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ABSTRACT
We offer a method to estimate a covariance matrix in the special case that both the
covariance matrix and the precision matrix are sparse — a constraint we call dou-
ble sparsity. The estimation method is maximum likelihood, subject to the double
sparsity constraint. In our method, only a particular class of sparsity pattern is
allowed: both the matrix and its inverse must be subordinate to the same chordal
graph. Compared to a naive enforcement of double sparsity, our chordal graph
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approach exploits a special algebraic local inverse formula. This local inverse
property makes computations that would usually involve an inverse (of either pre-
cision matrix or covariance matrix) much faster. In the context of estimation of
covariance matrices, our proposal appears to be the first to find such special pairs
of covariance and precision matrices.

1 INTRODUCTION
We begin with a quote from Rothman, Levina, and Zhu (14) “As a rule of thumb
in practice, if it is not clear from the problem whether it is preferable to regularize
the covariance or the inverse, we would recommend fitting both and choosing the
sparser estimate.” The authors are describing methods that can estimate a covari-
ance matrix or a precision matrix when one – but not both – of these matrices is
sparse. For example, Bickel and Levina (1) exploit sparsity patterns when esti-
mating a covariance matrix or its inverse, and Ravikumar, Wainwright, Raskutti,
and Yu (13) explore related problems for high dimensional estimation.

In this article we demonstrate that it is in fact possible to be greedy, and ask for
simultaneous sparsity in both the covariance and precision matrices. Our estimator
is a maximum likelihood estimator with the constraint that both the covariance and
its inverse be sparse. To the best of our knowledge, this is the first proposal to seek
efficient estimation for the doubly sparse case (when both covariance matrix and
precision matrix are sparse).

Some of the advantages to imposing sparsity in both the covariance and its
inverse are simplicity of interpretation and faster computation via local formulas
that we describe below (these formulas allow us to work with both the matrix and
its inverse in an efficient way).

Estimating a covariance matrix is an important problem in the subject of statis-
tics. Methods of imposing sparsity in the covariance matrix — or more commonly
in the inverse of the covariance matrix (the precision matrix) — have attracted a
great deal of attention. A very popular example of such an approach is the graph-
ical LASSO of Friedman, Hastie, and Tibshirani (5). One reason these methods
are important is that the corresponding model is more interpretable when the pre-
cision matrix is sparse, which is important in the subjects of Gaussian Markov
random fields (15) and of graphical models and covariance selection (10).

When there is a known relationship between entries in a matrix (covariance
matrix, precision matrix, or Cholesky factor, for example) and coefficients in re-
gression, then it is possible to apply many available methods from regression that
impose zeros in the regression coefficients, as a way to impose zeros in the matrix.
Financial applications of such methods include the shrinkage estimation algorithm
of Ledoit and Wolf (11) and the missing data completion algorithm of Georgescu,
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Higham, and Peters (6).
Missing data completion is closely related to the Dempster completion, which

is closely related to the local inverse formula that we describe later. The Dempster
(3) completion of a covariance matrix in which there are missing entries has an
especially satisfying form when the inverse is chordal. Then Georgescu, Higham,
and Peters (6) note the completion brings together a number of attractive proper-
ties (4, 8, 9, 18):

• sub-blocks of these matrices away from the main diagonal have low rank,
as in The Nullity Theorem (17, 19) ; these matrices are examples of semi-
separable matrices (20);

• the inverse can be found directly, without completing the covariance ma-
trix, via a ‘local inverse formula’ (as shown in the symmetric positive def-
inite case by (10, 16)) that uses only information in the blocks on the main
diagonal of the incomplete covariance matrix;

• the completed matrix maximizes the log-determinant amongst the cone of
symmetric positive definite matrices consistent with the original incomplete
covariance matrix, and it is a maximum entropy estimate.

When an existing method succeeds in imposing sparsity in the precision ma-
trix, then typically the corresponding covariance matrix is not sparse. Vice-versa,
if the covariance matrix is sparse then the precision matrix is typically not sparse.
In summary, all methods that are currently available in the literature are not able
to impose sparsity simultaneously in both the covariance matrix and the precision
matrix. Indeed, informally, if a sparse matrix is chosen “at random” then all en-
tries of the corresponding inverse matrix are non-zero. A sparse matrix with a
sparse inverse is an extremely exceptional case. That exceptional case, applied
to the problem of estimating a covariance matrix, is the subject of the subsequent
sections.

In all subsequent sections, we refer to a chordal graph G and the junction tree
J for that graph. A definition of a chordal graph is that all cycles of four or more
vertices have a chord. A chord is an edge that is not part of the cycle, but that
connects two vertices of the cycle. There are other equivalent characterizations of
chordal graphs, such as the graphs that have perfect elimination orderings. (See,
e.g. (9, 18, 21).) Chordal graphs are also known as decomposable graphs, in the
graphical models literature (10).
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2 DOUBLY SPARSE COVARIANCE AND CON-
STRAINED LIKELIHOOD

Block diagonal covariance matrices are the simplest examples for which both the
matrix and its inverse are sparse. A diagonal covariance matrix V= diag(σ2

1 , . . . ,σ
2
n )

has inverse V−1 = diag(1/σ2
1 , . . . ,1/σ2

n ). Similarly, a block-diagonal matrix and
its inverse have the same sparsity pattern.

Other than such (block) diagonal trivial examples, it is not clear if it is possible
to construct nontrivial examples in which both the covariance and its inverse have
the same sparsity pattern — a phenomenon we dub doubly sparse covariance.

Do such doubly sparse covariance matrices exist? The answer is ‘yes’, and
examples can be constructed, where both the covariance matrix and its inverse (or
precision matrix) are assumed chordal:

V≡


13 8 4 2 0 0
8 13 2 1 0 0
4 2 10 6 1 1
2 1 6 13 10 10
0 0 1 10 13 8
0 0 1 10 8 13

 (1)

with inverse (or precision matrix) Θ≡ V−1 given by

Θ =


2960 −1690 −900 90 0 0
−1690 2675 150 −15 0 0
−900 150 8715 −12180 5385 5385

90 −15 −12180 23835 −10770 −10770
0 0 5385 −10770 7539 3231
0 0 5385 −10770 3231 7539

/21540.

(2)
It can be quickly checked this pair are also positive definite. Both V and Θ are
not block diagonal, demonstrating that the class of matrices we are considering in
this article is richer than simply block diagonal matrices.

While chordal covariance matrices have been studied before, there seem to be
no examples in the literature where both the covariance and its inverse are chordal.
We will revisit this same matrix example later in (6) to show that it has some local
inverse properties.

2.1 Constrained Maximum Likelihood
We want both the matrix M and the inverse M−1 to be subordinate to the same
chordal graph. i.e. if there is no edge between nodes i and j then the (i, j) entry
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of M is zero, and the (i, j) entry of M−1 is zero. We assume that we are given iid
sample data XXX1, . . . ,XXXn ∈Rp, drawn from N (µµµ,M) for some unknown µµµ and M.
Let the sample covariance matrix be

S =
1
n

n

∑
i=1

(XXX i− µ̂µµ)(XXX i− µ̂µµ)>, µ̂µµ =
1
n

n

∑
i=1

XXX i.

Under the normality assumption and after eliminating the nuisance parameter µµµ

(by replacing it with its MLE µ̂µµ), the maximization of the log-likelihood is equiv-
alent to the minimization (with respect to M):

trace(SM−1)+ ln |M|.

In our constrained MLE framework, we want to find a symmetric positive definite
matrix M that minimizes the objective function

trace
(
M−1S

)
+ ln |M| (3)

subject to the constraint that

M and M−1 are subordinate to G . (4)

The main novelty in our constrained optimization is that we will make use of
the so-called local inverse formula to impose the doubly sparse constraint in (4).
We describe that formula in detail in the next section. This is a simple formula
that relates the inverse to inverses of sub-blocks of the matrix, and which applies
when the graph is subordinate to a chordal graph.

The same idea allows us to compute det(M) in the objective function by a
local formula for the determinant Johnson and Lundquist (9). A main advantage
is that we can easily define a function L(M) based on the local inverse formula
that allows us to parameterize the set of matrices in the constraint using only
one subset of the variables. For example, we can use only the subset of nonzero
entries of M, and then L(M) can be used in place of M−1. (Or vice-versa: we
could parameterize with only the subset of entries of M−1, and then use L(M−1)
in place of M.)

The optimization also exploits the following well-known observations:

• We need only optimize over a subset of the entries of a Cholesky factor, R,
that correspond to the chordal graph. Then form M, if required, as M =
R>R, for example. That is, we parameterize only with the subset of entries
in a Cholesky factor, R.
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• Parameterizing via a Cholesky factor automatically ensures that we opti-
mise over positive definite matrices. Also, parameterizing via a Cholesky
factor exploits our knowledge of numerical analysis and our knowledge of
chordal graphs, that chordal graphs also correspond to ‘perfect eliminators.’
That is, the sparsity pattern is preserved (2).

• Sometimes it may be better to parameterize by the entries of the precision
matrix, or by the entries of the Cholesky factor of the precision matrix, as
in Pourahmadi (12), but we have made no attempt to compare the relative
merits of those two approaches.

Before proceeding with the details of the local inverse formula, we make two
remarks.

Imposing the double sparse constraint in a naive way. A naive approach to
(3)+(4) is to apply off-the-shelf optimization software, that only optimizes over
the subset of the entries in M that are allowed to be possibly nonzero (so that the
first part of the constraint, M subordinate to G , is automatically fulfilled), and
then impose some form of penalty based on terms in M−1 that are nonzero and
that are not allowed to be nonzero according to the graph G . There are other naive
ways that one could imagine to impose the doubly sparse constraint in (4). An
issue with such naive approaches is that they do not make use of the underlying
algebraic structure of such special pairs of matrices.

Separable nonlinear least squares problems. Finding a pair of matrices M and
M−1 that are both subordinate to the same graph G , as in (4), is related to so-called
separable nonlinear least squares problems (7). Roughly speaking, that class of
problems corresponds to a nonlinear optimization problem where the variables
can be partitioned into two subsets, and where knowing the values of the variables
for one of the subsets, leads to a linear problem to be solved in order to find the
unknown values of the remaining variables in the other subset. For our applica-
tion at hand, the two subsets are the unknown entries of M and of M−1. If we
knew the true nonzero entries of M, then it is a simple linear problem to find the
nonzero entries of M−1 (and vice-versa). In the context of separable nonlinear
least squares problems, one approach is the so called variable projection method.
Such an algorithm alternates between updating the two subsets of the variables.
At first glance, the algorithm only involves linear optimization in each iteration.
Unfortunately, such an alternating approach often has disappointing performance,
and there are challenges with parameterization.
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2.2 Local Inverse Formula
If the inverse matrix, V−1, is subordinate to a chordal graph, then this local inverse
formula (5) tells us how to find the inverse using only sub-blocks of the matrix V.
The formula reads

Θ≡ V−1 = ∑
[c]∈C

(
V[c]
)−1− ∑

[ j]∈J

(
V[ j]
)−1

, (5)

where V[c] denotes a square sub-block of the matrix V, which corresponds to
a maximal clique c in the set of maximal cliques C that are the nodes of the
clique tree associated with the chordal graph of the matrix V; and for each el-
ement in the set of edges J of the clique tree, V[ j] is a square sub-block of
the matrix V that corresponds to the intersection (or ‘separator’) j of two maxi-
mal cliques that are connected in the clique tree. Proofs of (5) can be found in
the references, under mild assumptions Johnson and Lundquist (9). There are
also other terminologies for the same thing, see, e.g., Bartlett’s lecture notes on
Undirected graphical models: Chordal graphs, decomposable graphs, junction
trees, and factorizations https://people.eecs.berkeley.edu/~bartlett/
courses/2009fall-cs281a/, or (10, 16).

For our special class of matrices, that satisfy the doubly sparse constraint in
(4), both are subordinate to the same chordal graph, so we are allowed to swap the
roles of V and V−1 and the local inverse formula (5) still holds. We can exploit this
local property in whichever way is most convenient. This is what distinguishes the
class of covariance matrices we study here from the rest of the literature.

Example: A 5× 5 Local Inverse Formula. While the formula (5) scales to
large matrices in a computer code, here we only give small examples that can be
displayed on a page. The numerical conditioning depends on the conditioning of
the cliques and the separators. How well the computations scale depends on the
clique tree, and especially the size of the maximal cliques. In other words, the
speed depends more on the graph, rather than the size of the matrix.

Let us revisit the same example in (1). We will demonstrate the Local Formula
(5) holds. In plain English, formula (5) roughly states that “the inverse is the sum
of the inverses of the blocks, minus the inverse of the overlaps,” as in this example:

Θ=V−1 =




13 8 4 2
8 13 2 1
4 2 10 6
2 1 6 13


−1 +




10 6 1 1
6 13 10 10
1 10 13 8
1 10 8 13


−1


(6)
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−

 (
10 6
6 13

)−1

 .

We are also seeing examples of the sub-matrices that correspond to the two
maximal cliques (corresponding to the two sets of indices {1,2,3,4} and {3,4,5,6})
and to their intersection (corresponding to the set of indices {3,4}) in the clique
tree coming from the chordal graph associated with this matrix example.

Recall that what is novel about the general class of matrices that we consider
in this article is that they satisfy that local inverse formula, (5), in both directions.
That is, for these special examples, we can swap the roles of V and V−1, and the
Local Formula (5) remains true! In this example we obtain:

V = 21540




2960 −1690 −900 90
−1690 2675 150 −15
−900 150 8715 −12180

90 −15 −12180 23835


−1  (7)

+21540




8715 −12180 5385 5385
−12180 23835 −10770 −10770

5385 −10770 7539 3231
5385 −10770 3231 7539


−1



−21540

 (
8715 −12180
−12180 23835

)−1

 .

Having simultaneously both (6) and (7) hold is an example of the local alge-
braic property that we exploit in this article for covariance matrix estimation, and
is our main contribution.

Example: Local inversion for Block Matrices. Consider the block matrix

M =

 M11 M12 ∗
M21 M22 M23
∗ M32 M33

 . (8)
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Suppose we know that the matrix is invertible and that the inverse has the sparsity
pattern

M−1 =

 × × 000
× × ×
000 × ×

 . (9)

We are not specifying the entry in the top right, nor in the bottom left, of M,
because it can be shown that the sparsity pattern of M−1 implies that those two
blocks must be

M13 = M12M−1
22 M23,

and
M31 = M32M−1

22 M21.

There are some mild assumptions, such as that M22 is invertible. Then the local
inverse formula tells us that:

M−1 =

 M11 M12
M21 M22

−1

+

 M22 M23
M32 M33

−1

−

 M22

−1

.

(10)
Direct matrix multiplication of M with this claimed form of M−1 to arrive at the
(block) identity matrix is one way to prove this. Equation (10) is an example of
the Local Inverse Formula (5). Although this example is only 3× 3, in fact the
Local Inverse Formula (5) can be applied to arbitrarily large matrices (subject to
mild assumptions and of course being subordinate to a chordal graph as previously
stated), and the proof for larger matrices essentially boils down to this 3×3 non-
commutative block matrix algebra, applied in a recursive way (and the proof is
thus by induction), and combined with the key property of chordal graphs that
they always have a junction tree Johnson and Lundquist (9).

2.3 The Local Function
Let a chordal graph C and its junction tree J be given. Then we define a function
L : Rn×n −→ Rn×n by the right hand side of (5)

L(M)≡ ∑
[c]∈C

(
M[c]

)−1− ∑
[ j]∈J

(
M[ j]

)−1
. (11)

We now make the following observations:

1. L depends on a chordal graph, but that dependence is not explicit in the
notation on the left side of (11), i.e., we could plausibly use notation LG to
indicate the dependence on the chordal graph G .
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2. The dependence on the chordal graph is seen on the right side of (11) with
the first sum being over the maximal cliques C of the graph, and the second
sum being over the separators J . This pair (C ,J ), must correspond to a
clique tree (sometimes called a junction tree) of the graph, which has a run-
ning intersection property. It is an equivalence characterisation of chordal
graphs that a chordal graph always has at least one clique tree with this
property.

3. At first glance, it also looks like L depends on the choice of junction tree,
but it can be shown that in fact all junction trees would lead to the same final
sum on the right of (11).

4. The domain of L is a strict subset of Rn×n. The input does not need to be
an example from our special class of matrices in order to apply L. The only
requirement on the input matrix is that the submatrices on the right hand
side of (11) are indeed invertible.

5. The output matrix L(M) is subordinate to the chordal graph, by definition
in (11).

6. For an arbitrary matrix M, we usually expect L(M) 6= M−1. However, for
matrices for which the inverse is known to be subordinate to a chordal graph,
then we have by the results of the local formula that L(M) = M−1 is indeed
the inverse.

7. Recall the doubly sparse constraint in (4). We typically fulfill one of the
conditions in that constraint (4) automatically by parameterizing by the al-
lowed nonzero entries of, say, M. If the matrix M was truly in the special
class that satisfied the constraint, then we would have that both L(M)=M−1

and L(M−1) = M. We can attempt to exploit this when imposing the con-
straint, and to take advantage of the property that L(M) or L(M−1) will
usually be much better to compute than an inverse, because of the local
formula.

2.4 Optimization Summary and Theoretical Justification
The following two key points make it clear that the constraints in (4) can be en-
forced via the local formula, in the way that we describe in our algorithm below.
Theorem 1 ((2), (21).) Let G be a chordal graph, and let (C ,J ) be a correspond-
ing list of cliques and separators, which we call a perfect elimination ordering, in
terms of a clique tree. Then M and a Cholesky factor R based on this ordering
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have the same sparsity pattern, in the sense that, if we consider only entries in the
triangular part, i.e. (i < j),

Mi j = 0 ⇔ Ri j = 0, (i < j).

One direction of the above result is the ‘no fill-in’ property for perfect elimina-
tors, which has been known a long time in the numerical linear algebra literature
(see, e.g., references by Rose and by Rose, Tarjan, & Lueker in the exposition of
(2), or Theorem 9.1 of Vandenberghe and Andersen (21)). The other direction,
is discussed, in relation to monotone transitivity properties of chordal graphs, in
Figure 4.1, and in equation (9.7) of Vandenberghe and Andersen (21).
Theorem 2 (Johnson and Lundquist (9)) Let G be a chordal graph, and let L be
defined as in (11) for this graph G . Let M and M−1 be a given pair of matrices.
Assume that L(M), as defined by the right side of equation (11), is defined. The
following two statements are equivalent. We have

M−1 subordinate to G

is equivalent to
M−1 = L(M).

One direction of this result is trivial, by definition of our function L. The
other direction is a result in Johnson and Lundquist (9) where it is more general,
allowing non-symmetric matrices. More examples, exposition, and references can
be found in Strang and MacNamara (18).

As a consequence of these theoretical results, the optimization (3) and (4), is
equivalent to the following.

Let xxx ∈ Rp where p is the number of edges in the given chordal graph G . Let
R(xxx) be a triangular matrix with a sparsity pattern corresponding to the chordal
graph G , i.e., each entry of xxx corresponds to a particular entry of R. We will let

M(xxx) = R(xxx)>R(xxx).

Let S be the sample covariance matrix from n observations. Then we find the
numbers in xxx that maximize the objective function

tr
(

L(R(xxx))L(R(xxx))>S
)
+2lndet(R(xxx)). (12)

subject to the constraint that
C = 0 (13)

where the matrix C is defined to be

C≡ML(M)− I.
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The fact that we can meet the first constraint of (4) in the original optimization
problem simply by optimizing over entries with the same sparsity pattern in a
Cholesky factor, R(xxx), depends on Theorem 1. The fact that we can meet the
second constraint of (4) in our original problem by requiring C = 0 depends on
Theorem 2. (There is some redundancy in requiring C= 0, since in our application
C is symmetric.)

3 NUMERICAL EXPERIMENTS
We provide two experiments, one with simulated data, and the other with financial
data obtained from Yahoo Finance.

3.1 Simulated Data
In this experiment, we start with the ‘true’ matrix Vtrue that is given in equation
(1). We reproduce that example matrix here for convenience:

Vtrue =


13 8 4 2 0 0
8 13 2 1 0 0
4 2 10 6 1 1
2 1 6 13 10 10
0 0 1 10 13 8
0 0 1 10 8 13

 .

We draw n random samples from the multivariate normal distribution with zero
mean and with this covariance matrix Vtrue, and we form the sample covariance
matrix S. We then optimize with Matlab’s fmincon.m. We supply fmincon.m a
function handle that it can call to compute the objective function (12) at a given xxx
using the local inverse formula. The only constraint is that C = 0 as in (13), which
is also supplied to fmincon.m as a function handle. We now make the following
observations.

If n is very large then the optimization returns an estimate that is close to the
true covariance matrix. Also, the likelihood at the estimate is very close to the
likelihood at the true matrix.

However, if n is not large then the estimate can be very noticeably different
to the true matrix, and the likelihood at the estimate is higher than the likelihood
at the true matrix. For example, with n = 100 samples, in one experiment, the
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sample covariance matrix is

S =


16.703 8.774 4.113 2.629 -0.25 1.16
8.774 11.559 1.92 0.01 -1.605 -0.854
4.113 1.92 10.07 5.813 1.245 0.947
2.629 0.01 5.813 12.424 10.227 9.68
-0.25 -1.605 1.245 10.227 13.958 7.88
1.16 -0.854 0.947 9.68 7.88 13.345

 ,

and the estimate from the optimization procedure is
37.126 16.09 2.384 1.175 0 0
16.09 26.676 1.477 0.728 0 0
2.384 1.477 10.933 2.507 -2.974 -2.811
1.175 0.728 2.507 6.07 4.989 4.715

0 0 -2.974 4.989 18.091 5.179
0 0 -2.811 4.715 5.179 18.607

 .

3.2 S&P100 Financial Data
To further showcase the proposed method of estimation, in Figure 1, we consid-
ered data based on daily prices of the S&P 100 stocks from 1 January 2019 to
26 March 2021, downloaded from Yahoo Finance. In financial markets, portfolio
theory suggests nearly all assets have some correlation with common market fac-
tors, so perhaps insisting on zeros in the covariance matrix is only justified if we
are looking at ‘residual’ covariance matrices, after conditioning on market factors.
Therefore, we calculated the residuals, after regressing the log returns of all stocks
in the S&P100 on the S&P100 index. Then we naively estimated the sample co-
variance matrix of those residuals. For the purpose of demonstration, we chose
the subset of the S&P100 index that corresponds to ‘Consumer Discretionary’ (13
stocks) and ‘Information Technology’ (10 stocks), and the corresponding 23×23
sample covariance matrix. To apply our proposed method of estimation, we also
need a sparsity pattern that corresponds to a chordal graph, so we specified the
junction tree to have two cliques, corresponding to the ‘Consumer Discretionary’
stocks, and to the ‘Information Technology’ stocks together with Amazon and
Tesla, and specified the separator to correspond to the two stocks Amazon and
Tesla.

The result of the procedure is displayed in Figure 1. The examples we used
earlier to illustrate this special class of matrices, in (1), were in exact arithmetic,
so everything was pleasingly exact and algebraic. Here in this application to real
data, we obtain our estimates by an optimization procedure, and in finite precision.
The norm of the constraint, ‖ML(M)− I‖ evaluated at the final estimate M gives a
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sense of the accuracy, and in this numerical example the optimization terminated
with ‖ML(M)− I‖ ≈ 10−4.

Note that in the S&P100 constituents classification, Amazon and Tesla are
classified as ‘Consumer Discretionary,’ but arguably these two stocks have more
to do with the information technology sector, so visualizing the covariance matrix
that we estimate with this sparsity pattern (as in Figure 1), could be useful in
exploring the coupling of these two bigger industry groups, via Amazon and Tesla.
In this case the right panel of Figure 1 shows the magnitude of the entries in
rows corresponding to Amazon and Tesla, and which indicate the strength of the
coupling.

Note also that we could not examine such couplings between groups if we
were to only allow simply block diagonal matrices as our estimates, so it is im-
portant that the methods are more general, and that is one benefit of allowing the
class of chordal graphs. All the examples considered here are suggestive of the
potential applications of the method we propose.
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nz = 321
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Figure 1: Left: sparsity pattern of the covariance matrix that is estimated by the
method proposed in this article. Note this is NOT simply block diagonal. Right:
Visualisation of the corresponding correlation matrix. Rows 14 and 15 correspond
to Amazon and Tesla, while rows 1-13 correspond to ‘Consumer Discretionary’
stocks, and the remaining rows correspond to ‘Information Technology’ stocks,
from the S&P100 data described in the main text.

3.3 Discussion
We now highlight a number of issues:
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• We have chosen a maximum likelihood framework here merely because it
is the simplest way to illustrate our ideas that estimation of doubly sparse
matrices is indeed possible. However, note that the algebraic structures
and methods for local computations that we describe do not depend on that
maximum likelihood framework – so, for example, it should be possible to
also use these computational approaches in other frameworks that do not
make assumptions about the distribution.

• The choice of norm is likely important (for example, the 1−norm may be
preferable to the 2−norm), but that issue is not explored here.

• Instead of prescribing the sparsity pattern, it would be better to estimate
the sparsity graph from the data. (For instance, in the finance example, we
would prefer not to require any hunch about the significance of Amazon
or Tesla.) A crude first approach could be in three separate steps: first
use existing methods such as the graphical LASSO to estimate a graph,
and then second force the resulting graph to be chordal, and then third and
finally apply the suggested method of this paper. But instead of such a
crude approach of consecutive but separate estimation problems, it seems
more natural to simultaneously estimate the graph together with the matrix
estimation problem.

• We have required the matrix and its inverse be subordinate to the same
chordal graph, because that it is the simplest first idea to explore. Note
that – although we have not displayed such an example pair of matrices in
this article – if the (i, j) edge is present in the graph, then it is possible that
the (i, j) entry of M is nonzero and the (i, j) entry of M−1 is zero, and that
both matrices are subordinate to the same chordal graph. It is natural to
also consider the generalisation of our problem to the case where the matrix
and the inverse are subordinate to different chordal graphs, but we did not
explore that generalisation here.

• If the matrix M was truly in the special doubly sparse class, then the matrix
would be a fixed point of the special Local Function we defined in (11),
composed with itself, i.e. L(L(M)) = M. We have not explored fixed-point
iteration algorithms. Nor have we explored the algebraic structure of this
special class of matrices from this point of view of the properties of the local
function L(·), although The Nullity Theorem gives constraints on ranks of
subblocks (19).

• Chordal graphs can be considerably more complicated than only the sim-
plest examples we have illustrated here – see many varied examples of
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matrix sparsity patterns and corresponding graphs in the references, e.g.,
Vandenberghe and Andersen (21).

• Any given graph can be ‘forced’ to become a chordal graph by a known
process of adding edges, thus allowing the methods of this paper to always
be used. However, whether or not such a process is computationally worth-
while depends on the example.

4 CONCLUSION
We proposed a method to estimate a covariance matrix when both the covariance
and the precision matrix are sparse (which we called double sparsity). This is a
maximum likelihood approach, subject to the double sparsity constraint. This ap-
pears to be the first work to estimate such special pairs of covariance and precision
matrices. The sparsity patterns we consider are restricted to the class of chordal
graphs (also known as decomposable graphs in the graphical models literature).
This class includes the banded matrices with banded inverse. Restricting to this
class of sparsity pattern allows us to exploit a special algebraic structure – the lo-
cal inverse formula, as we described – that can make computations faster (and that
is computationally more attractive than simply naively imposing the double spar-
sity constraint during any optimization). For future work, it should be possible to
extend these approaches to simultaneously estimate both the sparsity pattern, and
the corresponding special pair of covariance matrix and precision matrix.
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