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Abstract

Existing methods for single-view 3D object reconstruc-
tion directly learn to transform image features into 3D rep-
resentations. However, these methods are vulnerable to im-
ages containing noisy backgrounds and heavy occlusions
because the extracted image features do not contain enough
information to reconstruct high-quality 3D shapes. Humans
routinely use incomplete or noisy visual cues from an im-
age to retrieve similar 3D shapes from their memory and
reconstruct the 3D shape of an object. Inspired by this, we
propose a novel method, named Mem3D, that explicitly con-
structs shape priors to supplement the missing information
in the image. Specifically, the shape priors are in the forms
of “image-voxel” pairs in the memory network, which is
stored by a well-designed writing strategy during training.
We also propose a voxel triplet loss function that helps to
retrieve the precise 3D shapes that are highly related to the
input image from shape priors. The LSTM-based shape en-
coder is introduced to extract information from the retrieved
3D shapes, which are useful in recovering the 3D shape
of an object that is heavily occluded or in complex envi-
ronments. Experimental results demonstrate that Mem3D
significantly improves reconstruction quality and performs
favorably against state-of-the-art methods on the ShapeNet
and Pix3D datasets.

1. Introduction
Reconstructing object 3D shape from a single-view RGB

image is a vital but challenging computer vision task in
robotics, CAD, and virtual and augmented reality applica-
tions. Humans can easily infer the 3D shape of an object
from a single image due to sufficient prior knowledge and
an innate ability for visual understanding and reasoning.
However, this is an extremely difficult and ill-posed prob-
lem for a machine vision systems because a single-view im-
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Figure 1. Compared with the current state-of-the-arts method
Pix2Vox++ [36] and classic method 3D-R2N2 [4], the proposed
method are more robust in reconstructing the 3D shape of an object
from a single image that contains occlusion or noisy backgrounds.

age can not provide sufficient information for the object to
be reconstructed.

Most of the existing learning-based methods for single-
view 3D reconstruction extract features from a single RGB
image, then transform it into a 3D representation. These
methods achieve promising results on the synthetic datasets
(ShapeNet [2]). However, as shown in Figure 1, they usu-
ally have trouble reconstructing the 3D shape of an object
from real-world images. The performance gap between the
real-world and synthetic datasets are caused by the quality
of image features. The features extracted from images with
noisy backgrounds or heavy occlusions usually contain in-
sufficient useful information for 3D reconstruction.

Humans can infer a reasonable 3D shape of an object
from a single image, even with incomplete or noisy visual
cues. This is due to the fact that humans retrieve similar
shapes from their memories and apply these shape priors to
recover the shape of hidden and noisy parts of the object.
Motivated by human vision, we propose a novel memory-
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based framework for 3D reconstruction, Mem3D, which
consists of four components: image encoder, memory net-
work, LSTM shape encoder, and shape decoder. The pro-
posed Mem3D explicitly constructs the shape priors in the
memory network that help complete the missing image fea-
tures to recover the 3D shape of an object that is heavy oc-
cluded or in a complex environment. To construct the shape
priors, we design a writing strategy to store the “image-
voxel” pairs into the memory network in a key-value fash-
ion during training. To retrieve the precise 3D shapes that
are highly related to the input image from the memory net-
work, we propose a voxel triplet loss function that guaran-
tees that images with similar 3D shapes are closer in the
feature space. To better leverage the retrieved shapes, the
LSTM-based shape encoder transforms the useful knowl-
edge of these shapes into a shape prior vector. To employ
both information from image and shape priors, the input im-
age features and the output of the LSTM-based shape en-
coder are concatenated and are forwarded to a decoder to
predict the 3D shape of the object.

The main contributions are summarized as follows:

• We propose a memory-based framework for single-
view 3D object reconstruction, named Mem3D. It in-
novatively retrieves similar 3D shapes from the con-
structed shape priors, and shows a powerful ability to
reconstruct the 3D shape of objects that are heavily oc-
cluded or in a complex environment.

• We present a memory network that stores shape priors
in the form of “image-voxel” pairs. To better organize
the shape priors and ensure accurate retrieval, we de-
sign novel reading and writing strategies, as well as
introducing a voxel triplet loss function.

• Experimental results demonstrate that the proposed
Mem3D significantly improves the reconstruction
quality and performs favorably against state-of-the-art
methods on the ShapeNet and Pix3D datasets.

2. Related Work
Single-image 3D Reconstruction. Recently, 3D object
reconstruction from a single-view image has attracted in-
creasing attention because of its wide applications in the
real world. Recovering object shape from a single-view
image is an ill-posed problem due to the limitation of vi-
sual clues. Existing works use the representation of silhou-
ettes [5], shading [19], and texture [30] to recover 3D shape.
With the success of deep learning, especially generative ad-
versarial networks [7] and variational autoencoders [10],
the deep neural network based encoder-decoder has become
the main-stream architecture, such as 3D-VAE-GAN [32].
PSGN [6] and 3DLMNet [14] generate point representa-
tions from single-view images. 3D-R2N2 [4] is a uni-

fied framework for single- and multi-view 3D reconstruc-
tion which employs a 3D convolutional LSTM to fuse the
image features. To solve the permutation variance issue,
Pix2Vox [35] employs a context-aware fusion module to
adaptively select high-quality reconstructions from single-
view reconstructions. However, these works that utilize
shape priors implicitly are venerable to noisy backgrounds
and heavy occlusions. To reconstruct the 3D shape of an
object from real-world images, MarrNet [31] and its vari-
ants [33, 38] reconstructs 3D objects by estimating depth,
surface normals, and silhouettes. Both 3D-RCNN [12] and
FroDO [20] introduce an object detector to remove noisy
backgrounds.
Memory Network. The Memory Network was first pro-
posed in [29], which augmented neural networks with an
external memory module that enables the neural network
to store long-term memory. Later works [11, 23] improve
the Memory Network so it can be trained in an end-to-end
manner. Hierarchical Memory Networks [1] was proposed
to allow a read controller to efficiently access large scale
memories. Key-Value Memory Networks [16] store prior
knowledge in a key-value structured memory, where keys
are used to address relevant memories whose correspond-
ing values are returned.

3. Method
In existing single-view 3D reconstruction methods [36,

28, 37, 4], the shape priors are learnt into model parame-
ters, which leads to low quality reconstructions for images
containing heavy occlusion and noisy backgrounds. To alle-
viate this issue, the proposed Mem3D explicitly constructs
the shape priors using a Key-Value Memory Network [17].
Specifically, the image encoder extracts features from the
input image. During training, the extracted features and the
corresponding 3D shape are then stored in the memory net-
work in a key-value fashion. For both training and testing,
the 3D shapes whose corresponding keys have high simi-
larities are forwarded to the LSTM shape encoder. After
that, the LSTM shape encoder generates a shape prior vec-
tor. Finally, the decoder takes the both image features and
the shape prior vector to reconstruct the 3D shape of the
object.

3.1. Memory Network

The memory network aims to explicitly construct the
shape priors by storing the “image-voxel” pairs, which
memorize the correspondence between the image features
and the corresponding 3D shapes.The memory items are
constructed as: [key, value, age], which is denoted as
M = {(Ki,Vi, Ai)

m
i=1}, where m denotes the size of the

memory. The “key” and “value” memory slots store the im-
age features and the corresponding 3D volume, respectively.
The “key” Ki ∈ Rnk is used to compute the cosine similar-
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Figure 2. The proposed Mem3D reconstruct the 3D shape of an object from a single input image. The Memory Network learns to retrieve
3D volumes that are highly related to the input image. The LSTM Shape Encoder is proposed to contextually encode multiple 3D volumes
into a shape prior vector, which provides the information that helps to recover the 3D shape of the object’s hidden and noisy parts.

ities with the input image features. The “value” Vi ∈ Rnv

is returned if the similarity score between the query and the
keys of memory exceeds a threshold. The nk and nv are
dimension of the memory “key” and memory “value”, re-
spectively. The “age” Ai ∈ N represents the alive time of
the pair, which is to set to zero when the pair is matched by
the input image features. The memory network overwrites
the “oldest” pair when writing new pairs.

3.1.1 Memory Writer

The memory writer is presented to construct the shape pri-
ors in the memory network. We designed a writing strategy
to determine how to update the memory slots when given
the image features F ∈ Rnk and its corresponding volume
V . The memory writing only works at training because it
takes the ground truth 3D volumes as input, which are not
available during testing. In the memory network, the key
similarity between the input image features F and the mem-
ory key Ki is defined as following

Sk(F,Ki) =
F ·Ki

‖F‖‖Ki‖
(1)

Similarly, the value similarity between the correspond-
ing 3D volumes V and the value Vi can be defined as

Sv(V,Vi) = 1− 1

r3v

r3v∑
j=1

(Vj
i − V

j)2 (2)

where rv indicates the resolution of the 3D volume.
The writing strategy works for the two cases according

to whether the similarity satisfies Sv(V,Vn1) > δ, where δ
is the similarity threshold and n1 is determined by

n1 = argmax
i
Sk(F,Ki) (3)

Strategy for Similar Examples (Sv(V,Vn1) ≥ δ). For a
similar example, the value Vn1

kept unchanged, while the
age An1

= 0 and the key Kn1
is updated as follows:

Kn1 =
F+Kn1

‖F+Kn1‖
(4)

After the memory update, the ages are adjusted as Ai =
Ai + 1 (i 6= n1).
Strategy for New Examples (Sv(V,Vn1

) < δ). For a new
example, the memory writer stores it to the memory net-
work as following

Kno
= F (5)

Vno
= V (6)

Ano
= 0 (7)
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where no is determined by

no = argmax
i

(Ai) (8)

if there are no empty slots in the memory network. Other-
wise, no can be the index of any empty memory slots. After
the memory update, the ages are adjusted as Ai = Ai + 1
(i 6= no).

3.1.2 Memory Reader

The memory reader is used for reading the values from the
memory network and outputs a value sequence containing
3D volumes that are highly related to the input image fea-
tures. For different input image features, there are different
numbers of highly similar shapes in the memory. Therefore,
retrieving a fixed number of shapes from the memory net-
work would not be suitable for all inputs and may introduce
irrelevant shapes.

To solve this problem, we construct the retrieved value
sequence by concatenating all values whose key satisfies
Sk(F,Kni

) > β, which can be formulated as

V = [Vni
|Sk(F,Kni

) > β] (9)

where β is threshold and [·] denotes the concatenation.

3.2. LSTM Shape Encoder

The value sequence V retrieved by the memory reader
contains 3D shapes that are similar to the object in the in-
put image. The value sequence from the memory reader
is length-variant and has been ordered by the similarities.
Intuitively, different parts of different shapes in the value
sequence may have a different importance in reconstruct-
ing the 3D shape from the current image. To contextually
consider and incorporate knowledge useful for current re-
construction from the value sequence into the image fea-
ture to supplement the occluded or noisy parts, we leverage
LSTM [9] to encode the value sequence V in a sequential
manner. The LSTM shape encoder takes the length-variant
value sequence as input and outputs a fixed-length “shape
prior vector”. The “shape prior vector” is then concate-
nated with the input image feature to provide extra useful
information for the shape decoder.

3.3. Network Architecture

Image Encoder. The image encoder contains the first three
convolutional blocks of ResNet-50 [8] to extract a 512×282
feature map from a 224× 224× 3 image. Then the ResNet
is followed by three sets of 2D convolutional layers, batch
normalization layers and ReLU layers. The kernel sizes of
the three convolutional layers are 32, with a padding of 1.
There is a max pooling layer with a kernel size of 22 after
the second and third ReLU layers. The output channels of

the three convolutional layers are 512, 256, and 256, respec-
tively.
LSTM Shape Encoder. The shape encoder is an LSTM [9]
network with 1 hidden layer. The hidden size is set to 2,048
which indicates that the output shape prior vector is a 2,048
dimensional vector.
Shape Decoder. The decoder contains five 3D transposed
convolutional layers. The first four transposed convolu-
tional layers are of kernel sizes 43, with strides of 2 and
paddings of 1. The next transposed convolutional layer has
a bank of 13 filter. Each of the first four transposed convolu-
tional layers is followed by a batch normalization layer and
a ReLU, and the last transposed convolutional layer is fol-
lowed by a sigmoid function. The output channel numbers
of the five transposed convolutional layers are 512, 128, 32,
8, and 1, respectively. The final output of decoder is a 323

voxelized shape.

3.4. Loss Functions

Voxel Triplet Loss. We propose a voxel triplet loss that
helps to retrieve precise values from the memory network
by guaranteeing that images with similar 3D shapes are
closer in the feature space. In the memory network, np
and nb are the memory slots of the positive and negative
samples, respectively. For a positive sample, the similarity
between its value Vnp

and the corresponding 3D volume of
the input image V satisfies

Sv(V,Vnp
) ≥ δ (10)

Similarly, for a negative sample, the similarity satisfies

Sv(V,Vnb
) < δ (11)

where Vnb
represents the value of the “image-voxel” pair

for nb. Therefore, the voxel triplet loss can be defined as

`t(Skb, Skp, α) = max (Skb − Skp + α, 0) (12)

where α is the margin in the triplet loss [21]. Skb and Skp

are the similarities between the input image features and the
keys of the postive/negative sample, which are defined as
Skb = Sk(F,Knb

) and Skp = Sk(F,Knp
), respectively.

The proposed voxel triplet loss can minimize the distance
among image features with similar 3D volumes and maxi-
mize the distance among image features with different 3D
volumes.
Binary Cross Entropy Loss. For the reconstruction net-
work, we adopt the Binary Cross Entropy Loss, which is
defined as the mean value of the voxel-wise binary cross
entropies between the reconstructed object and the ground
truth. More formally, it can be defined as

4



`r(p, gt) =
1

r3v

r3v∑
i=1

[gti log(pi) + (1− gti) log(1− pi)]

(13)
where p and gt denote the predicted 3D volume and the
corresponding ground truth, respectively.

The Mem3D is trained end-to-end by the combination of
the voxel triplet loss and the reconstruction loss:

`total = `t + `r (14)

4. Experiments
4.1. Datasets

ShapeNet. The ShapeNet dataset [2] is composed of syn-
thetic images and corresponding 3D volumes. We use a
subset of the ShapeNet dataset consisting of 44K models
and 13 major categories following [4]. Specifically, we use
renderings provided by 3D-R2N2 which contains 24 ran-
dom views of size 137 × 137 for each 3D model. We also
apply random background augmentation [36, 22] to the im-
age during training. Note that only the ShapeNet dataset is
used for training Mem3D.
Pix3D. The Pix3D [24] dataset contains 395 3D models of
nine classes. Each model is associated with a set of real
images, capturing the exact object in diverse environments.
The most significant category in this dataset is chairs. The
Pix3D dataset is used only for evaluation.

4.2. Evaluation Metrics

We apply the intersection over union (IoU) and F-score
evaluation metrics widely used by existing works. The IoU
is formulated as

IoU =

∑
i,j,k I(p(i, j, k) > t)I(gt(i, j, k))∑

i,j,k I[I(p(i, j, k) > t) + I(gt(i, j, k))]
(15)

where p(i, j, k) and gt(i, j, k) indicate predicted occupancy
probability and ground-truth at (i,j,k), respectively. I is the
indication function which will equal to one when the re-
quirements are satisfied. The t denotes a threshold, t = 0.3
in our experiments. Following Tatarchenko et al. [26], we
also take F-Score as an extra metric to evaluate the perfor-
mance of 3D reconstruction results, which can be defined
as

F-Score(d) =
2P (d)R(d)

P (d) +R(d)
(16)

where P (d) andR(d) denote the precision and recall with a
distance threshold d, respectively. P (d) and R(d) are com-
puted as

P (d) =
1

nR

∑
r∈R

[
min
g∈G
||g − r|| < d

]
(17)

R(d) =
1

nG

∑
g∈G

[
min
r∈R
||g − r|| < d

]
(18)

where R and G represent the predicted and ground truth
point clouds, respectively. nR and nG are the number of
points in R and G, respectively. To adapt the F-Score to
voxel models, like existing works [36], we apply the march-
ing cube algorithm [13] to generate the object surface, then
8,192 points are sampled from the surface to compute F-
Score between predicted and ground truth voxels. A higher
IoU and F-Score indicates better reconstruction results.

4.3. Implementation Details

We used 224 × 224 RGB images as input to train the
Mem3D with a batch size of 32. The whole network is
trained end-to-end with the Adam optimizer with a β1 of
0.9 and a β2 of 0.999. The initial learning rate is set to
0.001 and decayed by 2 after 150 epochs. In the memory
network, the size is m = 4000. The margin α in Equation
(12) is set to 0.1. The thresholds β and δ in Equations (9)
and (10) are set to 0.85 and 0.90, respectively. The source
code will be publicly available.

4.4. Object Reconstruction on ShapeNet

We compare the performance with other state-of-the-
art methods on the ShapeNet testing set. Tables 1 and 2
show the IoU and F-Score@1% of all methods, respectively,
which indicates that Mem3D outperforms all other compet-
itive methods with a large margin in terms of both IoU and
F-Score@1%. Our Mem3D benefits from the memory net-
work which explicitly constructs shape priors and applies
them according to an object’s individual needs to improve
reconstruction quality.

4.5. Object Reconstruction on Pix3D

Pix3D is a more challenging benchmark which con-
tains diverse real-world images and corresponding shapes.
In Pix3D, the ‘chair’ category contains 3,839 images and
the corresponding 3D models, which are the largest cat-
egory of the dataset. Due to the complicated environ-
ment in images, the objects are frequently occluded by sur-
roundings or themselves. Therefore, most of the previous
works [35, 24, 34] evaluate their approaches using the hand-
selected 2,894 untruncated and unoccluded ‘chair’ images
to guarantee their models can capture enough information
from the images. However, although this avoids the occlu-
sion problem to some extent by selecting unoccluded test-
ing samples, the previous reconstruction models still per-
form imperfectly because of the complicated background.

5



Table 1. Comparison of single-view 3D object reconstruction on ShapeNet. We report the per-category and overall IoU at 323 resolution.
The best results are highlighted in bold.

Category 3D-R2N2 [4] OGN [25] DRC [27] Pixel2Mesh [28] IM-Net [3] AttSets [37] Pix2Vox [35] Mem3D

Airplane 0.513 0.587 0.571 0.508 0.702 0.594 0.674 0.767
Bench 0.421 0.481 0.453 0.379 0.564 0.552 0.608 0.651

Cabinet 0.716 0.729 0.635 0.732 0.680 0.783 0.799 0.840
Car 0.798 0.828 0.755 0.670 0.756 0.844 0.858 0.877

Chair 0.466 0.483 0.469 0.484 0.644 0.559 0.581 0.712
Display 0.468 0.502 0.419 0.582 0.585 0.565 0.548 0.631
Lamp 0.381 0.398 0.415 0.399 0.433 0.445 0.457 0.535

Speaker 0.662 0.637 0.609 0.672 0.683 0.721 0.721 0.778
Rifle 0.544 0.593 0.608 0.468 0.723 0.601 0.617 0.746
Sofa 0.628 0.646 0.606 0.622 0.694 0.703 0.725 0.753
Table 0.513 0.536 0.424 0.536 0.621 0.590 0.620 0.685

Cellphone 0.661 0.702 0.413 0.762 0.762 0.743 0.809 0.823
Watercraft 0.513 0.632 0.556 0.471 0.607 0.601 0.603 0.684

overall 0.560 0.596 0.545 0.552 0.659 0.642 0.670 0.729

Table 2. Comparison of single-view 3D object reconstruction on ShapeNet. We report the per-category and overall F-Score@1%. For
voxel reconstruction methods, the points are sampled from triangular meshes generated by the marching cube algorithm. The best results
are highlighted in bold.

Category 3D-R2N2 [4] OGN [25] OccNet [15] Pixel2Mesh [28] IM-Net [3] AttSets [37] Pix2Vox++ [36] Mem3D

Airplane 0.412 0.487 0.494 0.376 0.598 0.489 0.583 0.671
Bench 0.345 0.364 0.318 0.313 0.361 0.406 0.478 0.525

Cabinet 0.327 0.316 0.449 0.450 0.345 0.367 0.408 0.517
Car 0.481 0.514 0.315 0.486 0.304 0.497 0.564 0.590

Chair 0.238 0.226 0.365 0.386 0.442 0.334 0.309 0.503
Display 0.227 0.215 0.468 0.319 0.466 0.310 0.296 0.498
Lamp 0.267 0.249 0.361 0.219 0.371 0.315 0.315 0.403

Speaker 0.231 0.225 0.249 0.190 0.200 0.211 0.152 0.262
Rifle 0.521 0.541 0.219 0.340 0.407 0.524 0.574 0.626
Sofa 0.274 0.290 0.324 0.343 0.354 0.334 0.377 0.434
Table 0.340 0.352 0.549 0.502 0.461 0.419 0.406 0.569

Cellphone 0.504 0.528 0.273 0.485 0.423 0.469 0.633 0.674
Watercraft 0.305 0.328 0.347 0.266 0.369 0.315 0.390 0.461

Overall 0.351 0.368 0.393 0.398 0.405 0.395 0.436 0.517

To show the superior ability to reconstruct objects with the
occlusion and background issues, we evaluate Mem3D on
the 2,894 chair images with less occlusions but complicated
backgrounds and 945 chair images (the complementary set)
with heavy occlusions.

Note that the Mem3D is trained on the ShapeNet “chair”
training set and evaluate on the Pix3D chair set. Since the
memory network only writes “image-voxel” pairs during
training, the memory network only contains shape priors
extracted from the ShapeNet dataset.

4.5.1 Reconstruction with Complicated Backgrounds

Table 3 shows the evaluation performance of Mem3D and
other works on the 2,894 untruncated and unoccluded
‘chair’ images. Note that these methods use different types

of extra information. For instance, MarrNet [31], DRC [27]
and ShapeHD [34] use extra depth, surface normals and
silhouettes information. The proposed Mem3D outper-
forms the state-of-the-art methods by a large margin in
terms of both IoU and F-Score@1%. The reconstruction
results of our Mem3D and previous state-of-the-art works
‘Pix2Vox++’ [36] and ‘Pix3D’ [24] are shown in Figure 3.
Compared to ‘Pix2Vox++’ [36] which employs an encoder-
decoder structure, Mem3D can produce more clean and
complete reconstruction results. The reconstructions from
Mem3D also provide more details compared to other mod-
els. The memory network in Mem3D can explicitly store
and utilize 3D volumes thus providing the reconstruction
network with more detailed information about the object
and eliminating the background noise.
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Input GTPix2Vox++ Mem3DPix3D

Figure 3. Reconstruction result on 5 of the 2,894 untruncated and
unoccluded ‘chairs’ in Pix3D. GT indicates the ground-truth.

Table 3. Comparison of single-view 3D object reconstruction on
2,894 untruncated and unoccluded ‘chair’ images in Pix3D. We
report IoU and F-Score@1%. The best performance is highlighted
in bold.

Method IoU F-Score@1%

3D-R2N2[4] 0.136 0.018
3D-VAE-GAN [32] 0.171 -
MarrNet [31] 0.231 0.026
DRC [27] 0.265 0.038
ShapeHD [34] 0.284 0.046
DAREC [18] 0.241 -
Pix3D [24] 0.282 0.041
Pix2Vox++ [36] 0.292 0.068
FroDo [20] 0.325 -
Mem3D 0.387 0.143

4.5.2 Reconstruction with Heavy Occlusions

The occlusion issue is another key difficulty for single-view
object reconstruction. Table 4 shows the evaluation perfor-
mance of Mem3D and other works on the 945 chair images
with heavy occlusions. The performance of all other meth-
ods drop significantly compared to Section 4.5.1. While
Mem3D shows a favorable ability to handle the extremely
cases. Figure 4 shows some reconstruction results of our
Mem3D, ‘Pix2Vox++’ [36], and 3D-R2N2 [4]. It can be
observed that Pix2Vox++ can reconstruct the perfectly pre-
sented parts of object in the image, but failed to reconstruct
the occluded parts. Our Mem3D can provide reasonable
reconstruction even for object parts that are hidden in the
image. This is because Mem3D not only captures object in-

Input Pix2Vox++ GTMem3D3D-R2N2

Figure 4. Reconstruction result on 5 of the 945 ‘chair’ images with
heavy occlusions in Pix3D. GT indicates the ground-truth.

Table 4. Comparison of single-view 3D object reconstruction on
945 ‘chairs’ with heavy occlusions in Pix3D. We report IoU and
F-Score@1%. The best performance is highlighted in bold.

Method IoU F-Score@1%

3D-R2N2[4] 0.055 0.011
MarrNet [31] 0.138 0.019
DRC [27] 0.151 0.025
ShapeHD [34] 0.183 0.037
Pix2Vox++ [36] 0.215 0.041
Mem3D 0.336 0.105

formation from images, but also obtains complete and clean
shape information from the shapes read from memory. The
retrieved shapes can provide detailed and complete shape
information for the reconstruction network.

4.6. Ablation Study

In this section, we evaluate the importance of individual
components by ablation studies.
Memory Network. To quantitatively evaluate the memory
network, we remove the memory network and directly em-
ploy the image encoder and decoder as the baseline model.
To further prove the effectiveness of the proposed voxel
triplet loss `t in (12), which pulls image features with sim-
ilar 3D shapes closer, we remove the voxel triplet loss `t
from Mem3D training stage. The comparison results are
shown in Table 5, which demonstrates the memory network
and the proposed voxel triplet loss contribute significant
improvement. We also show the reconstruction results of
the baseline model (without the memory network) and our

7



Input Mem3D GTRetrieved from Memory Network (Partial) w/o Memory

Figure 5. An illustration of the retrieved 3D volumes and the corresponding reconstructions. “w/o Memory’‘ indicates the reconstruction
results are generated without the memory network. We only show the top-4 high-relative 3D volumes retrieved from the memory network.
GT indicates the ground-truth.

Table 5. The effect of the memory network and the voxel triplet
loss. The best results are highlighted in bold. ‘m’ indicates
the memory size and `t indicates the voxel triplet loss in Equa-
tion (12).

Method IoU F-Score@1%

w/o memory network 0.273 0.042

m = 1000 0.366 0.113
m = 2000 0.372 0.135
m = 4000 w/o `t 0.359 0.111
m = 4000 0.387 0.143

Table 6. Different ways of leveraging retrieved shapes. ‘Top-1’
indicates directly treating the first retrieved shape as the recon-
struction result. The best results are highlighted in bold.

Method IoU F-Score@1%

Top-1 0.287 0.051
Average Fusion 0.363 0.125
LSTM Shape Encoder 0.387 0.143

Mem3D as well as the retrieved shapes in Figure 5. The
baseline model which reconstruct the 3D shape of an object
from a single image captured in complicated environments
are vulnerable to noisy backgrounds and occlusions. Our
proposed Mem3D not only obtains object shapes from im-
ages, but also can access complete and clean relevant shapes
during reconstruction. The proposed Mem3D makes it pos-
sible to reconstruct the hidden parts of the object in the im-
age and significantly improve the reconstruction quality.

LSTM Shape Encoder. With the memory network in hand,
we have different choices to leverage the retrieved shapes.
For instance, we can directly use the Top-1 retrieved shape
as reconstruction result, which is similar to retrieval-based
reconstruction [26]. We can also use average fusion or the
LSTM [9] network to encode useful knowledge from re-
trieved shapes into a fixed-length vector to condition the de-
coder. Table 6 shows the reconstruction performance when
using different ways to leverage the retrieved shapes. We
can also observe the retrieved shapes in Figure 5. The Top-
1 retrieved shape has similar overall appearance compared
to the ground-truth object shape, but the details are very
different. The proposed Mem3D uses the image and the re-
trieved shapes together to provide high-quality reconstruc-
tions, which contains unique details that are distinct from
the retrieved 3D volumes.

5. Conclusion
In this paper, we propose a novel framework for 3D ob-

ject reconstruction, named Mem3D. Compared to the exist-
ing methods for single-view 3D object reconstruction that
directly learn to transform image features into 3D repre-
sentations, Mem3D constructs shape priors that are help-
ful to complete the missing image features to recover the
3D shape of an object that is heavy occluded or in a com-
plex environment. Experimental results demonstrate that
Mem3D significantly improves the reconstruction quality
and performs favorably against state-of-the-art methods on
the ShapeNet and Pix3D datasets.
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