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Introduction 
While genome editing has been on the rise over the past 
two decades, the advent of CRISPR-based technologies 
has accelerated and democratized genome editing in the 
past 9 years.1,2 Several Cas-based molecular machines 
have been co-opted from the bacterial adaptive immune 
system3 to generate CRISPR-based technologies, such 
as sgRNA:Cas9,4 which have enabled facile genome edit- 
ing since 2013.5,6 Recently, the leading developers of this 
genome editing technology were awarded the 2020 Nobel 
Prize in Chemistry, illustrating the tremendous potential 
and impact of this technology. Early work focused on 
deciphering the molecular processes that drive CRISPR- 
based adaptive immunity in bacteria7 and the develop- 
ment of programmable Cas proteins that laid a prepara- 
tory foundation for CRISPR-based technologies.8 
Subsequently, these Cas effectors were deployed to ma- 
nipulate genomes, transcriptomes, and epigenomes in a 
broad diversity of organisms across the tree of life, 
such as bacteria, plants, and humans.9 More recently, 

these CRISPR-based technologies have been widely 
adopted to engineer model organisms and even develop 
gene therapies tested in clinical settings.10,11 Besides 
Cas9, the CRISPR toolbox has been expanded to encom- 
pass various Cas effector proteins such as Cas9, Cas12, 
Cas13, and the Cascade complex.9 As tools continue to 
be optimized with regards to specificity, efficiency, and 
delivery modalities, the intellectual property (IP) land- 
scape is being defined12–14 to enable widespread exploita- 
tion in medicine (e.g., gene therapies and antimicrobials), 
agriculture (e.g., crop breeding and disease resistance in 
livestock), and biotechnology (e.g., enzyme engineering 
and biofuel genesis). The accessibility and dissemination 
of CRISPR tools via repositories such as Addgene have 
allowed broad access to the best tools by academics and 
nonprofit organizations across the globe.2 

Though the rise of genome editing and global spread of 
CRISPR tools is undeniable, relatively little is known 
about the geographical, topical, individual, and collabo- 
rative patterns that drive this academic phenomenon 
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Abstract 
Over the past two decades, the discovery of CRISPR-Cas immune systems and the repurposing of their effector 
nucleases as biotechnological tools have revolutionized genome editing. The corresponding work has been cap- 
tured by 90,000 authors representing 7,600 affiliations in 126 countries, who have published more than 19,000 
papers spanning medicine, agriculture, and biotechnology. Here, we use tech mining and an integrated biblio- 
metric and networks framework to investigate the CRISPR literature over three time periods. The analysis iden- 
tified seminal papers, leading authors, influential journals, and rising applications and topics interconnected 
through collaborative networks. A core set of foundational topics gave rise to diverging avenues of research 
and applications, reflecting a bona fide disruptive emerging technology. This analysis illustrates how bibliomet- 
rics can identify key factors, decipher rising trends, and untangle emerging applications and technologies that 

dynamically shape a morphing field, and provides insights into the trajectory of genome editing. 
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and commercially disruptive technology.15 Here, we 
implemented an integrated research framework, using a 
bibliometric approach,16,17 augmented by text mining, 
analysis of abstract record compilations, and a scientific 
evolutionary pathway (SEP) analysis,18,19 to investigate 
the underlying patterns that have driven the adoption 
and implementation of CRISPR technologies. Specifi- 
cally, we analyzed publication trends and authorship pat- 
terns for the CRISPR and the genome editing literature 
over space and time using queries in Web of Science to 
identify key contributors and influential papers, as well 
as the topics and biases that have shaped and are currently 
driving the field. 

 
Methods 
Publication records were retrieved using text queries 
mining Web of Science records as of March 25, 2021, 
spanning manuscripts published between 2000 and 
2020. Records were retrieved and cross-indexed using 
entries providing information with regards to manuscript 
authors, affiliated institutions, publication journal, year, 
title, and abstracts. For SEP analysis, we used the method 
pioneered by Zhang et al.20 to trace the evolution of sci- 
entific topics into different subtopics by identifying a lin- 
guistic predecessor–descendant relationship from these 
bibliometric data. We then used the SEP approach to 
track the convergence and divergence of research topics 
on genome editing research and to discover potential con- 
nections between these topics within a knowledge flow. 

Generally, we ascribed six definitions as follows: 
Definition 1. An article is represented by a vector (ar- 

ticle vector): its feature space consists of terms of the en- 
tire data set, and its cell represents the frequency of a 
given term appearing in this article. 

Definition 2. A topic is a collection of articles sharing 
similar semantic content, a lexicon, and is geometrically 
represented as a circle, with a centroid measured by the 
mean of all involved article vectors, and a boundary mea- 
sured by the largest Euclidean distance between the cen- 
troid and all other article vectors. 

Definition 3. Articles published in the same year are 
organized in one time slice. The entire data set is ana- 
lyzed as a bibliometric stream, that is, the SEP algorithm 
is to analyze each time slice sequentially according to the 
order of publication year, and for each time slice, the al- 
gorithm is to analyze each article sequentially according 

to the order of unified publication ID. 
Definition 4. Initial topics are those consisting of arti- 

cles in the first time slice and are starting points of the 
evolutionary pathways. Initial topics usually represent the 
root (e.g., original ideas and concepts) of the case (i.e., 
CRISPR in this paper). 
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Definition 5. A topic has two status categories, 
either ‘‘live’’ or ‘‘dead,’’ as defined by ‘‘sleeping 
beauties,’’21 for which a topic could ‘‘die’’ if it 
does not receive new articles in certain sequential 
time slices, and a ‘‘dead’’ topic could be revived and 
‘‘alive’’ again if a newly born topic shares the 
highest similarity with it. 

Definition 6. A community is a group of proximate 
topics in a network—usually a branch in a SEP 
map— which represents a subfield of the case. 

Based on the above definitions, we implemented a 
stepwise algorithm to create the SEP as follows: 

Step 1: All articles in the first time slice are 
grouped as one initial topic, which is set as the 
starting point of the evolutionary pathways. The 
algorithm moves to the sec- ond time slice and 
analyzes its involved articles one by one. 

Step 2: We measure the cosine similarity between 
a current article and the centroids of all ‘‘live’’ 
topics. 

Step 3: We assign the article to its most similar 
topic. If the Euclidean distance between the article and 
the cen- troid of the assigned topic is smaller than its 
boundary, this article will be directly involved in the 
topic. Other- wise, it will be labeled as ‘‘drift.’’ Then, 
we return to Step 2 and analyze the next article until 
the end of this time slice. 

Step 4: After analyzing all articles in one time slice, 
we check the status of each topic, that is, set topics as 

‘‘dead’’ if they meet with the constraint in 
Definition 4 (a parameter is used here to decide the 
length of sequen- tial time slices). For each ‘‘live’’ 

topic, an unsupervised K-means approach is 
introduced to group its assigned ‘‘drift’’ articles 

into certain subtopics (an interval for seeking the 
local-optimal number of topics is required). Step 5: 

We measure the cosine similarity between each 
subtopic and two sets of topics—its assigned ‘‘live’’ 

topic and all ‘‘dead’’ topics. If the most similar topic of 
the sub- topic is its assigned one, their relationship is 

defined as ‘‘predecessor–descendent.’’ Otherwise, the 
most similar ‘‘dead’’ topic will be revived and set 

as ‘‘live’’ and 
then becomes the predecessor of the subtopic. 

Step 6: We label a new topic (i.e., a subtopic in 
Step 5) via the term with the highest similarity with all 
other terms in the topic—if the term has already been 
used be- fore, choose the term with the second highest 
similarity, et cetera. 

Step 7: We update the centroid and boundary of all 
‘‘live’’ topics, and the algorithm moves to the next 
time slice, and we return to Step 2. 

Results of the SEP approach include a list of topics 
and their predecessor–descendant relationships. These 
topics are then visualized in a network via Gephi.22 In 
the net- work, each topic is represented by a node, 
and the size 
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of a node represents its importance, as measured by the 
value of term frequency inverse document frequency (tf-
idf) analysis. A directed edge represents the predeces- 
sor–descendant relationship between its connected nodes, 
and the weight of an edge reveals the strength of the re- 
lationship (e.g., semantic similarity). The color of 
nodes reflects their communities identified by an ap- 
proach of community detection integrated in Gephi as 
‘‘modularity.’’23 Similarity measurements were carried 
out for the 119 topics identified across the three distinct 
time periods (9 topics pre-2013, 64 topics between 
2013 and 2018, and 46 topics since 2019), using semantic 
similarity coefficients. Details are available at https:// 
github.com/IntelligentBibliometrics/Gene-editing. 

 
Results 
CRISPR technology fueled the rise of the genome 
editing literature 
To provide quantitative and qualitative insights into the 
drivers of the CRISPR craze,24 we first defined the ge- 
nome editing lexicon of interest and quantified relevant 
publications over the past 20 years, focusing on articles, 
reviews, and letters comprising 26,484 records (Supple- 
mentary Table S1). Results show that the CRISPR litera- 
ture (more than 19,000 papers published since 2000 by 
90,000 authors from around 7,600 institutions located 
in 126 countries; Supplementary Table S2) is rapidly 
growing, and that CRISPR-based tools impressively over- 
took incumbent technologies such as ZFNs, TALENs, 
and Meganucleases in 2013 (Fig. 1A), within months of 
publication of the first proof of concept for CRISPR- 
based genome editing in human cells.5,6 Currently, 
CRISPR-related publications account for the near totality 
of the genome editing field and are more than 10 times 
more numerous than ZFN, TALEN, and Meganuclease 
papers combined (Fig. 1A). Indeed, publications related 
to these first-generation genome editing technologies 
have been in decline since the advent of CRISPR-based 
genome editing technologies in 2012 (Fig. 1A). 

Remarkably, despite this rapid early adoption pattern, 
especially in the United States and China, the CRISPR 
literature continues to expand at an impressive rate 
(Fig. 1A), perhaps suggesting that genome editing is 
yet to hit maturity as a field, which is consistent with 
the continued dissemination of CRISPR tools across the 
planet.1,2 Importantly, this shows how CRISPR as a 
field evolved from a relatively small ‘‘niche’’ microbiol- 
ogy topic into the major driver of genome editing in 2013, 
establishing a ‘‘before CRISPR’’ era25 and perhaps an 
‘‘after displacement’’ of incumbent technologies period 
thereafter. This rise was fueled by the advent of the 
single-guide RNA technology in 2012, which quickly en- 

 
abled genome editing (Fig. 1B) and prompted an explo- 
sion in genome editing studies and citations (Fig. 1C), 
as recognized by the 2020 Nobel Prize in Chemistry se- 
lection committee. Critical advances achieved in the 
past 2 years are also notable, with development of 
novel base editing tools and polished technologies such 
as prime editing,26,27 as well as the transition of the tech- 
nology from research laboratories into clinical settings 
with bona fide CRISPR-based therapeutics.10,11 These 
tipping points triggered by specific publications and tech- 
nology development define distinct time periods that pro- 
vide useful to assess the dynamic evolution of the 
field.25,28 

 
An interwoven network of collaborative authors 
Next, we carried out a co-authorship network analysis to 
delve into the collaborative efforts driving contributions 
by the 48 most prolific and impactful authors over time 
(Fig. 2 and Table 1). On a global basis, investigating pub- 
lication patterns across these authors (as defined by num- 
ber of publications, citations, and h-index within the 
field), we note extensive and interconnected collaborative 
networks, with most authors engaged in several collabo- 
rative efforts. Actually, it appears the most influential au- 
thors collaborate with other key contributing authors in 
interconnected and overlapping authorship networks 
(Fig. 2). Interestingly, many ‘‘early’’ authors who were 
active in the field prior to 2013 originally focused on 
CRISPR biology and mechanisms of action continue to 
do so (Fig. 2), whereas distinct collaborative networks 
that fueled the rise of CRISPR-based genome editing 
technologies in parallel (Fig. 2A) now directly overlap 
in topics of interest (Fig. 2B). Noteworthy, the early 
community-wide focus on Cas9-based genome editing 
was comprising both overlapping and competitive inter- 
ests, which created an IP challenge regarding licensing 
and freedom to operate for the technology,12–14 which 
presumably prompted searches for novel Cas effectors. 
Interestingly, while some believe that the CRISPR IP 
challenges are a scientific hurdle that may have stifled in- 
novation, the data suggest that it may rather have pushed 
the community toward actively mining for alternatives 
while not precluding its broad adoption by diverse aca- 
demic groups across the globe. Those initially established 
Cas12 as an alternative technology and recently 
unearthed new CRISPR-Cas types based on Cas13, 
Cas14, and others,9,29 suggesting a needs-based innova- 
tive push rather than a limiting competitive constraint. 

Some of the most impactful contributions made by 
these influential authors can be captured by analyzing 
the most-cited papers in the field (Table 2) over the 
three aforementioned eras and the journals in which 

y.
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FIG. 1. Genome editing–related publications since 2000. (A) The graph shows the number of publications related 
to genome editing and their various effectors, including Meganucleases, ZFNs, TALENs, and CRISPR. The number of 
publications is showcased in a log10 scale. (B) Citations over time for the five most-cited CRISPR papers. (C) Total 
citations for CRISPR papers published in selected journals over time. 
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FIG. 2. Collaborative authorship networks between the 48 most impactfully prolific CRISPR researchers whose 
H-index within this topic is more than 20 since 2000. (A) Co-authorship network, where node size reflects the 
number of records published by authors, lines reflect co-authorships, and the cluster colors reflect community 
detection algorithm-based groups. (B) Cosine similarity network, with cluster colors reflecting topic similarities 
(mesh terms allocated to the publications); only lines with similarities higher than 0.3 are shown. 
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Table 1. CRISPR Authors with a High H-Index Within this Topic  

     Records (rank)  

Author name Main affiliation RE AC HI 2002–2012 2013–2018 2019–2020 

Doudna, Jennifer Univ Calif Berkeley 112 254 65 13 (5) 74 (1) 25 (1) 
Zhang, Feng Broad Inst MIT and Harvard 92 511 64  74 (1) 18 (6) 
Koonin, Eugene NIH 89 159 46 13 (5) 51 (5) 25 (1) 
Barrangou, Rodolphe North Carolina State Univ 100 154 44 20 (1) 58 (4) 22 (5) 
Makarova, Kira NIH 60 208 39 9 (10) 33 18 (6) 
Kim, Jin-Soo Seoul Natl Univ & Inst for Basic Sci 78 119 38  60 (3) 18 (6) 
Church, George Harvard Univ 54 266 38  47 (6) 7 
Marraffini, Luciano Rockefeller Univ 52 317 34 6 31 15 
Joung, J. Keith Harvard Univ 46 307 34  35 11 
van der Oost, John Wageningen Univ 59 168 33 14 (3) 30 15 
Gersbach, Charles Duke Univ 48 150 30  36 (9) 12 
Qi, Lei Stanford Univ 42 240 30 1 30 11 
Weissman, Jonathan Univ Calif San Francisco 45 229 29  32 13 
Liu, David Broad Inst MIT and Harvard 33 226 28  18 15 
Brouns, Stan Wageningen Univ 43 171 27 14 (3) 17 12 
Gao, Caixia Chinese Acad Sci 41 119 26  27 14 
Huang, Xingxu ShanghaiTech Univ 52 61 26  39 (8) 13 
Horvath, Philippe DuPont Nutr & Hlth 32 369 26 16 (2) 13 3 
Root, David Broad Inst MIT and Harvard 37 162 25  24 13 
Jinek, Martin Univ Zurich 36 306 25 4 23 9 
Wiedenheft, Blake Montana State Univ 36 128 25 8 22 6 
Voytas, Daniel Univ Minnesota 34 96 25  30 4 
Doench, John Broad Inst MIT and Harvard 48 122 24  24 24 (3) 
Severinov, Konstantin Rutgers State Univ & Russian Acad Sci 60 67 24 8 29 23 (4) 
Fineran, Peter Univ Otago 48 50 24 4 28 16 (10) 
Bao, Gang Rice Univ 37 126 24  25 12 
Wolf, Yuri NIH 39 142 24 9 (10) 18 12 
Terns, Michael Univ Georgia 36 109 24 8 21 7 
Bondy-Denomy, Joseph Univ Calif San Francisco 39 59 23 1 22 16 (10) 
Gootenberg, Jonathan Broad Inst MIT and Harvard 30 371 23  21 9 
Gilbert, Luke Univ Calif San Francisco 29 30 23  23 6 
Garrett, Roger Univ Copenhagen 31 87 23 13 (5) 13 5 
Charpentier, Emmanuelle Max Planck Inst Infect Biol & Umea Univ 30 491 23 6 20 4 
Bassik, Michael Stanford Univ 33 91 22  16 17 (9) 
Westra, Edze Univ Exeter 43 111 22 10 (8) 18 15 
Moineau, Sylvain Univ Laval 42 212 22 7 23 12 
Zhu, Jian-Kang Purdue Univ & Chinese Acad Sci 33 8 22  24 9 
She, Qunxin Univ Copenhagen 37 8 22 7 22 8 
Terns, Rebecca Univ Georgia 26 140 22 8 17 1 
Porteus, Matthew Stanford Univ 29 66 21  17 12 
Abudayyeh, Omar MIT 27 297 21  18 9 
Yamamoto, Takashi Hiroshima Univ 50 8 21  42 (7) 8 
Banfield, Jillian Univ Calif Berkeley 24 80 21 7 11 6 
Puchta, Holger Karlsruhe Inst Technol 31 5 20  19 12 
Lee, Ciaran Rice Univ 28 48 20  17 11 
Mahfouz, Magdy King Abdullah Univ Sci & Technol 32 41 20  22 10 
Musunuru, Kiran Univ Penn 31 83 20  29 2 
Sakuma, Tetsushi Hiroshima Univ 41 44 20  36 (9) 5 

The number in parentheses indicates the rank in each period. 
RE, records; AC, average citations per item; HI, H-index. 

 

they have been published (Supplementary Table S3). The 
early contributions primarily consist of seminal studies 
establishing CRISPR-Cas as the adaptive immune system 
in bacteria,7,28 providing DNA-encoded, RNA-mediated, 
nucleic acid targeting, culminating in 2012 with the de- 
velopment of the sgRNA:Cas9 programmable CRISPR 
effector.4 This technology was used in 2013 for genome 
editing5,6 and shortly thereafter for transcriptional control 
and high-throughput screens. In the past 2 years, base 
editing technologies have been  on the rise, primarily 

fueled by the rapid ascent of engineered Cas effectors 
from the David Liu lab (Tables 1 and 2).9,26,27 Inevitably, 
the most-cited manuscripts have been research papers 
published in high-profile journals contributed by prolific 
authors, together with a few noteworthy reviews and 
resource-focused papers (Table 2). 

Predictably, citation patterns for most highly cited pa- 
pers in the space reflect the rise of genome editing, nota- 
bly the rapid explosion in 2013–2014 (Fig. 1). These 
papers were published in the most influential journals 

. 
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Table 2. Most 10 Highly Cited Papers Over Time 
 

Time period Authors Article title Journal Year 

 
Times 
cited 

 
 
 
 
 
 
 

Barrangou 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ferroptosis 
 

Top, 2000–2012; Middle, 2013–2018; Bottom, 2019–2020 (updated March 25, 2021). 
 
 

in the world (Supplementary Table S3). Impressively, the 
most-cited early CRISPR studies were also published in 
these journals, and they have been and continue to be 
the most influential journals in this field (Fig. 1 and Sup- 
plementary Table S3), despite fundamental shifts in top- 
ics of interest and the vast expansion of the contributing 
authors pool, as well as a diversified and more global 
readership (Fig. 2). To date, these papers reflect early 
work, mostly on development of the sgRNA:Cas9 tech- 
nology, and its use and rapid adoption for genome editing 
in human cells, with the majority of the most-cited papers 
published within the first 2 years of the CRISPR craze 
(Fig. 1B). 

In order to delve more into the key organisms, topics, 
and genes subjected to the most attention in genome edit- 
ing, we mined the published data and show that human 
cells are the primary organism of interest for the bulk 
of genome editing studies, predictably followed by 
mouse as the canonical proxy animal model for human 
studies (Supplementary Fig. S1). Noteworthy, studies fo- 
cused on humans and mice represent 10 times more than 
all other organisms of interest in CRISPR research, 
reflecting the heavy focus on human disease and medical 
applications, notwithstanding interest in and potential for 
other areas such as agriculture. Actually, this suggests 
that there is perhaps perplexing under-exploitation or 

. 

2000–2012 Jinek et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Science 2012 6,148 
  Bacterial Immunity    

Barrangou et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes Science 2007 2,810 
Brouns et al. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes Science 2008 1,282 
Makarova et al. Evolution and Classification of the CRISPR-Cas Systems Nat Rev Microbiol 2011 1,232 
Deltcheva et al. CRISPR RNA Maturation by Trans-encoded Small RNA and Host Factor Nature 2011 1,198 

  RNase III    

Horvath and CRISPR/Cas, the Immune System of Bacteria and Archaea Science 2010 1,189 

Gasiunas et al. Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Proc Natl Acad 2012 1,156 
Cleavage for Adaptive Immunity in Bacteria Sci U S A   

Grissa et al. CRISPRFinder: A Web Tool to Identify Clustered Regularly Interspaced Nucleic Acids Res 2007 1,136 
  Short Palindromic Repeats    

Garneau et al. The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Nature 2010 1,090 
  

Wiedenheft et al. 
Plasmid DNA 

RNA-guided Genetic Silencing Systems in Bacteria and Archaea 
 

Nature 
 

2012 
 

1,031 
2013–2018 Cong et al. Multiplex Genome Engineering Using CRISPR/Cas Systems Science 2013 7,341 
 Mali et al. RNA-Guided Human Genome Engineering via Cas9 Science 2013 4,904 
 Ran et al. Genome Engineering Using the CRISPR-Cas9 System Nat Protoc 2013 4,434 
 Hsu et al. Development and Applications of CRISPR-Cas9 for Genome Engineering Cell 2014 2,672 
 Doudna and The New Frontier of Genome Engineering with CRISPR-Cas9 Science 2014 2,506 
 Charpentier     
 Shalem et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells Science 2014 2,315 
 Hsu et al. DNA Targeting Specificity of RNA-guided Cas9 Nucleases Nat Biotechnol 2013 2,267 
 Qi et al. Repurposing CRISPR as an RNA-guided Platform for Sequence-Specific Cell 2013 2,091 
  Control of Gene Expression    

Wang et al. One-step Generation of Mice Carrying Mutations in Multiple Genes by Cell 2013 2,057 
  

Gaj et al. 
CRISPR/Cas-Mediated Genome Engineering 

ZFN, TALEN, and CRISPR/Cas-based Methods for Genome Engineering 
 

Trends Biotechnol 
 

2013 
 

1,855 
2019-2020 Anzalone et al. Search-and-replace Genome Editing Without Double-strand Breaks or Nature 2019 479 
  Donor DNA    

Ghandi et al. Next-generation Characterization of the Cancer Cell Line Encyclopedia Nature 2019 320 
Broughton et al. CRISPR-Cas12-based Detection of SARS-CoV-2 Nat Biotechnol 2020 273 
Oughtred et al. The BioGRID Interaction Database: 2019 Update Nucleic Acids Res 2019 269 
Zuo et al. Cytosine Base Editor Generates Substantial Off-target Single-nucleotide Science 2019 224 

  Variants in Mouse Embryos    

Haeussler et al. The UCSC Genome Browser database: 2019 update Nucleic Acids Res 2019 206 
Pickar-Oliver The Next Generation of CRISPR-Cas Technologies and Applications Nat Rev Mol Cell Biol 2019 205 

 and Gersbach     
Behan et al. Prioritization of Cancer Therapeutic Targets Using CRISPR-Cas9 Screens Nature 2019 201 
Chen et al. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture Annu Rev Plant Biol 2019 198 
Bersuker et al. The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Nature 2019 193 
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an adoption lag in other areas of interest, such as micro- 
biology, which is ironically where these systems broadly 
occur and were originally characterized and repurposed. 
Next, we focused on key diseases of interest in these stud- 
ies and determined that cancer-related research accounts 
for the majority of the studies, followed by genetic dis- 
ease, and infectious disease, including viral infections 
(Supplementary Fig. S1). This is further corroborated 
by the top 10 list of genes most associated with genome 
editing research (Supplementary Fig. S1), notably the 
most studied trio: TP53 (the most popular tumor suppres- 
sor), AKT (protein kinase B), and MYC (proto-oncogene 
transcription factor). 

 
Emergence of networks of divergent genome 
editing topics 
To gain bibliometric insights into how the field evolved 
and morphed over time, we used SEP analysis (see Meth- 
ods) to trace the evolution of topics of scientific interest in 
these published studies by identifying clusters of linguis- 
tic predecessor–descendant topical relationships.20 This 
allowed tracking of convergence and divergence of re- 
search topics on genome editing and connections among 
these topics over time (Fig. 3 and Supplementary 
Fig. S1). This analysis revealed the existence of nine 

topic communities that have evolved over the three time 
periods discussed previously. First, the field started with 
seminal bacterial work that occurred prior to 2012, 
which focused on adaptive immunity. This community 
topic is at the core of the network, and initially encom- 
passed foundational topics such as Cas nuclease, acquired 
immunity, and Escherichia coli (see the pink cluster at the 
center of Fig. 3 and Supplementary Fig. S1). This core 
gave rise to the sgRNA:Cas9 genome editing technology, 
a tipping point for the field, which emerged as a new topic 
in 2013, centered on guide RNA (derived from the single- 
guide RNA technology in the context of tracrRNA and 
crRNA), and links to incumbent genome editing technolo- 
gies such as ZFNs and TALENs (see the green cluster, 
Fig. 3). Over time, the core also gave rise to a community 
focused on screens (genetic screens, high-throughput 
screens, center right purple cluster). Likewise, the core 
cluster also gave rise to a community topic focused on 
transcriptional control, relatively early on with the rise in 
2014 of a transcription-focused cluster encompassing 
gene expression, gene regulation, transcription factors, 
and transcriptional regulators (center left, blue). Later 
on, as the technology evolved and matured, application- 
focused clusters arose, focusing on gene therapies, viral 
diseases, and neurodegenerative diseases. 

 
 

 
FIG. 3. Scientific evolutionary pathway analysis of CRISPR and genome editing topics over time. Nine topic 
communities are represented using distinct colors, connected over time. Topics are linked using predecessor– 
descendant relationships defined by the literature patterns. 

. 
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Analysis of similarity measurements (Supplementary 

Table S4) between these topic communities reveals 
how disruptive CRISPR technology is, given the diver- 
sity of distinct clusters that arose from the original core 
cluster, and the relatively low level of similarity observed 
between and across these 119 topics. This is further sup- 
ported by the low level of similarity observed between 
topics across time periods (Supplementary Table S4). 
The recent increase in topics in the past 2 years (46 
new topics in 2 years compared to 64 topics spanning 
the explosive 2013–2018 period) likely indicates contin- 
ued disruptive innovation and expansion of this technol- 
ogy into new areas of research, as well as novel and 
diversified applications. This is consistent with the devel- 
opment of novel technologies (e.g., base editing), the 
continued dissemination of CRISPR technologies across 
the globe (e.g., Addgene distribution), and the transition 
to applications, especially in therapeutic settings with 
CRISPR-based diagnostics, antivirals, and gene therapies 
all with clinical ambition in the short term. Critically, it is 
important to note the cross-referencing of the various vi- 
sualization modalities and tabular lists of entries through- 
out our tables and figures that consistently identify the 
same key factors fueling the genome editing revolution, 
and robustly establish the seminal studies and technolog- 
ical developments that have shaped this morphing subject 
over time. 

Despite the observed congruence, the SEP algorithm 
relies on natural language processing techniques that 
are impacted by writing style and biases, as well as incon- 
sistent use of terminology by different groups of authors, 
which can lead to synonyms being redundant and 
accounted for separately. For example, there are entries 
related to transcription that encompass transcriptional 
control, gene expression, gene regulation, and tran- 
scriptional regulation. There are also several connec- 
tions between seemingly unrelated topics due to 
language biases and topic-related complexity inherent 
to the same technology being used in unrelated organ- 
isms. There are also multiple examples of confounding 
coverage of topics that are often discussed together but 
are not systematically linked, such as human embryos 
and clinical trials being discussed together without 
being codependent. Thus, the complexity of a broadly 
applicable tool must be deciphered and interpreted by 
the expert reader to account for otherwise unrelated 
topics and verbiage. Human interpretation is also im- 
portant to assess fully the impact and influential contri- 
butions of individual authors and select manuscripts in 
order to account for quantitative shortcomings and 
biases inherent to citation numbers, indexes, and impact 
factors. Indeed, qualitative insights should be used by 

the reader to complement quantitative metrics in the 
spirit of the Leiden Manifesto.30 This manifesto high- 
lights the need to rely on expert assessment to 
overcome bias tendencies and untangle conceptual am- 
biguity and uncertainty. 

In several instances, there are connections that seems 
counterintuitive and reflect high semantic similarity but 
not technical dependence or scientific derivation. Indeed, 
sets of authors can share similar language biases, such as 
clinically relevant settings for patient sampling in medi- 
cal applications for the epidemiological study of Myco- 
bacterium tuberculosis and the implementation of 
genome editing for human gene therapies, linking two 
seemingly unrelated clusters because the authors share 
linguistic biases and keywords. Likewise, the link be- 
tween Cas nucleases and DNA fingerprinting reflects 
the early use of CRISPR spacer hypervariability for gen- 
otyping and not the use of Cas proteins for molecular fin- 
gerprinting. This high semantic similarity need not reflect 
bona fide technical overlap or dependency, and can reveal 
linguistic biases, or indicate subsequent uses and applica- 
tions of derived tools and technologies, including their 
eventual use in diverse model organisms. The latter ex- 
plains the unexpected appearance of Saccharomyces cer- 
evisiae, Caenorhabditis elegans, zebrafish, Chinese 
hamster ovary cells, and others throughout topic clusters. 
Some of the topical lineages shown reflect topical 
descendance within the CRISPR literature that evolved 
from a technical basis (using various Cas effectors as 
tools) to applications of these technologies in model or- 
ganisms and cells. To a similar extent, select topics of in- 
terest to specific groups of authors and readers can be 
linked through SEP analyses such as human embryos 
and clinical trials, though they need not be codependent 
(current clinical trials are not based on CRISPR-edited 
human embryos). So, both applications and implications 
can entangle topic connections. In some cases, the ap- 
pearance of a newly coined term reveals tipping points 
that created new sets of topics, notably the development 
of the guide RNA technology and the nomenclature up- 
date that reclassified most Cas proteins, including Cas5/ 
Csn1 as Cas9. 

While some literature topics have arisen faster than 
CRISPR, such as the recent COVID19-related litera- 
ture,31 the speed of the adoption of the CRISPR technol- 
ogy, as much as the rise of the CRISPR-related literature, 
is noteworthy. The speed of the work in this field has been 
invoked as a distinguishing feature, but perhaps the most 
striking aspect is the adoption and democratization of the 
technology itself, which is captured by the rise in the 
number of citations and publications, as well as Addgene 
shipments.1,2 
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Discussion 
Altogether, these results provide insights into the key fac- 
tors driving the evolution of CRISPR and illustrate how a 
diverse community of collaborative scientists is globally 
adopting this disruptive technology and implementing it 
in various organisms of interest across applications. 
This analysis illustrates how bibliometrics can identify 
key individuals, topics, and papers that dynamically 
shape a morphing research field and decipher rising 
trends impacting the historical trajectory of a field and 
untangle emerging applications. 

The data presented here provide strong support that 
this is a bona fide emerging technology as defined by 
key attributes.32 Indeed, all five defining elements of an 
emerging technology are met, with: (1) radical novelty, 
near-instant replacement of incumbent editing technolo- 
gies, with aggressive pursuit of IP and topic diversifica- 
tion; (2) fast growth, as documented by publications, 
citations, and Addgene distribution patterns; (3) coher- 
ence, supported by overlapping collaborative authorship 
networks, as well as interconnected topics derived from 
a common core; (4) prominent impact, with enthusiastic 
commercialization in several industries spanning medi- 
cine, agriculture, and biotechnology, as well as global 
adoption in academia and industry and the momentous 
2020 Nobel Prize in Chemistry for two selected CRISPR 
pioneers; and (5) uncertainty and ambiguity, as docu- 
mented by IP issues, discussions related to regulatory 
frameworks for, and societal implications of, the various 
applications of genome editing.32 Importantly, the evolu- 
tion of the topic map over the three aforementioned time 
periods further endorses the emerging technology attri- 
butes of genome editing. Indeed, predecessor topics cre- 
ated during the first time period established a scientific 
foundation for the field (coherence), with evolution 
over the next two time periods radically spearheading 
into various directions (radical novelty), with rapidly in- 
creasing number of descendant topics (fast growth), giv- 
ing rise to diverse research foci. 

The eclectic community diversity is noteworthy in 
terms of institutional affiliations, geographical location, 
and scientific topics of interest, which collaborations 
transcend, as illustrated by co-authorship patterns. Yet, 
the overall primary focus is mostly on human therapeutic 
applications, reflecting the tremendous potential of ge- 
nome editing implementation in the clinic, and the need 
to deploy CRISPR therapies for patients afflicted by ge- 
netic diseases. With Food and Drug Administration– 
enabled trials actively underway, confidence in regulatory 
agencies and progressing public engagement dialogues 
encompassing ethical, legal, and societal implications,33,34 
we anticipate the literature will continue to expand and 

hopefully document larger and broad clinical success in 
the near future, as well as fuel applications in agriculture 
and sustainability. 
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