
Task-adaptive Neural Process for User Cold-Start
Recommendation

Xixun Lin
Institute of Information Engineering,

Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

linxixun@iie.ac.cn

Jia Wu
Department of Computing,

Macquarie University
jia.wu@mq.edu.au

Chuan Zhou∗
Academy of Mathematics and

Systems Science, CAS
School of Cyber Security, University
of Chinese Academy of Sciences

zhouchuan@amss.ac.cn

Shirui Pan
Faculty of Information Technology,

Monash University
shirui.pan@monash.edu

Yanan Cao
Institute of Information Engineering,

Chinese Academy of Sciences
caoyanan@iie.ac.cn

Bin Wang
Xiaomi AI Lab,
Xiaomi Inc

wangbin11@xiaomi.com

ABSTRACT
User cold-start recommendation is a long-standing challenge for
recommender systems due to the fact that only a few interactions
of cold-start users can be exploited. Recent studies seek to address
this challenge from the perspective of meta learning, and most of
them follow a manner of parameter initialization, where the model
parameters can be learned by a few steps of gradient updates. While
these gradient-based meta-learning models achieve promising per-
formances to some extent, a fundamental problem of them is how
to adapt the global knowledge learned from previous tasks for the
recommendations of cold-start users more effectively.

In this paper, we develop a novel meta-learning recommender
called task-adaptive neural process (TaNP). TaNP is a new mem-
ber of the neural process family, where making recommendations
for each user is associated with a corresponding stochastic pro-
cess. TaNP directly maps the observed interactions of each user
to a predictive distribution, sidestepping some training issues in
gradient-based meta-learning models. More importantly, to balance
the trade-off between model capacity and adaptation reliability, we
introduce a novel task-adaptive mechanism. It enables our model
to learn the relevance of different tasks and customize the global
knowledge to the task-related decoder parameters for estimating
user preferences. We validate TaNP onmultiple benchmark datasets
in different experimental settings. Empirical results demonstrate
that TaNP yields consistent improvements over several state-of-
the-art meta-learning recommenders.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Neural networks.

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449908

KEYWORDS
User cold-start recommendation, Meta learning, Neural process

ACM Reference Format:
Xixun Lin, Jia Wu, Chuan Zhou, Shirui Pan, Yanan Cao, Bin Wang. 2021.
Task-adaptive Neural Process for User Cold-Start Recommendation. In Pro-
ceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubl-
jana, Slovenia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3442381.3449908

1 INTRODUCTION
Recommender systems have been successfully applied into a great
number of online services for providing precise personalized rec-
ommendations [52]. Traditional matrix factorization (MF) models
and popular deep learning models are among the most widely
used techniques, predicting which items a user will be interested
in via learning the low-dimensional representations of users and
items [7, 17, 23, 27, 53]. These models typically work well when
adequate user interactions are available, but suffer from cold-start
problems. Recommending items to cold-start users who have very
sparse interactions, also known as user cold-start recommenda-
tion [2, 9, 25], is one of the major challenges.

To address user cold-start recommendation, early methods [3,
28] focus on using side-information, i .e ., user profiles and item
contents, to infer the preferences of cold-start users. Additionally,
many hybrid models integrating side-information into collaborative
filtering (CF) are also proposed [24, 47]. For example, collaborative
topic regression [46] combines probabilistic topic modeling [4]
with MF to enhance model capability of out-of-matrix prediction.
However, such informative contents are not always accessible due
to the issue of personal privacy [50], and manually converting them
into the useful features of users and items is a non-trivial job [8].

Inspired by the huge progress on few-shot learning [41] andmeta
learning [11], there emerge some promising works [2, 10, 25, 42] on
solving cold-start problems from the perspective of meta learning,
where making recommendations for one user is regarded as a single
task (detailed in Definition 3.1). In the training phase, they try
to derive the global knowledge across different tasks as a strong
generalization prior. When a cold-start user comes in the test phase,
the personalized recommendation for her/him can be predicted

1306

https://doi.org/10.1145/3442381.3449908
https://doi.org/10.1145/3442381.3449908
https://doi.org/10.1145/3442381.3449908

…task 𝑎

user 𝑎 items in support set 𝑆# items in query set 𝑄#

task 𝑏 …
user 𝑏 items in support set 𝑆& items in query set 𝑄&

…task 𝑐

user 𝑐 items in support set 𝑆(items in query set 𝑄(

Figure 1: An illustration of the relevance of different tasks.
The purchase intentions of user a, b and c are manifested
by the corresponding user-item interactions. It shows that
tasks a, c are closely relevant but task b is largely different
from them. Each task owns the user-specific support set and
query set which will be explained in Definition 3.1.

with only a few interacted items are available, but does so by using
the global knowledge already learned.

Mostmeta-learning recommenders are built upon thewell-known
framework of model-agnostic meta learning (MAML) [11], aiming
to learn a parameter initialization where a few steps of gradient
updates will lead to good performances on the new tasks. A typi-
cal assumption here is the recommendations of different users are
highly relevant. However, this assumption does not necessarily
hold in actual scenarios. When the users exhibit different purchase
intentions, the task relevance among them is actually very weak,
which makes it problematic to find a shared parameter initialization
optimal for all users. A concrete example is shown in Figure 1: tasks
a and c share the transferable knowledge of recommendations, since
user a and user c express similar purchase intentions, while task b
is largely different from them. Therefore, learning the relevance of
different tasks is an important step in adapting the global knowledge
for the recommendations of cold-start users more effectively.

In this paper, we attempt to establish the connection between
user cold-start recommendation and Neural Process (NP) [14] to
address above problem. NP is a neural-based approximation of sto-
chastic processes. It is also related with meta learning [13], since it
can directly model the predictive distribution given a conditional
prior learned from an arbitrary number of context observations.
To be specific, we propose a novel meta-learning framework called
task-adaptive neural process (TaNP). Approximating each task as
the particular instantiation of a stochastic process, our model is
an effective “few-shot function estimator” to characterize the pref-
erence of cold-start user. TaNP performs amortized variational
inference [22] to optimize the model parameters straightforwardly,
which can relieve some inherent training issues in above MAML-
based recommenders, such as model sensitivity [1] and being easily
stuck into a local optimum [9].

On top of that, TaNP includes a novel task-adaptive mechanism
that is composed by a customized module and an adaptive decoder.
In the customized module, the user interactions in each task are
encoded as a deterministic task embedding which is interacted
with the global pool to derive a clustering-friendly distribution. By

resorting to the learned soft cluster assignments, we can capture
the relevance of different tasks holistically. Afterwards, the cus-
tomized module is combined with different modulation strategies
to generate task-related decoder parameters for making personal-
ized recommendations. The main contributions of our work are
summarized below:

• This paper proposes a formulation of tackling user cold-
start recommendation within the neural process paradigm.
Our model quickly learns the predictive distributions of new
tasks, and the recommendations of cold-start users can be
generated on the fly from the corresponding support set in
the test phase.

• The novel introduction of task-adaptive mechanism does
not only capture the relevance of different tasks but also
incorporates the learned relevance into the modulation of
decoder parameters, which is critical to better balance the
trade-off between model capacity and adaptation reliability.

• Extensive experiments on benchmark datasets show that our
model outperforms several state-of-the-art meta-learning
recommenders consistently1.

2 RELATEDWORK
2.1 Meta Learning
Meta learning covers a wide range of topics and has contributed
to a booming study trend. Few-shot learning is one of successful
branches of meta learning. We retrospect some representative meta-
learning models with strong connections to our work. They can
be divided into the following common types. 1) Memory-based ap-
proaches [19, 40]: combining deep neural networks (DNNs) with the
memory mechanism to enhance the capability of storing and query-
ing meta-knowledge. 2) Optimization-based approaches [26, 38]: a
meta-learner, e.g. recurrent neural networks (RNNs) is trained to
optimize target models. 3) Metric-based approaches [41, 43]: learn-
ing an effective similarity metric between new examples and other
examples in the training set. 4) Gradient-based approaches [11, 34]:
learning an shared initialization where the model parameters can
be trained via a few gradient updates on new tasks. Most meta-
learning models follow an episodic learning manner. Among them,
MAML is one of the most popular frameworks, which falls into the
fourth type. Some MAML-based works [45, 51] consider that the se-
quence of tasks may originate from different task distributions, and
try various task-specific adaptations to improve model capability.

2.2 User Cold-Start Recommendation
CF-basedmethods have been revolutionizing recommender systems
in recent years due to the effectiveness of learning low-dimensional
embeddings, like matrix factorization [16, 18] and deep learning [17,
31]. However, most of them are not explicitly tailored for solving
user cold-start recommendation, e.g., new registered users only
have very few interactions [36]. Previous methods [3, 12] mainly
try to incorporate side-information into CF for alleviating this
problem.

Inspired by the significant improvements of meta learning, the
pioneering work [42] provides a meta-learning strategy to solve

1The source code is available from https://github.com/IIEdm/TaNP.

1307

https://github.com/IIEdm/TaNP

cold-start problems. It uses a task-dependent way to generate the
varying biases of decision layers for different tasks, but it is prone to
underfitting and is not flexible enough to handle various recommen-
dation scenarios [2]. MeLU [25] adopts the framework of MAML.
Specifically, it divides the model parameters into two groups, i.e.,
the personalized parameter and the embedding parameter. The per-
sonalized parameter is characterized as a fully-connected DNN to
estimate user preferences. The embedding parameter is referred as
the embeddings of users and items learned from side-information.
An inner-outer loop is used to update these two groups of parame-
ters. In the inner loop, the personalized parameter is locally updated
via the prediction loss of support set in current task. In the outer
loop, these parameters are globally updated according to the pre-
diction loss of query sets in multiple tasks. Through the fashion of
local-global update, MeLU can provide a shared initialization for
different tasks.

The later work MetaCS [2] is much similar to MeLU, and the
main difference is that the local-global update involves all param-
eters from input embedding to model prediction. To generalize
well for different tasks, two most recent works MetaHIN [30] and
MAMO [9] propose different task-specific adaptation strategies. In
particular, MetaHIN incorporates heterogeneous information net-
works (HINs) into MAML to capture rich semantics of meta-paths.
MAMO introduces two memory matrices based on user profiles: a
feature-specific memory that provides a specific bias term for the
shared parameter initialization; a task-specific memory that guides
the model for predictions. However, these two gradient-based meta-
learning models may still suffer from potential training issues in
MAML, and the model-level innovations of them are closely related
with side-information, which limits their application scenarios.

2.3 Neural Process
NP is a neural-based formulation of stochastic processes that model
the distribution over functions [13, 14]. It is a class of neural latent
variable model that combines the strengths of Gaussian Process
(GP) and DNNs to achieve flexible function approximations. NP
mainly concentrates on the domains of low-dimensional function
regression and uncertainty estimation [29]. Meanwhile, there have
been a growing number of researches on improving the expres-
siveness of vanilla NP model. For example, ANP [20] introduces a
self-attention NP to alleviate the underfitting of NP; CONVCNP [15]
models the translation equivariance in data and extends task repre-
sentations into function space. NP is also suitable to meta-learning
problems [39], because it provides an effective way to model the
predictive distribution conditioned on a permutation-invariant rep-
resentation learned from context observations. Our model is the
first study that leverages the principle of NP to solve user cold-start
recommendation, involving learn the discrete user-item relational
data which is largely different from previous works. Moreover,
TaNP includes a novel task-adaptive mechanism to better balance
the trade-off between model capacity and adaptation reliability.

3 PRELIMINARIES
We formulate the problem of user cold-start recommendation from
the meta-learning perspective. Following the traditional episodic
learning manner, we first give the formal definition of task (episode).

Table 1: Notations

Notation Description
U and V user set and item set

U tr andU te training user set and test user set
T tr and T te training task set and test task set
τi , Si and Qi task i , support set i and query set i
xi, j = (ui ,vj) an interaction between ui and vj

yi, j the actual rating of xi, j
Ni the number of interactions in τi

NSi and NQi the numbers of interactions in Si andQi
ci,n the one-hot content vector of ui
En the shared matrix in embedding layers
hθ shared encoder for all tasks
mϕ task identity network
A global pool
C soft cluster assignment matrix
D clustering target distribution
дωi adaptive decoder for τi

γ li , β
l
i , η

l
i and δ

l
i feature modulation parameters of дωi

for the l-th layer

Definition 3.1. (TASK) Given the user setU , the item set V and
a specific user ui ∈ U , making the personalized recommendation
for ui is defined as a task τi . τi includes the available interactions of
ui , i.e., {xi, j ,yi, j }Ni

j=1. xi, j denotes a tuple (ui ,vj) in which vj ∈ V

denotes an item and yi, j is ui ’s actual rating of item vj . Ni de-
notes the number of interactions in τi . For notation simplicity, we
also denote τi = {xi, j ,yi, j }

Ni
j=1. τi contains few interactions as

the support set Si and remaining interactions as query set Qi , i.e.,
{xi, j ,yi, j }

Ni
j=1 = Si ∪ Qi . Here we denote Si = {xi, j ,yi, j }

NSi
j=1 and

Qi = {xi, j ,yi, j }
NSi +NQi
j=NSi +1

. NSi denotes the number of interactions
in Si , which is typically set with a small value, and NQi is the
number of interactions in Qi with NSi + NQi = Ni .

Note a meta-learning recommender is first learned on each sup-
port set (learning procedure) and is then updated according to the
prediction loss over multiple query sets (learning-to-learn proce-
dure). Through the guide of the second procedure in many itera-
tions, this meta-learning model can derive the global knowledge
across different tasks and adapts such knowledge well for a new
task τi with only Si available.

For this purpose, we splitU into two disjoint sets: training user
setU tr and test (cold-start) user setU te . The set of all training tasks
is denoted as T tr = {τi |ui ∈ U tr } and the set of all test tasks is
denoted as T te = {τi |ui ∈ U te }. In the training phase, we can train
our model following a learning-to-learn manner for each training
task. In the test phase, when a cold-start user ui′ ∈ U te comes, our
goal is to find which items ui′ will be interested in, based on a small
number of interactions in Si′ and the global knowledge learned from
T tr . The notations used in this paper are summarized in Table 1. In
addition, according to the concrete value of yi, j , the personalized
recommendation can be either viewed as a binary classification to
indicate whether ui engages with vj , or a regression problem that
vj has different ratings that need to be assessed by ui .

1308

4 TASK-ADAPTIVE NEURAL PROCESS
In this section, we first describe how to handle user cold recom-
mendation from the view of NP. Then we analysis the potential
issue of it and propose an effective solution, i.e., the task-adaptive
mechanism. Our model includes three parts: encoder, customization
module and adaptive decoder. The encoder is used to obtain the
variational prior and posterior via a lower bound estimation. The
customization module is used to recognize the task identity and
to learn the relevance of different tasks. It is further coupled with
different modulation strategies to generate the model parameters
of adaptive decoder. In addition, our model includes different em-
bedding strategies and prediction losses, which can be applicable
to different recommendation scenarios.

4.1 Overview
In our model, we assume each task τi = {xi, j ,yi, j }

Ni
j=1 is associated

with an instantiation of stochastic process fi from which the ob-
served interactions of user ui are drawn. The corresponding joint
distribution ρ can be given as:

ρxi,1:Ni (yi,1:Ni) =

∫
p(fi)p(yi,1:Ni | fi ,xi,1:Ni)d fi (1)

Here we use xi,1:Ni and yi,1:Ni to denote {xi, j }
Ni
j=1 and {yi, j }

Ni
j=1

decoupled from τi . Motivated by NP, we can approximate the above
stochastic process via a fixed-dimensional vector zi and the learn-
able non-linear functions parameterized by DNNs. The complete
generation process with the i.i.d. condition can be given as follows,

p(yi,1:Ni |xi,1:Ni) =

∫
p(zi)

Ni∏
j=1

p(yi, j |xi, j ,zi)dzi . (2)

In such a way, sampling zi from p(zi) can be viewed as a concrete
function realization.

Since the true posterior is intractable, we use amortized varia-
tional inference [33] to learn it. The variational posterior of the
latent variable zi is defined as q(zi |τi), and we have the following
evidence lower-bound (ELBO) objective with step-by-step deriva-
tions:

logp(yi,1:Ni |xi,1:Ni) = log
∫

p(zi ,yi,1:Ni |xi,1:Ni)dzi

= log
∫

p(zi ,yi,1:Ni |xi,1:Ni)
q(zi |τi)

q(zi |τi)
dzi

≥ Eq(zi |τi)
[
log

p(zi ,yi,1:Ni |xi,1:Ni)

q(zi |τi)

]
= Eq(zi |τi)

[
log

p(zi)p(yi,1:Ni |xi,1:Ni ,zi)

q(zi |τi)

]
= Eq(zi |τi)

[Ni∑
j=1

logp(yi, j |xi, j ,zi) + log
p(zi)

q(zi |τi)

]
.

(3)

Each τi is constituted by Si and Qi , and we should pay more at-
tention to make predictions for Qi given Si . Therefore, Eq.(3) is

alternatively defined as:

logp(yi,1:NQi
|xi,1:NQi

, Si)

≥ Eq(zi |τi)
[NQi∑
j=1

logp(yi, j |xi, j ,zi) + log
q(zi |Si)

q(zi |τi)

]
.

(4)

We use the variational prior q(zi |Si) to approximate p(zi |Si) in
Eq.(4), since p(zi |Si) is also intractable. Such an approximation
can be considered as a regularization term of KL divergence to
approximate the consistency condition of stochastic process [35].
Furthermore, to model the distribution over random functions,
we add the variability of interaction sequence to τi as suggested
in [14]. Then, each sample of zi is regarded as a realisation of the
corresponding stochastic process.

From above formulations, our model can be extended to learn
multiple tasks with different stochastic processes in a meta-learning
framework. However, both the encoder q(z |τ)/q(z |S) and the decoder
p(y |z,x) are the global parameters that are shared by all training
tasks T tr , and the relevance of different tasks has been ignored.
Hence, the above framework is inflexible to adjust model capacity
for different tasks. In other words, it may lead to underfitting for
some relative complex tasks, and suffers from overfitting for some
easy tasks. To better balance the trade-off between model capac-
ity and adaptation reliability, we introduce a novel task-adaptive
mechanism. The overall training framework of our model is shown
in Figure 2.

4.2 Embedding Layers
We first use the embedding layers to generate initial user and item
embeddings as the inputs of TaNP. Our model is compatible with
side-information of users and items, thus we provide two embed-
ding strategies. Taking a user ui for example, when categorical
contents of ui are available, we would generate a content embed-
ding for each categorical content and concatenate them together
to obtain the initial user embedding. Given n user contents, the
embedding procedure is defined as:

ui =
[
E1ci,1 |...|Enci,n

]
, (5)

where [·|·] is the concatenation operation, ci,n is the one-hot vector
of n-th categorical content of ui , and En represents the correspond-
ing shared embedding matrix. When such kind of user contents are
not available, the user embedding can be obtained by

ui = σ (W2σ (W1ei + b1) + b2), (6)

where {W1,W2} denotes weight matrices, {b1,b2} denotes bias
vectors, σ is the sigmoid activation function, and ei is the one-hot
vector of ui . Notice that the initial item embeddings are obtained
by following the similar embedding process.

4.3 Encoder
Given Si and τi , our encoder tries to generate the variational ap-
proximations q(zi |Si) and q(zi |τi) respectively. Concretely, for an
interaction (xi, j ,yi, j) in Si or τi , the encoder hθ would produce a
corresponding embedding ri, j via the following operation:

ri, j = h
l (hl−1(· · ·h1([ui |vj |yi, j]))), (7)

1309

…⨁

𝒖# 𝒗%
𝒙#,%

𝒖# 𝒗(
𝒙#,(𝑦#,(

𝑦#,%

⨁

⨁

⨁

KL Loss 𝑦#,*
∧

𝑦#,,
∧

Task 𝜏#

Support set 𝑆#

Encoder ℎ0

Task identity network 𝑚2

Adaptive decoder 𝑔45

Global Pool 𝑨

Customization module

Predictions

𝒓#,%

𝒓#,(

𝒕#,%

𝒕#,(

𝒕#

𝜸#%

𝜷#%
&

𝜸#(

𝜷#(
&

𝒐#

𝑞(𝒛#|𝜏#)

𝑞(𝒛#|𝑆#)

⨁

𝒓#,B

𝒓#,*

𝒓#,,

…

…

𝑦#,,

𝑦#,B

𝑦#,*

…

𝑦#,B
∧

⨁

Feature-wise modulation

Commutative operation

Query set 𝑄#

𝒖# 𝒗B
𝒙#,B

𝒖# 𝒗*
𝒙#,*

𝒖# 𝒗,
𝒙#,,
…

Figure 2: The framework of TaNP in the training phase. TaNP includes the encoderhθ , the customizationmodule (task identity
networkmϕ and global pool A) and the adaptive decoder дωi . Both of Si and τi are encoded by hθ to generate the variational
prior and posterior, respectively. The final task embedding oi learned from the customized module is used to modulate the
model parameters of дωi . zi sampled from q(zi |τi) is concatenated with xi, j to predict ŷi, j via дωi .

where h(x) = ReLU(Wx + b) is a fully-connected layer with the
corresponding W and b, and l is the number of stacked layers.
Given a set of observed interactions, the encoder would then ag-
gregate these encoded vectors to generate a permutation-invariant
representation ri . For example, to model q(zi |τi), we have

ri = ri,1 ⊕ ri,2 ⊕ ... ri,Ni−1 ⊕ ri,Ni , (8)

where ⊕ is a commutative operation and we use a mean oper-
ation, i.e., ri = 1

Ni

∑Ni
j=1 ri, j for efficiency. This permutation in-

variance in Eq.(8) is also an important step to approximate the
exchangeability condition of stochastic process [35]. The reparame-
terization trick [22] is adopted to express the random variable, i.e.,
zi ∼ N(µi , diag(σ2

i)). It can be formally defined as:

ri = ReLU(Wsri),

µi =Wµri , logσi =Wσ ri ,

zi = µi+ϵ ⊙ σi , ϵ ∼ N(0, I),
(9)

where ⊙ denotes the element-wise product, ϵ is the Gaussian noise,
and {Ws ,Wµ ,Wσ } are weight matrices.

4.4 Customization Module
The customization module seeks to learn the relevance of different
tasks. It contains a task identity networkmϕ and a global pool A.
mϕ is used to produce a temporary task embedding ti from the
corresponding support set Si . Formally, it encodes each interaction
(xi, j ,yi, j) in Si as a low-dimensional representation ti, j , which can
be described as:

ti, j =m
l (ml−1(· · ·m1([ui |vj |yi, j]))). (10)

mϕ keeps the same network structure with Eq.(7). {ti, j }
NSi
j=1 is ag-

gregated into ti via the same operation in Eq.(8). The global pool
A = [a1, ...,ak] ∈ Rd×k is a differentiable external resource that
preserves the soft c ter centroids. Each ti would interact with A to
derive soft cluster assignments (k is a hyper-parameter that repre-
sents the number of soft cluster centroids). We use the Student’s
t-distribution as a kernel to measure the normalized similarity be-
tween ti and aj as follows,

ci, j =
(1 + | |ti − aj | |2/α)

− α+1
2∑

j′(1 + | |ti − aj′ | |2/α)
− α+1

2
, (11)

where α is the degree of freedom of the Student’s t-distribution. The
final task embedding oi is generated by the following operation:

oi = σ (Wo (ti +Ac
T
i)), (12)

whereWo is a weight matrix. In fact, the sequence of interactions in
each task represents the purchase intentions of a specific user, and
different users may have similar or diverse intentions. A includes
multiple high-level features that are related with user intentions,
which is similar to the intention prototypical embeddings used in
disentangled recommendation models [31, 32]. Each task has access
to A, and the correlation degree is reflected by ci . Therefore, the
relevance of different tasks can be globally learned, which is further
incorporated into the final task embedding through the Eq.(12).

The normalized assignments of all training tasks construct a
assignment matrix C = [c1, ...,c |Ttr |] ∈ R |Ttr |×k . As suggested
by [49], we use an unsupervised clustering loss Lu with the guid-
ance of an auxiliary clustering target distribution D. Lu is defined

1310

as a KL divergence loss betweenC and D:

Lu = KL(D | |C) =
∑
i

∑
j
Di, j log

Di, j

Ci, j
. (13)

where the clustering target distributionD can be defined as follows,

Di, j =
(Ci, j)2/

∑
i Ci, j∑

j′(Ci, j′)
2/
∑
i Ci, j′

. (14)

Our clustering improves cluster purity and puts more emphasis on
tasks assigned with high confidence.

4.5 Adaptive Decoder
The original decoder дω in Eq.(4) is used to learn the conditional
likelihood p(y |x , z), which is a global predictor shared by all tasks.
In this section, TaNP introduces an adaptive decoder дωi in a
parameter-efficient manner. We describe two candidate modulation
strategies to generate the model parameters of adaptive decoder via
using the final task embedding oi . The first variant is Feature-wise
Linear Modulation (FiLM) [37]. Based on this basic modulation, we
propose the second modulation strategy, i.e., Gating-FiLM.

4.5.1 FiLM. FiLM tires to adaptively influence the prediction of
a DNN by applying a feature-wise affine transformation on its
intermediate features. It has been proved to be highly effective in
many domains [5, 6]. Here we employ FiLM to scale and shift the
feature of each layer of our decoder via two generated parameters.
The adaptation of дωi for the l-th layer can be defined as:

γ li = tanh(W l
γoi), βli = tanh(W l

βoi),

дl+1i, j = ReLU(γ li ⊙ (W l
ωд

l
i, j + b

l
ω) + β

l
i),

(15)

where {W l
γ ,W

l
β ,W

l
ω } denotes layer-wise weight matrices, blω de-

notes a bias vector, and дli, j is the input of l-th layer of our decoder.
The non-linearity function tanh is applied here to restrict the output
of modulation to be in [−1, 1]. In the first layer, the input of дωi is
the concatenated vector of xi, j and zi , i.e., д1i, j = [ui |vj |zi].

4.5.2 Gating-FiLM. Although FiLM is effective to achieve the fea-
ture modulation, a potential weakness is that such operation cannot
filter some information which has the opposite effects on learning.
To alleviate this problem, we introduce a gating version of FiLM:

γ li = tanh(W l
γoi), β

l
i = tanh(W l

βoi),

ηli = tanh(W l
ηoi), δ

l
i = σ (W l

δoi),

γ li = γ
l
i ⊙ δ li + η

l
i ⊙ (1 − δ li),

βli = βli ⊙ δ li + η
l
i ⊙ (1 − δ li),

дl+1i, j = ReLU(γ li ⊙ (W l
ωд

l
i, j + b

l
ω) + β

l
i),

(16)

where {W l
η ,W l

δ } are two weight matrices and δ li is the gating
term to control the influences of γ li and βli . FiLM and Gating-FiLM
can be alternatively used in our adaptive decoder, and the experi-
ments verify their effectiveness.

Algorithm 1 The training procedure of TaNP.

Input: Training user set U tr ; Item set V ; User and item
side-information (optional); Training task set T tr ; Hyper-
parameters: d , l , k , α , λ.

Output: Parameters in embedding layer; hθ ;mϕ ; A; дωi .
1: Initialize all model parameters.
2: while not convergence do
3: for τi ∈ T tr do
4: Construct Si and Qi from τi .
5: Generate q(zi |τi) via hθ in Eq.(9).
6: Generate task embedding oi viamϕ andA in Eq.(10)-(12).
7: Predictions on Qi via adaptive decoder дωi , zi and oi in

Eq.(15) or Eq.(16).
8: Generate q(zi |Si) via hθ in Eq.(9).
9: Calculate prediction loss Lr,i in Eq.(17) or Eq.(18).
10: Calculate regularization loss Lc,i in Eq.(19).
11: end for
12: Calculate clustering loss Lu in Eq.(13) and the total loss L

in Eq.(19).
13: Update model parameters by Adam optimizer.
14: end while

4.6 Loss Function
In our model, the likelihood term in Eq.(4) is reformulated as a
regression-based loss function:

Lr,i = −Eq(zi |τi)logp(yi,1:NQi
|xi,1:NQi

,zi)

∝
1

NQi

NQi∑
j=1

(yi, j − ŷi, j)
2,

(17)

where ŷi, j is the final output of дωi (xi, j ,zi ,oi). For implicit feed-
back data, Lr,i is defined as a binary cross-entropy loss:

Lr,i = −Eq(zi |τi)logp(yi,1:NQi
|xi,1:NQi

,zi)

∝ −
1

NQi

NQi∑
j=1

yi, j log(ŷi, j) + (1 − yi, j)log(1 − ŷi, j).
(18)

The training loss of TaNP is defined as:

L =
1

|T tr |

|Ttr |∑
i=1

(Lr,i + Lc,i) + λLu , (19)

where Lc,i = KL(q(zi |τi)| |q(zi |Si)) that can be also considered as
a regularization term to approximate the condition of consistency,
and λ is a hyper-parameter which is selected between 0 and 1.
Our model is an end-to-end framework which can be optimized by
Adam [21] empirically. The pseudo code of training procedure is
given in Algorithm 1.

It should be noticed that the test procedure of our model is
different fromAlgorithm 1. Concretely, in the test phase, the ground
truth yi, j inQi is not available, thus zi is sampled from q(zi |Si) via
our encoder hθ . By the same token, our final task embedding oi is
always obtained from the available interactions in Si instead of τi .
After that, oi is used to modulate the model parameters of дωi , and
zi is concatenated with xi, j to predict ŷi, j for Qi .

1311

Table 2: Statistics of datasets.

Datasets Users Items Ratings Type Content
MovieLens-1M 6,040 3,706 1,000,209 explicit yes
Last.FM 1,872 3,846 42,346 implicit no
Gowalla 2692 27,237 134,476 implicit no

4.7 Time Complexity
In TaNP, hθ , mϕ and дωi are parameterized as fully-connected
DNNs. Therefore, our model keeps an efficient architecture for
training and inference. The time complexity of each component
can be approximated as O(ld3). Here we use d to represent the
hidden size of each layer. In fact, d is varied among different layers.
The calculation of final task embedding oi would cost O(kd2). As
FiLM/Gating-FiLM only requires two/four weight matrices per layer
in дωi , both of them are computationally efficient adaptations. Fur-
thermore, our model can be also optimized in a batch-wise manner
for parallel computations.

5 EXPERIMENTS
In this section, we seek to answer the following major research
questions (RQs):

• RQ1: Does our method achieve the supreme performances
in comparison with other cold-start models, including 1) the
classic cold-start models and CF-based DNN models, 2) the
popular meta-learning models, 3) an ablation of our method
where the proposed task-adaptive mechanism is removed
and 4) different modulation strategies, i.e., FiLM and Gating-
FiLM used in дωi (Section 5.3)?

• RQ2: Whenwe change the number of interactions in support
set for each task, i.e., NSi , the available information in the
test phase is reduced. Is our model still able to achieve fast
adaptations for cold-start users (Section 5.4)?

• RQ3: What is learned by our customization module? Is the
relevance of different tasks well captured (Section 5.5)?

• RQ4: How well does the proposed method generalize when
we tune different hyper-parameters for it (Section 5.6)?

To answer these questions, we do a detailed comparative analysis
of our model on public benchmark datasets.

5.1 Datasets
We evaluate TaNP on three real-world recommendation datasets:
MovieLens-1M2, Last.FM3 and Gowalla4. MovieLens-1M is a widely
used movie dataset with explicit ratings (from 1 to 5). Last.FM is a
music dataset that contains musician listening information from
users in Last.fm onlinemusic system, andwe directly use it provided
by [48]. Gowalla is a location-based social network that contains
user-venue checkins, and we extract a part of interactions from it.
The details of these datasets are summarized in Table 2.

5.1.1 Data Preprocessing. For MovieLens-1M, we use the contents
of users and items, i.e., side-information, which are collected by [25].
It includes the following category contents of users: gender, age,
2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/hetrec- 2011/
4http://snap.stanford.edu/data/loc-gowalla.html

occupation and zip code. The item contents have publication year,
rate, genre, director and actor. To verify that our model is applica-
ble in different experimental settings, we transform Last.FM and
Gowalla into implicit feedback datasets. Following the data prepro-
cessing in [48], we generate negative samples for the query sets in
these two datasets.

For each dataset, the division ratio of training, validation and
test sets is 7:1:2. As suggested by previous works [9, 25, 30], we only
keep the users whose item-consumption history length is between
40 and 200. To generalize well with only a few samples, we set the
number of interactions in support set, e.g., NSi as a small value
(NSi =20/15/10), and remaining interactions are set as the query set.

5.2 Experimental Setting
5.2.1 Evaluation Metrics. To evaluate the recommendation perfor-
mance, three frequently-used metrics: Precision (P)@N, Normalized
Discounted Cumulative Gain (NDCG)@N and Mean Average Pre-
cision (MAP)@N are adopted (N = 5, 7, 10). For each metric, we
report the average results for all users in the test set. Following
previous meta-learning recommenders [2, 9, 25, 30], we only predict
the score of each item in the query set for each user.

5.2.2 Compared Models. We compare our method with the follow-
ing models:

• PPR [36] is a well-known CF-based method to solve cold-
start problems. PPR first constructs the profiles for user-item
pairs by the outer product over their individual features,
then it develops a novel regression framework to estimate
the pairwise user preferences.

• NeuMF [17] is also a CF-based model that exploits DNNs to
capture the non-linear feature interaction between user and
item. NeuMF is a classic recommendation model, but it is
not especially designed for cold-start problems. We adopt it
here to test its effectiveness.

• DropoutNet [44] is a content-based model to solve cold-start
problems. It applies the dropout mechanism to input during
training to condition for missing user interactions.

• MetaLWA [42] andMetaNLBA [42] are the firstmeta-learning
recommenders for cold-start problems. Different from our
work, they focus on item cold-start recommendation. They
generate two class-level prototype representations to learn
item similarity. MetaLWA learns a linear classifier whose
weights are determined by the user’s interaction history, and
MetaNLBA learns a DNN with the task-dependent bias for
each layer.

• MeLU [25] handles cold-start problems by applying the frame-
work of MAML. Based on the learned parameter initializa-
tion, MeLU can make recommendations for cold-start users
via a few steps of gradient updates.

• MetaCS [2] is similar to MeLU, which also exploits MAML
to estimate the user preference. It includes three model vari-
ants, and we choose the best one according to their reported
results.

• MetaHIN [30] combines MAML with HINs to alleviate cold-
start problems frommodel and data levels. The rich semantic
of HINs provides a finer-grained prior which is beneficial to
fast adaptations of new tasks.

1312

Table 3: Performance (%) comparison of user cold-start recommendation on MovieLens-1M.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 49.36 66.62 37.86 51.25 67.27 38.12 54.30 68.27 41.20

NeuMF 48.27 65.43 36.65 51.24 66.55 37.90 55.32 68.19 41.43
DropoutNet 51.77 69.34 41.82 53.67 70.83 43.81 57.34 72.02 46.59

MeLU 55.99 73.08 46.79 57.34 73.18 48.45 61.05 74.04 49.02
MetaCS 55.43 71.69 44.85 56.89 72.05 44.94 59.78 72.86 47.52
MetaHIN 57.65 73.43 47.40 58.67 73.95 48.75 61.18 74.50 49.99
MAMO 57.69 73.24 47.72 58.42 74.03 49.62 61.51 74.41 50.06

TaNP (w/o tm) 58.03 73.76 47.79 58.90 73.89 48.37 61.29 74.44 49.73
TaNP (FiLM) 59.76 74.97 49.08 60.45 75.22 49.76 62.78 75.48 51.12

TaNP (Gating-FiLM) 60.12 75.00 49.12 60.29 75.34 50.79 62.66 75.53 51.56

Table 4: Performance (%) comparison of user cold-start recommendation on Last.FM.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 68.61 67.23 61.72 72.96 69.10 67.29 81.36 72.75 75.66

NeuMF 67.39 65.23 59.72 70.82 67.62 67.80 81.06 71.57 76.01
DropoutNet 70.08 68.37 62.68 73.34 69.72 68.66 82.28 73.26 79.84
MetaLWA 69.45 69.04 62.31 73.38 70.92 69.29 86.06 74.78 82.58
MetaNLBA 71.52 72.47 64.71 75.97 73.15 71.06 86.52 78.40 83.51

MeLU 73.03 75.38 67.71 76.19 75.54 72.09 86.92 80.62 84.49
MetaCS 73.33 75.34 68.76 75.76 76.10 72.09 86.98 80.06 84.95
MAMO 73.64 75.48 67.22 77.27 75.83 72.85 87.07 80.44 84.48

TaNP (w/o tm) 75.45 75.21 69.06 77.06 76.19 72.54 87.42 80.50 84.59
TaNP (FiLM) 76.06 76.31 70.73 77.92 77.21 74.87 88.33 81.19 85.04

TaNP (Gating-FiLM) 76.36 77.18 70.12 79.00 77.30 73.92 88.64 82.10 85.94

Table 5: Performance (%) comparison of user cold-start recommendation on Gowalla.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 60.48 62.92 53.09 61.89 64.43 56.46 62.00 66.44 59.31

NeuMF 55.98 57.99 51.02 59.30 60.36 53.34 60.80 64.47 56.17
DropoutNet 62.06 65.79 55.46 63.44 66.30 56.92 64.73 67.85 60.10
MetaLWA 64.67 65.53 55.99 65.12 66.53 56.74 69.09 66.61 60.35
MetaNLBA 67.60 67.93 59.56 68.38 68.45 61.07 70.66 69.45 63.00

MeLU 67.85 69.40 60.97 70.14 69.43 63.66 70.40 72.13 63.95
MetaCS 66.14 67.39 58.69 67.52 67.82 60.74 69.29 69.63 61.87
MAMO 67.97 69.52 61.07 71.03 70.54 63.73 71.43 73.13 64.99

TaNP (w/o tm) 68.25 69.76 61.29 70.83 70.03 64.15 71.08 72.72 64.39
TaNP (FiLM) 70.94 71.14 64.35 72.08 72.18 65.95 72.65 74.12 66.39

TaNP (Gating-FiLM) 71.43 71.60 64.29 72.58 71.99 66.16 73.11 74.57 66.79

• MAMO [9] is a memory-augmented framework of MAML.
MAMO assumes that current MAML-based models often
suffer from gradient degradation ending up with a local
optima when handling users who show different gradient
descent directions comparing with the majority of users in
the training set. So it designs the task-specific and feature-
specific memory matrices to solve this problem.

5.2.3 ImplementationDetails. The source codes of NeuMF 5, Dropout-
Net 6, MeLU 7, MetaHIN 8 and MAMO 9 have been released, and we

5https://github.com/hexiangnan/neural_collaborative_filtering
6https://github.com/layer6ai-labs/DropoutNet
7https://github.com/hoyeoplee/MeLU
8https://github.com/rootlu/MetaHIN
9https://github.com/dongmanqing/Code-for-MAMO

1313

MeLU MetaCS
MetaHIN MAMO

TaNP (w/o tm)

TaNP (Gating-FiLM)56.0

56.8

57.6

58.4

59.2

60.0

60.8
NSi = 10.

(a) MovieLens-1M

MetaNLBA MeLU MetaCS MAMO
TaNP (w/o tm)

TaNP (Gating-FiLM)82.5

83.3

84.1

84.9

85.7

86.5

87.3

NSi = 10.

(b) Last.FM

MetaNLBA MeLU MetaCS MAMO
TaNP (w/o tm)

TaNP (Gating-FiLM)66.0

66.8

67.6

68.4

69.2

70.0

70.8
NSi = 10.

(c) Gowalla

MeLU MetaCS
MetaHIN MAMO

TaNP (w/o tm)

TaNP (Gating-FiLM)57.5

58.3

59.1

59.9

60.7

61.5

NSi = 15.

(d) MovieLens-1M

MetaNLBA MeLU MetaCS MAMO
TaNP (w/o tm)

TaNP (Gating-FiLM)83.5

84.3

85.1

85.9

86.7

87.5

NSi = 15.

(e) Last.FM

MetaNLBA MeLU MetaCS MAMO
TaNP (w/o tm)

TaNP (Gating-FiLM)67.0

67.8

68.6

69.4

70.2

71.0

71.8
NSi = 15.

(f) Gowalla

Figure 3: Performance (%) comparison of user cold-start recommendation with different lengths of support set. The results of
all datasets are provided. The first row shows the empirical results when NSi = 10, and the second row shows the empirical
results when NSi = 15.

modify the parts of data input and evaluations to fit our experimen-
tal settings. Other baselines are reproduced by ourselves. MetaLWA
and MetaNLBA are only applicable to implicit feedback datasets,
so the results of them on MovieLens-1M are not provided. While
DropoutNet is a content-based method, the used input dropout
is a general technique that can be also employed on Last.FM and
Gowalla. In addition, both MetaHIN and MAMO are closely con-
nected with the side-information of user and items. In particular, the
meta-paths used in MetaHIN are constructed according to the node
types of users, thus only the results of MetaHIN for MovieLens-1M
are reported. The attention calculation in MAMO is obtained via
user contents and the proposed profile memory. We replace this
part with the original memory mechanism enabling MAMO to be
deployed on Last.FM and Gowalla.

To make fair comparisons, the dimension sizes of user and item
embeddings are fixed as 32 in embedding layers. All models are fully
iterated with 150 epochs for convergence. In our model, the number
of stacked layers l for all modules in our model (hθ ,mϕ and дωi) is
3, the learning rate is 5e-5 and the degree of freedom α is 1.0. Other
hyper-parameters are selected according to the performances on
validation datasets. The hidden size of each layer is selected from
{8, 16, 32, 64, 128}, the hyper-parameter λ in Eq.(19) is selected from
{1.0, 0.5, 0.1, 0.05, 0.01}, and the number of soft cluster controids k
in the global pool A ranges from 10 to 50 with the step length 10.

5.3 Performance Comparison (RQ1)
Table 3, 4 and 5 demonstrate the performances of all models for
user cold-start recommendation on MovieLens-1M, Last.FM and
Gowalla. The size of support set NSi is set as 20 in this section. The
best performances are in bold. TaNP (w/o tm) denotes an ablation
study of ourmodel, in which the proposed task-adaptivemechanism
is removed. TaNP (FiLM) and TaNP (Gating-FiLM) are two variants
of our model using different modulation strategies. From these
Tables, we can draw the following conclusions:

• TaNP consistently yields the best performances on all datasets.
Comparedwith state-of-the-artmeta-learning recommenders,
the most obvious improvements of TaNP are listed here: for
the MovieLens-1M, TaNP brings 4.2% improvements in terms
of P@5; TaNP achieves 3.6% result lifts in terms of P@5 on
Last.FM; For the Gowalla, TaNP provides 5.4% improvements
in terms of MAP@5.

• Compared with those meta-learning recommenders based
on MAML, we find that TaNP (w/o tm) achieves competitive
performances. It demonstrates that our NP framework is
suitable to user cold-start recommendation.

• In contrast to TaNP (w/o tm), the improvements of our vari-
ants, i.e., TaNP (FiLM) and TaNP (Gating-FiLM) are signifi-
cant, and TaNP (Gating-FiLM) is slightly better than TaNP

1314

1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10 0.04

0.08

0.12

0.16

0.20

0.24

Figure 4: Visualization of soft cluster assignments of 10
tasks {τi }

10
i=1. X axis represents k = 10 cluster centroids. If

τi and τj have high scores (i.e., dark color) on the same clus-
ter centroids, we assume they may share some similarities.

(FiLM). It demonstrates that the effectiveness of our task-
adaptive mechanism and the importance of learning the
relevance of different tasks.

• MetaLWA, MetaNLBA and MetaHIN are constrained by
dataset types. Different from them, TaNP is a more general
meta-learning recommender which can be used in different
experimental settings.

5.4 Impact of NSi (RQ2)
We change the number of interactions in Si for three datasets to
test the effectiveness of our methods. Concretely, NSi is set as 10
and 15 and the evaluation metric is P@10. According to the above
results in Section 5.3, we select the following strong baselines:
MetaNLBA, MeLU, MetaCS, MetaHIN and MAMO. Here we only
report the results of TaNP (Gating-FiLM), since it achieves the better
performances compared with TaNP (FiLM). The empirical results
are provided in Figure 3, from which we can draw the following
conclusions:

• For all datasets, when the number of interactions in the sup-
port set has been reduced, TaNP (Gating-FiLM) still main-
tains the better performances compared with other meta-
learning models.

• TaNP (Gating-FiLM) performs better than TaNP (w/o tm) in
all experimental settings. Compared with MeLU and MetaCS,
the improvements of MAMO are also obvious. Through these
two comparisons, we find that it is essential to use an effec-
tive adaptation for handling different tasks.

• Our model is less influenced by the decrease of interactions.
The possible reason is that TaNP applies a random function
to the constructions of τi for modeling different function real-
isations. In contrast, other baselines, such as the MetaNLBA
and MetaCS, are more sensitive to the change of NSi .

5.5 Visual Analysis (RQ3)
In our model, the proposed adaptive mechanism includes a global
pool A that implicitly represents k cluster centroids to capture
the relevance of different tasks. Each task τi would interact with

0.01 0.05 0.1 0.5 1.0
λ

86.0

86.6

87.2

87.8

88.4

89.0

P@
10

10 20 30 40 50
k

86.0

86.6

87.2

87.8

88.4

89.0

TaNP (FiLM) TaNP (Gating-FiLM)

Figure 5: Empirical results of parameter sensitivity.

A to derive the corresponding soft cluster assignments, and we
randomly pick 10 tasks from the training set of MovieLens-1M with
their corresponding soft cluster assignments. The visual result is
shown in Figure 4, and we have the following conclusions:

• Our model can capture the similarity of tasks. For example,
the highest normalized scores of τ5 and τ7 are simultaneously
assigned to the first and the fourth clusters. We infer that
these two tasks are closely relevant. The side-information
also provide some cues. Concretely, we find the correspond-
ing user ids u5 and u7 are of the same gender, and they share
two movie items in support sets.

• The difference between tasks can be also well distinguished.
For example, the soft assignments of τ1 and τ4 indicate that
they are largely different.

Overall, the task relevance including the task similarity and the
task difference is learned by the customization module. Moreover,
such relevance is incorporated into the final task embedding which
further facilitates the task-related modulations of decoder parame-
ters reliably.

5.6 Hyper-parameter Analysis (RQ4)
In this section, we investigate the parameter sensitivity of our
model with respect to two main hyper-parameters, i.e., λ in the
loss function and k in A. This experiment is conducted on Last.FM.
As shown in Figure 5, TaNP (FiLM) achieves the best result when
λ = 0.1 and k = 10, and TaNP (Gating-FiLM) achieves the best
result when λ = 0.1 and k = 20. Thus, choosing relative small
values of λ and k is sensible. In addition, two variants of our model
are robust to the changes of λ and k . Even in the worst cases of λ
and k , they are still better than other baselines shown in Table 4.

6 CONCLUSION
In this paper, we develop a novel meta-learning model called TaNP
for user cold-start recommendation. TaNP is a generic framework
which maps the observed interactions to the desired predictive dis-
tribution conditioned on a learned conditional prior. Furthermore,
a novel task-adaptive mechanism is also introduced into TaNP for
learning the relevance of different tasks as well as modulating the
decoder parameters. Extensive results show that TaNP outperforms
several state-of-the-art meta-learning recommenders consistently.

1315

ACKNOWLEDGMENTS
This work was supported in part by the NSFC (No. 61872360), the
ARC DECRA (No. DE200100964), and the Youth Innovation Promo-
tion Association CAS (No. 2017210).

REFERENCES
[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey. 2019. How to train

your MAML. In International Conference on Learning Representations (ICLR).
[2] Homanga Bharadhwaj. 2019. Meta-Learning for User Cold-Start Recommenda-

tion. In 2019 International Joint Conference on Neural Networks (IJCNN).
[3] Mattia Bianchi, Federico Cesaro, Filippo Ciceri, Mattia Dagrada, Alberto Gasparin,

Daniele Grattarola, Ilyas Inajjar, Alberto Maria Metelli, and Leonardo Cella. 2017.
Content-based approaches for cold-start job recommendations. In Proceedings of
the Recommender Systems Challenge.

[4] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning Research (JMLR) (2003).

[5] Marc Brockschmidt. 2020. Gnn-film: Graph neural networks with feature-wise
linear modulation. In International Conference on Machine Learning (ICML).

[6] Remi Cadene, Hedi Ben-Younes, Matthieu Cord, and Nicolas Thome. 2019. Murel:
Multimodal relational reasoning for visual question answering. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[7] Jiangxia Cao*, Xixun Lin*, Shu Guo, Luchen Liu, Tingwen Liu, and Bin Wang.
2021. Bipartite Graph Embedding via Mutual Information Maximization. In ACM
International Conference on Web Search and Data Mining (WSDM).

[8] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. In The World
Wide Web Conference (WWW).

[9] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. MAMO:
Memory-Augmented Meta-Optimization for Cold-start Recommendation. In
ACM Knowledge Discovery and Data Mining (KDD).

[10] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.
Sequential Scenario-Specific Meta Learner for Online Recommendation. In ACM
Knowledge Discovery and Data Mining (KDD).

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference on
Machine Learning (ICML).

[12] Li Gao, Hong Yang, Jia Wu, Chuan Zhou, Weixue Lu, and Yue Hu. 2018. Recom-
mendation with multi-source heterogeneous information. In International Joint
Conference on Artificial Intelligence (IJCAI).

[13] Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Sax-
ton, Murray Shanahan, Yee Whye Teh, Danilo J Rezende, and SM Eslami. 2018.
Conditional neural processes. In International Conference on Machine Learning
(ICML).

[14] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo Jimenez
Rezende, S. M. Ali Eslami, and Yee Whye Teh. 2018. Neural Processes. In Interna-
tional Conference on Machine Learning (ICML).

[15] Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann
Dubois, and Richard E Turner. [n.d.]. Convolutional conditional neural processes.
In International Conference on Learning Representations (ICLR).

[16] Quanquan Gu, Jie Zhou, and Chris Ding. 2010. Collaborative filtering: Weighted
nonnegative matrix factorization incorporating user and item graphs. In SIAM
International Conference on Data Mining (SDM).

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In The World Wide Web Conference
(WWW).

[18] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In ACM
International Conference on Research on Development in Information Retrieval
(SIGIR).

[19] Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. 2017. Learning to
remember rare events. In International Conference on Learning Representations
(ICLR).

[20] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami,
Dan Rosenbaum, Oriol Vinyals, and Yee Whye Teh. 2019. Attentive Neural
Processes. In International Conference on Learning Representations (ICLR).

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations (ICLR).

[22] Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In
International Conference on Learning Representations (ICLR).

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009).

[24] Pigi Kouki, Shobeir Fakhraei, James Foulds, Magdalini Eirinaki, and Lise Getoor.
2015. Hyper: A flexible and extensible probabilistic framework for hybrid recom-
mender systems. In ACM Conference on Recommender Systems (RecSys).

[25] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In ACM Knowledge Discovery and Data Mining (KDD).

[26] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to
learn quickly for few-shot learning. arXiv (2017).

[27] Chunyi Liu, Chuan Zhou, Jia Wu, Yue Hu, and Li Guo. 2018. Social recom-
mendation with an essential preference space. In AAAI Conference on Artificial
Intelligence (AAAI).

[28] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based
recommender systems: State of the art and trends. In Recommender Systems
Handbook.

[29] Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. 2019. The
Functional Neural Process. In Annual Conference on Neural Information Processing
Systems (NeurIPS).

[30] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on heterogeneous in-
formation networks for cold-start recommendation. In ACM Knowledge Discovery
and Data Mining (KDD).

[31] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing disentangled representations for recommendation. In Advances in Neural
Information Processing Systems (NeurIPS).

[32] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu
Zhu. 2020. Disentangled Self-Supervision in Sequential Recommenders. In ACM
Knowledge Discovery and Data Mining (KDD).

[33] Andriy Mnih and Karol Gregor. 2014. Neural variational inference and learning
in belief networks. In International Conference on Machine Learning (ICML).

[34] Alex Nichol and John Schulman. 2018. Reptile: a scalable metalearning algorithm.
arXiv (2018).

[35] Bernt Oksendal. 2013. Stochastic differential equations: an introduction with
applications. Springer Science & Business Media.

[36] Seung-Taek Park andWei Chu. 2009. Pairwise preference regression for cold-start
recommendation. In ACM conference on Recommender systems (RecSys).

[37] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
AAAI Conference on Artificial Intelligence (AAAI).

[38] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot
learning. (2017).

[39] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and
Richard E Turner. 2019. Fast and flexible multi-task classification using condi-
tional neural adaptive processes. In Annual Conference on Neural Information
Processing Systems (NeurIPS).

[40] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy
Lillicrap. [n.d.]. Meta-learning with memory-augmented neural networks. In
International Conference on Machine Learning (ICML).

[41] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In Annual Conference on Neural Information Processing Systems
(NeurIPS).

[42] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations for
items. In Annual Conference on Neural Information Processing Systems (NeurIPS).

[43] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS).

[44] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Ad-
dressing cold start in recommender systems. In Advances in Neural Information
Processing Systems (NeurIPS).

[45] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. 2019. Multimodal
Model-Agnostic Meta-Learning via Task-Aware Modulation. In Annual Confer-
ence on Neural Information Processing Systems (NeurIPS).

[46] Chong Wang and David M Blei. 2011. Collaborative topic modeling for rec-
ommending scientific articles. In ACM Knowledge Discovery and Data Mining
(KDD).

[47] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In ACM Knowledge Discovery and Data Mining (KDD).

[48] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-task feature learning for knowledge graph enhanced recom-
mendation. In The World Wide Web Conference (WWW).

[49] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding
for clustering analysis. In International Conference on Machine Learning (ICML).

[50] Yu Xin and Tommi Jaakkola. 2014. Controlling privacy in recommender systems.
In Annual Conference on Neural Information Processing Systems (NeurIPS).

[51] Huaxiu Yao, YingWei, JunzhouHuang, and Zhenhui Li. 2019. Hierarchically struc-
tured meta-learning. In International Conference on Machine Learning (ICML).

[52] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) (2019).

[53] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural
autoregressive approach to collaborative filtering. In International Conference on
Machine Learning (ICML).

1316

	Abstract
	1 Introduction
	2 Related Work
	2.1 Meta Learning
	2.2 User Cold-Start Recommendation
	2.3 Neural Process

	3 Preliminaries
	4 Task-adaptive Neural Process
	4.1 Overview
	4.2 Embedding Layers
	4.3 Encoder
	4.4 Customization Module
	4.5 Adaptive Decoder
	4.6 Loss Function
	4.7 Time Complexity

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setting
	5.3 Performance Comparison (RQ1)
	5.4 Impact of NSi (RQ2)
	5.5 Visual Analysis (RQ3)
	5.6 Hyper-parameter Analysis (RQ4)

	6 Conclusion
	Acknowledgments
	References

