supernet. As shown in Tab. 9, slimming gate boosts the
performance of DS-MBNet-S and DS-ResNet-S by 0.8% and
1.2% respectively, comparing to sub-networks with similar
sizes in their supernet.
Distillation temperature. Temperature τ in distillation loss
was first introduced in [23] to control the smoothness of
the target. Using a properly larger τ usually yields better
performance of the student. Surprisingly, we find a huge
performance degradation in the slimmest sub-network when
using larger τ in in-place distillation. We test τ = 4 with
DS-MBNet for 40 epochs and compare the it with the per-
formance of default setting (τ = 1). As shown in Tab. 10,
the performance of the slimmest sub-network decrease by
10.2% after applying the temperature τ = 4.
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