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ABSTRACT

Deep Learning for Trajectory-Based Transportation Mode Identification

by

Christos Markos

Understanding users’ mobility patterns and associated transportation modes is

essential for intelligent transportation management and infrastructure design.

Through the ubiquity of Global Positioning System (GPS) sensors in modern

smartphones and vehicles, rich spatiotemporal trajectories can be readily cap-

tured for use in intelligent transportation applications. Key among the latter

is transportation mode identification, or how to infer travel modes within GPS

trajectories. Although studied extensively, its real-world applicability remains

limited due to several challenges.

GPS trajectories are often incomplete due to signal lapses, thereby compli-

cating subsequent analysis. Since learning from raw GPS data restricts model

generalization to the regions best covered in the training set, this thesis sets an

alternative imputation target: approximate missing GPS points by learning to

impute relative magnitude and angle of displacement features. The proposed

Uncertainty-aware Imputation Generative Adversarial Network (UI-GAN) lever-

ages a Bayesian generator to capture imputation uncertainty and a window-level

discriminator for localized sequence structure penalization. UI-GAN produces

high-fidelity GPS points and outperforms established imputation baselines.

A single GPS trajectory may encompass multiple transportation modes.

Existing trajectory segmentation approaches often exhibit poor scalability and

require extensive feature engineering or transportation domain knowledge. As

such, this thesis reframes trajectory segmentation as timestep-level transportation

mode identification. Concretely, it proposes a shuffling-based data augmentation



scheme and a majority-vote post-processing step to effectively train a convolu-

tional neural network for timestep-level classification and refine the extracted

segments. The proposed segmentation model is nearly twice as accurate as the

best performing baseline in detecting transportation mode changes.

In reality, GPS trajectories are neither automatically annotated nor seg-

mented by transportation mode. In addition, predictive uncertainty tied to model

parameters or noise in GPS readings is typically unaccounted for. Therefore, this

thesis proposes an unsupervised channel-calibrated Bayesian Temporal Convo-

lutional Network (BTCN) trained to maximize the mutual information between

neighboring feature map patches. By approximating variational inference, BTCN

can both classify each input timestep and estimate its predictive uncertainty.

BTCN significantly outperforms established trajectory segmentation baselines

without using any labels.

Finally, this thesis proposes an unsupervised deep learning approach to

transportation mode identification. First, a clustering layer maintaining clus-

ter centroids as trainable weights is attached to the embedding layer of a con-

volutional autoencoder. The composite model is then trained by optimizing

a weighted sum of reconstruction and clustering losses to encourage learning

clustering-friendly representations. By further incorporating segment-level fea-

tures, the proposed model outperforms traditional clustering and state-of-the-art

semi-supervised methods without using any labels.
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