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Abstract—This paper proposes a method to shorten the 

length of transient response time-stepping finite element 

analysis (TSFEA) of the dual three-phase permanent magnet 

synchronous machine (PMSM). Firstly, the initial magnetic 

potential and stator winding current under steady-state 

operation conditions in the TSFEA are estimated using time-

harmonic finite element analysis (THFEA). Then the achieved 

relevant values extracted from the real and imaginary part in 

the time-harmonic solver are injected into a proposed zero-state 

govern equation called the “zero-state initial solver”, which 

gives the closer-fitting of initial permeabilities, magnetic 

potential, and stator winding current in the time domain. 

Finally, the upper achieved values are transferred into the 

TSFEA as the initial condition for the following computation. 

With the well-precalculated solution, the required AC cycles of 

the steady-state can be effectively reduced, while the computing 

time of the central processing unit (CPU) is also substantially 

decreased. The effectiveness and accuracy of the proposed 

method are verified by comparing it with the conventional 

methods in a TSFEA of an 6-kW dual three-phase PMSM.   

Keywords—Dual three-phase machine, AC steady-state, time-

harmonic finite element analysis, time-stepping finite element 

analysis. 

I. INTRODUCTION 

he versatility and powerfulness of time-stepping finite 

element method for the simulation of transient 

electromagnetic problems are well recognized. Typically, the 

slow steady-state convergence rarely exists in the transient 

simulation of a PMSM when the current source is applied 

since the stator electromagnetic time constant is directly 

eased. Nevertheless, the waveform of the current must be 

known before the simulation. The current distortion generally 

exists due to the current has abundant harmonic contents, 

which causes the waveform to be non-sinusoidal. If a 

machine is designed based only on the current-fed simulation, 

many unexpected troubles were exposed in the future; for 

example, torque ripples may not be accurately simulated. 

However, a more “physics-compliant” voltage supply 

suffered from a numerical fluctuation at the start of the 

simulation, which takes several periods to reach the AC 

steady-state [1-3].  

Many methods have been proposed to overcome this 

problem in finite element analysis. One branch of them is 

known as the parallel computing technique, which aims to 

take advantage of the computational resource. For example, 

the time decomposition method (TDM)[4] and periodic 

parareal algorithm with initial-value coarse method [5]. The 

merits of upper mentioned methods are on reducing the 

simulation time while the numerical transient maintains the 

same as the conventional THFEA. However, the drawback is 

the high dependence on the performance of the computer. 

Harmonic balance FEM can generate periodic steady-state 

solutions of nonlinear problems without time-stepping during 

the transient process by processing the magnetic field 

harmonics and magnetic material nonlinear characteristics 

simultaneously [6]. It usually reduces the total problem size 

with the cost of a denser system matrix, which means it will 

take longer to solve. The model order reduction technique can 

reduce a high order model to a lower order model and adjust 

the nonlinear iteration time-stepping error tolerance [7]. This 

method merits a low computational burden and quick 

transient, but the model reduction decreases the 

computational precision.  

Another kind of technique is to reduce the time cost of 

numerical transient convergence time in TSFEA using the 

well-determined initial values achieved by THFEA[8]. In the 

relevant research in induction machines, it is also known as 

“virtual blocked rotor” (VBR) method [9]. This method was 

based on a time-harmonic solver in the frequency domain to 

approximate initial conditions. Nevertheless, this existing 

method does not take the full usage of THFEA on time-zero 

(t=0) condition estimation in the TSFEA. To be more 

specific,  this method only extracted from the real part of the 

complex solution in THFEA into TSFEA, which includes 

magnetic potential and stator winding current. To accelerate 

the TSFEA further, an acceleration technique named as 

“zero-state initial solver” (ZSIS) is proposed in this papar. 

Different from the existing VBR method, the real and 

imaginary parts in THFEA are injected into the established 
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zero states govern system to obtain a more accurate initial 

condition estimation with small calculation cost. With the 

obtained solution, the following convergence time of the 

TSFEA is effectively reduced. 

For the complete introduction of the proposed method, the 

rest of this paper is organized as follows. In Section II, a 

general formulation of field-circuit coupling is presented, 

followed by its time-harmonic discretization in the frequency 

domain. The Taylor expansion on the nonanalytic equation 

system is performed for evaluating the derivatives before the 

presentation of the Newton process. Section III introduces the 

specific implementation of the proposed acceleration 

technique and the comparison of the traditional methods. 

Section IV presents the TSFEA of a dual three-phase PMSM 

as shown in Fig. 1 by the proposed method and the 

comparison results with the traditional methods, followed by 

the conclusion drawn in Section V. 

 
Fig. 1. Structure diagram 

II. DETAILED MODELING AND IMPLEMENTATION 

A. Field-circuit model of 2-D machine   

With stranded winding coils, the eddy currents and 

proximity effects of the winding conductor region is not 

considered in this study. The current density of each stranded 

conductor is considered evenly distributed. The governing 

equation only considering the eddy effect in permanent 

magnet conductor can be expressed as follows 

,

1 1

pm s
Q Q

pm str jpm s s

pm j j j

j jef j

N
u i

t l
β

σ
σ

= =

∂
∇× + − − = ∇×

∂ ∆
  c

A
H H       (1) 

where H is the magnetic field intensity, A the magnetic 

potential, uj

pm
 the scalar potential difference in the j-th PM 

conductor, σpm the material conductivity, Qpm the number of 
PM in the solution region, Qs the number of stranded 

conductors in the solution region, ij
s  the current in the j-th 

stranded conductor, Hc the magnetic coercivity, β
j

s
 the 

parameter of correspondence between the field point and the 

j-th stranded conductor, and 
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The model should also include following circuit equations: 
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where Nstr,j  is the number of turns, Δj the cross-section, 

( ) ( )2

,str j ef s

s

rj t jN l fR σ ∆=  the DC resistance,  uj
s the voltage 

drops, Rj
ew  and  Lj

ew  are the end winding DC resistance and 

inductance of the j-th stranded conductor, respectively, lef  is 
the effective length of the machine, fstr the fill factor of the 
stranded conductor, σ the stranded material conductivity and 
Usupply the external circuit with supply source, Ωpm, and Ωs are 
domains of PM conductor region and stranded conductor 
region, respectively. 
 

B. Time-harmonic discretization 

Assuming a purely sinusoidal behavior, the time 
dependence can be eliminated from the equations by using 
complex field quantities. In a 2D case, applying the 
Galerkin’s method to equations (1)-(4) with the shape 
function N, one obtains: 
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where H�  is the complex vector of magnetic field 

intensity, upm�����  the complex vector of potential difference, a�  

the nodal value of complex magnetic potential, and i s�  the 
complex vector of stranded conductor currents. 

The complex system of equations can be rewritten in the 
matrix form as 

( ) ( ) ( ) ( ) ( )
R RR IR 1a pm s

i

ef

N Ωd
l

ω= ⋅∇× − ⋅ − ⋅ − ⋅ −F H M a C u G i P (8) 

( ) ( ) ( )
IR R
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c T s s
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The dimensions of the matrices and their elements are: 
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where Qn is the number of nodal potentials, Qm the number of 
phases, ω the angular velocity, φ the power factor angle, U 

the line voltage amplitude, t time, ω the angular velocity, and 
superscripts R and I denote the real and imaginary 
components of a vector or matrix. 
 

C. Taylor expansion and evaluation of derivatives  

As mentioned above, the time-harmonic discretization 
systems (8) and (11) are not analytical because they do not 
follow the Cauchy-Riemann differential equations. 
Consequently, the Taylor expansion is applied to (8) and (11), 
and we obtain 
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Taking partial derivatives of (14) and (15), one obtains 
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where ( ) ( ) ( )
R R R
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The detailed derivation of complex reluctivity tensors, 

∂(H)R/∂(B)R, ∂(H)R/∂(B)I, ∂(H)I/∂(B)R, and ∂(H)I/∂(B)I, are 
presented in the Appendix. 

D. Newton’s method processes 

Because of nonlinearity, the complex field-circuit 
equations, (8)–(13), should be solved iteratively. The real and 
imaginary parts are the partition, and Newton’s method is 
applied. The complex Jacobian matrix in the nonlinear 
magnetic material is given in Section II.C. The correction 
vector at the k-th iteration step can be obtained by solving 
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where I is an Identity matrix 
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The coefficient matrix of equation system (20) consists 

of four (Qn+Qpm+Qm)×(Qn+Qpm+Qm) nonsymmetric sparse 
submatrices. By solving (20), the convergence to steady-state 
can be achieved iteratively. 

III. ACCELERATION METHODS 

As outlined above, the magnetic potentials can be 
obtained from the system (20). In the time-harmonic analysis, 
magnetic potential a can be described as a periodic function 
shown below: 
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( ) ( )
R I

( ) cos( ) sin( )t t tω ω= ⋅ − ⋅a a a                  (21) 
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(0) =a a , ( )
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(0) ω= −
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a a                              (22) 

Through the relation of time-domain and time-harmonic 
equation (21)-(22) at time zero, we inject into ZSIS to acquire 
an approximation of initial value for TSFEA. It concluded the 
zero-state govern equation in the time domain, expressed  as 
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      The zero states govern equation is solved by Newton 
Raphson method. The system (23) matrix right side includes 
nonlinear matrix S materials in stator and rotor cores, linear 
matrix term C, G. The system matrix left side includes 
magnetization vector P, time-dependent term matrix M, CT, 
GT, and L. The flow chart of the implementation of two 
method is shown in Fig. 2. In the red blank box, this method 
similar to VBR technique, the total system (20) is settled 
through nonlinear iteration in the frequency domain. 
Afterward, the real part of stator currents and magnetic 
potential is injected into the TSFEA in the time domain. In 
the blue blank box, the same step as the VBR method, the real 
part and imaginary part extract from THFEA. Meanwhile, the 
achieved real and imaginary parts of the solution from 
THFEA are transferred into the zero-state govern system (23). 
The real part is injected into the system (23) as the primal 
value, and then the imaginary part is used as the loaded term 
of the system (23) on the left side, which considers the 
influence of the eddy current effect. Afterward, the ZSIS 
takes few iterative steps to obtain an accurate approximation 
of the initial value for TSFEA, which includes the magnetic 
potential, stator current. 

 
Fig. 2. Flow chart of implementation differences between the VBR and 
ZSIS methods 

IV. COMPARISON OF SIMULATION RESULTS 

The TSFEA of the 6-kw dual three-phase PMSM is 
conducted by the proposed technique, and both the 
conventional TSFEA method and VBR method are also 
applied for the comparison. The main machine parameters are 
listed in Table I. The simulation is performed with 100 time-
steps per period, a relative residual norm of 10-5, which is 
enough to ensure convergence. The mesh diagram is 
illustrated in Fig. 3, and the number of the triangular elements 
and degrees of freedom are 11703 and 6448, respectively. 
Both the proposed and conventional simulation models were 
run on Matlab in the same workstation with Intel Xeon E5-
2678 CPU. 

 

(a) 

 

(b) 

Fig. 3. Mesh diagram of the (a) half model, (b) zoom-in air gap. 

TABLE I: Parameters of the 6-kw dual three-phase PMSM 

Parameter                                                                     Value 

Winding connection                                                        Star 
Number of parallel paths                                                 2 
Number of turns                                                              57 
Pole-arc                                                                            0.8 
Number of stator slots                                                     12 
Number of poles                                                              10 
Air-gap length (mm)                                                        1 
Outer radius of stator (mm)                                             174 
Inner radius of stator (mm)                                              110 
Stack length (mm)                                                           100 
Rated torque (Nm)                                                           20 
Rated speed (r/min)                                                         3000 
Rated voltage (V)                                                            175 
Rated current (A)                                                             12.27 
Rated frequency (Hz)                                                      250 

 

Fundamental FE parameter

Time harmonic

Zero-state solver

Time stepping 

• the real part of stator currents 

and magnetic potential

• the imagnary part of stator 

currents and magnetic potential

• stator currents and 

magnetic potential

Performance 

characteristics of 

electrical machine 

• The real part of 

stator currents and 

magnetic potential

VBR technique

ZSIS technique

Authorized licensed use limited to: University of Technology Sydney. Downloaded on June 06,2022 at 00:41:23 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

P
h

a
se

 c
u

r
re

n
t/

A

Time/ms

 A1

 A2

 B1

 B2

 C1

 C2

20 21 22 23 24

-20

-15

-10

-5

0

5

10

15

20

 
                                                (a) 

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

P
h

a
se

 c
u

rr
e
n

t/
A

Time/ms

 A1

 A2

 B1

 B2

 C1

 C2

56 57 58 59 60

-20

-15

-10

-5

0

5

10

15

20

 
                                    (b) 

0 50 100 150 200 250 300 350 400

-150

-100

-50

0

50

100

150

200

P
h

a
se

 c
u

r
re

n
t/

A

Time/ms

 A1

 A2

 B1

 B2

 C1

 C2

212 213 214 215 216

-20

-15

-10

-5

0

5

10

15

20

P
h

a
se

 c
u

r
re

n
t/

A

 
                                     (c) 

Fig. 5. Phase current waveforms were obtained by the (a) ZSIS method, (b) 
VBR method, and (c) conventional method. 
 

The variation of the RMS value of each phase current in 
the electrical cycle is utilized to determine the steady-state is 
achieved. The specific differentials of the phase current 
between the adjacent electrical cycle is set as 0.2% for 
confirming the convergence. 

Figs. 5 shows the waveforms of phase currents of the 
machine obtained by the proposed ZSIS method, VBR 
method,  and conventional TSFEA methods, respectively. It 
should be noted that the transient response convergence at 
20ms, 56ms, and 212ms respectively in the analysis by the 
three methods. The corresponding number of AC cycles are 
5, 14, and 53. By contrast, the required cycles are decreased 
from 53 to 5, which means 90.57% improvement. 
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Fig. 6. Transient torque comparison in (a) the whole transient analysis 
process and  (b) the time domain when all the calculation methods 
convergence. 
 

Fig. 6(a) compares the simulated torque curves by the ZSIS 
method, VBR method, and traditional methods. The proposed 
method results have less fluctuation and fast convergence 
than the traditional method. The proposed method results 
have less fluctuation and fast convergence than the traditional 
method. It is noted that the ZSIS method is closer to the AC 
steady state at the beginning of the calculation than the VBR 
method. Fig.6(b) shows the good agreement between the 
steady-state torque results obtained by the proposed and 
traditional methods, demonstrating the excellent accuracy of 
the proposed method. 
 

TABLE II 
SIMULATION DETAILS 

                                      ZSIS method         VBR method        Conventional 

CPU time, (min) 6.47 11.01 40.11 

 
Table II compares the convergence speed of the proposed 

and conventional methods. By contrast, the VBR method 
requires 27.45%  of the CPU time of the traditional time-
stepping method to reach the steady-state in the torque curve, 
while the ZSIS method is more economical than the previous 
one, only 16.13% of CPU time. The effectiveness of the well 
proved.  

V. CONCLUSION 

This paper proposes a ZSIS method to accelerate the 
convergence of the transient process in TSFEA for a dual 
three-phase PMSM. Compared to the traditional methods, the 
proposed methods can significantly reduce the CPU time and 
number of AC cycles required to reach the steady-state while 

Authorized licensed use limited to: University of Technology Sydney. Downloaded on June 06,2022 at 00:41:23 UTC from IEEE Xplore.  Restrictions apply. 



retaining the accuracy of the traditional TSFEA method. 
Since the proposed method is derived under very general 
conditions, it is applicable to other types of electrical 
machines. 
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APPENDIX. DERIVATION OF COMPLEX RELUCTIVITY 

TENSOR 

The expression of complex reluctivity tensor can be 

derived from the 2D phasor expression of field vector, which 

bears an elliptical hysteresis loop, as the following 

( ) ( )
R R

R R( ) ( )x yref refv v B B = ⋅ = ⋅ + i jH B                    (21) 

( ) ( )
I I

I I( ) ( )x yref refv v B B = ⋅ = ⋅ + i jH B                         (22) 

2 2 2 22 R R I I( ) ( ) ( ) ( )x y x yB B B B       = + + +       B         (23) 

Taking partial derivatives of field strength, one obtains 
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and partial derivative, ∂vref /∂�
2
can be deduced from the 

magnetization curve. 
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