

Deep Learning for Trajectory-Based Transportation Mode Identification

by Christos Markos

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Assoc. Prof. Richard Yi Da Xu

University of Technology Sydney Faculty of Engineering and Information Technology

August 2021

Certificate of Original Authorship

I, Christos Markos declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with the Southern University of Science and Technology.

This research is supported by the Australian Government Research Training Program.

> > Date: August 1st, 2021

ABSTRACT

Deep Learning for Trajectory-Based Transportation Mode Identification

by

Christos Markos

Understanding users' mobility patterns and associated transportation modes is essential for intelligent transportation management and infrastructure design. Through the ubiquity of Global Positioning System (GPS) sensors in modern smartphones and vehicles, rich spatiotemporal trajectories can be readily captured for use in intelligent transportation applications. Key among the latter is transportation mode identification, or how to infer travel modes within GPS trajectories. Although studied extensively, its real-world applicability remains limited due to several challenges.

GPS trajectories are often incomplete due to signal lapses, thereby complicating subsequent analysis. Since learning from raw GPS data restricts model generalization to the regions best covered in the training set, this thesis sets an alternative imputation target: approximate missing GPS points by learning to impute relative magnitude and angle of displacement features. The proposed Uncertainty-aware Imputation Generative Adversarial Network (UI-GAN) leverages a Bayesian generator to capture imputation uncertainty and a window-level discriminator for localized sequence structure penalization. UI-GAN produces high-fidelity GPS points and outperforms established imputation baselines.

A single GPS trajectory may encompass multiple transportation modes. Existing trajectory segmentation approaches often exhibit poor scalability and require extensive feature engineering or transportation domain knowledge. As such, this thesis reframes trajectory segmentation as timestep-level transportation mode identification. Concretely, it proposes a shuffling-based data augmentation scheme and a *majority-vote* post-processing step to effectively train a convolutional neural network for timestep-level classification and refine the extracted segments. The proposed segmentation model is nearly twice as accurate as the best performing baseline in detecting transportation mode changes.

In reality, GPS trajectories are neither automatically annotated nor segmented by transportation mode. In addition, predictive uncertainty tied to model parameters or noise in GPS readings is typically unaccounted for. Therefore, this thesis proposes an unsupervised channel-calibrated Bayesian Temporal Convolutional Network (BTCN) trained to maximize the mutual information between neighboring feature map patches. By approximating variational inference, BTCN can both classify each input timestep and estimate its predictive uncertainty. BTCN significantly outperforms established trajectory segmentation baselines without using any labels.

Finally, this thesis proposes an unsupervised deep learning approach to transportation mode identification. First, a clustering layer maintaining cluster centroids as trainable weights is attached to the embedding layer of a convolutional autoencoder. The composite model is then trained by optimizing a weighted sum of reconstruction and clustering losses to encourage learning clustering-friendly representations. By further incorporating segment-level features, the proposed model outperforms traditional clustering and state-of-the-art semi-supervised methods without using any labels.

Dedication

I dedicate this thesis to my wonderful parents Costas and Sophia, whose constant support, love, and encouragement saw me through the difficult times of this journey. I also dedicate my thesis to my grandfather, Christos, whose unwavering pride in me boosted my self-confidence and gave me the motivation to someday be the man he saw me as. Finally, I dedicate this work to my partner Danae and her mother Lucy, who were always there to both listen to my frustrations and celebrate my accomplishments.

Acknowledgements

I am sincerely grateful to my supervisors, Professor Richard Yi Da Xu and Professor James Jian Qiao Yu (Southern University of Science and Technology), whose endless support in challenging times and meticulous approach to research were an endless source of inspiration. The extent to which they influenced me as a researcher cannot be overstated.

In addition, I thank Dr. Jason Traish for his encouragement and thoughtprovoking feedback during our brainstorming meetings. I am also grateful to Wei Huang, Zayne Zhang, and Dr. Caoyuan Li for our weekend explorations of the Sydney sights. These trips have left me with countless wonderful memories and at the time provided me with much-needed energy for resuming work the next day. Last but not least, I thank Chenhan Zhang, Xiaozhuang Song, Yuanshao Zhu, and Dr. Shiyao Zhang for our excellent collaboration in producing high-quality publications.

List of Publications

Journal Papers

- J-1. C. Zhang, Y. Zhu, C. Markos, S. Yu, and J. J. Q. Yu, "Towards Crowdsourced Transportation Mode Identification: A Semi-supervised Federated Learning Approach," *IEEE Internet of Things Journal*. Under review.
- J-2. S. Zhang, C. Markos, and J. J. Q. Yu, "Autonomous Vehicle Intelligent System: Joint Ride-Sharing and Parcel Delivery Strategy," *IEEE Transactions* on Intelligent Transportation Systems. Under review.
- J-3. J. J. Q. Yu, C. Markos, and S. Zhang, "Long-Term Urban Traffic Speed Prediction with Deep Learning on Graphs," *IEEE Transactions on Intelli*gent Transportation Systems, in press.

Conference Papers

- C-1. Y. Zhu, C. Markos, and J. J. Q. Yu, "Improving Transportation Mode Identification with Limited GPS Trajectories," in *IEEE 24th International Conference on Intelligent Transportation Systems (ITSC)*, 2021. Under review.
- C-2. Y. Zhu, C. Markos, R. Zhao, Y. Zheng, and J. J. Q. Yu, "FedOVA: One-vs-All Training Method for Federated Learning with Non-IID Data," in 2021 International Joint Conference on Neural Networks (IJCNN), 2021.
- C-3. C. Markos, J. J. Q. Yu, and R. Y. D. Xu, "Capturing Uncertainty in Unsupervised GPS Trajectory Segmentation Using Bayesian Deep Learning,"

in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 35, no. 1, 2021, pp. 390–398.

- C-4. C. Markos and J. J. Q. Yu, "Unsupervised Deep Learning for GPS-Based Transportation Mode Identification," in *IEEE 23rd International Confer*ence on Intelligent Transportation Systems (ITSC), 2020.
- C-5. X. Song, C. Markos, and J. J. Q. Yu, "MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data," in *IEEE 23rd International Conference on Intelligent Transportation Systems* (ITSC), 2020.

Table of Contents

	Certificate of Original Authorship	i
	Abstract	iii
	Dedication	v
	Acknowledgements	vii
	List of Publications	ix
	List of Figures	xv
	List of Tables	xix
	Nomenclature	xxi
1	Introduction	1
	1.1 Motivation	1
	1.2 Research Questions	6
	1.3 Contributions	8
	1.4 Thesis Outline	10
2	Literature Review	11
	2.1 Trajectory Imputation	11
	2.1.1 Knowledge-Based Approaches	12
	2.1.2 Deep Learning Frameworks	13

	2.2	Transp	ortation Mode Segmentation	14
		2.2.1	Heuristics-Based Approaches	15
		2.2.2	Change Point Detection Methods	15
	2.3	Semant	tic Image Segmentation	17
		2.3.1	From Image-Level Classifiers to Fully Convolutional	
			Networks	17
		2.3.2	DeepLab Model and Variants	19
		2.3.3	Optimizing Computational Requirements	21
	2.4	Transp	ortation Mode Identification	22
		2.4.1	Supervised Machine Learning Approaches	22
		2.4.2	Supervised Deep Learning Methods	24
		2.4.3	Semi-Supervised and Unsupervised Deep Learning	
			Frameworks	26
	2.5	Deep C	Clustering	29
		2.5.1	Autoencoder-Based Approaches	29
		2.5.2	Traditional Clustering on Pretrained Network Outputs	31
		2.5.3	Generative Modelling	32
		2.5.4	Mutual Information Maximization	32
	2.6	Conclu	sions	33
3	Un	certaiı	nty-Aware Generative Trajectory Imputation	35
	3.1	Prelim	inaries	36
		3.1.1	Incomplete GPS Trajectory Reconstruction via Motion	
			Feature Imputation	36
		3.1.2	Predictive Uncertainty Quantification for Bayesian Neural	
			Networks	37

	3.2	Propos	ed Framework	38
		3.2.1	Missingness-Gated Temporal Convolutions	40
		3.2.2	Bayesian Generator	41
		3.2.3	Window-level Discriminator	44
	3.3	Experi	ments	45
		3.3.1	Dataset and Simulation Setup	45
		3.3.2	Results	49
	3.4	Summa	ary	53
4	Suj	pervise	ed Trajectory Segmentation by Transportation Mod	e 55
	4.1	Proble	m Formulation	56
	4.2	Propos	ed Framework	57
		4.2.1	Data Preprocessing	57
		4.2.2	Trajectory Segmentation Model	59
	4.3	Experi	ments	64
		4.3.1	Dataset and Simulation Setup	64
		4.3.2	Results	69
	4.4	Summa	ary	73
5	Ba	yesian	Unsupervised Trajectory Segmentation	75
	5.1	Bayesia	an Deep Learning	76
	5.2	Propos	ed Framework	77
		5.2.1	Bayesian Temporal Convolutional Network	79
		5.2.2	Segmentation Objective Function	82
	5.3	Experi	ments	83
		5.3.1	Dataset and Simulation Setup	83

	5.3.2	Results	 •		 •	•		•		•	•		•	•	•		87
5.4	Summa	ry	 •		 •	•	•	•			•		•	•			90

6 Unsupervised Trajectory Transportation Mode Identifica-

	tio	n		93
	6.1	Problem	n Formulation	94
	6.2	Propos	ed Framework	95
		6.2.1	Convolutional Autoencoder	95
		6.2.2	Clustering Layer	97
		6.2.3	Composite Clustering Model	98
		6.2.4	Global Features	100
	6.3	Experi	ments	101
		6.3.1	Dataset and Simulation Setup	101
		6.3.2	Results	105
	6.4	Summa	ary	109
7	Co	nclusio	on and Future Work	111
	Bił	oliogra	phy	115

List of Figures

1.1	GPS trajectory segmentation aims to extract	
	single-transportation-mode segments from sequences of GPS points.	3
2.1	Illustration of the transportation mode segmentation algorithm	
	based on change point detection proposed by Zheng $et al.$ [1].	
	Trajectories are split into $walk$ and $non-walk$ segments based on	
	velocity and acceleration thresholds	16
2.2	The architecture of U-Time [2], a recent U-net variant proposed	
	for sleep staging.	18
2.3	The SECA architecture [3] jointly trains a convolutional	
	autoencoder and a CNN classifier	26
2.4	The DeepCluster architecture [4] iterates between clustering and	
	leveraging cluster assignments as pseudo-labels to train the model.	31
3.1	Missing (transparent) GPS points are estimated from observed	
	(opaque) or previously recovered ones after imputing relative	
	distance d and angle b between initial direction and true north	36
3.2	Overview of the proposed UI-GAN. Dashed arrows indicate	
	gradient flow, while operations in red only occur at test time	39

3.3	(a) The generator's MGTConv block applies dilated 1D	
	convolutions to capture high-resolution temporal information	
	without need for downsampling. Always-on dropout is used to	
	approximate variational inference via MC dropout sampling. (b)	
	In the discriminator's MGTConv block, strided convolutions	
	downsample the input and enlarge D 's receptive field	42
3.4	MAE when only imputing motion feature timesteps that exceed	
	confidence thresholds (left). Sensitivity of MAE to number of MC	
	Samples S (right). In both cases, 40% of observed GPS points	
	have been purposefully discarded	51
3.5	Examples of incomplete trajectories imputed by UI-GAN.	
	Observed, dropped, and estimated GPS points are in black, green,	
	and red. Note that UI-GAN uses no underlying map information.	52
4.1	The proposed trajectory segmentation model is built by stacking	
	five encoder and five decoder blocks. At the i -th encoder block,	
	convolutions use an exponential dilation rate of 2^i to increase the	
	network's receptive field as the input dimensionality is	
	downsampled. This information is passed to the decoder side via	
	skip connections and merged with the upsampled feature maps.	
	The output of the last decoder block is fed to a standard	
	softmax-activated convolution layer with K filters of unit length	61
4.2	Sensitivity of the proposed segmentation model's MAE, PR, and	
	mIoU to a wide range of post-processing window widths W .	
	Lower MAE, $PR \approx 1$, and higher mIoU values are better	72

5.1	Overview of the proposed trajectory segmentation framework. At	
	test time, GPS trajectories are preprocessed into sequences of	
	motion features and repeatedly fed to the proposed BTCN while	
	dropout remains activated. The mean of these aggregated	
	softmax probabilities is taken as the final predictions, while their	
	variance is used to quantify predictive uncertainty	78
5.2	The main components of the proposed BTCN. Temporal residual	
	blocks leverage dilated 1D convolutions to capture high-resolution	
	temporal information without need for downsampling. Always-on	
	dropout layers are inserted to approximate variational inference	
	via MC dropout sampling. The feature maps produced by each	
	temporal residual block are subsequently recalibrated via an SE	
	block	80
5.3	Global and per-class accuracy of BTCN when only classifying	
	timesteps that exceed confidence thresholds	91
6.1	Overview of the proposed deep clustering model. We connect the	
	embedding layer of a CAE to a custom clustering layer that holds	
	trainable weights corresponding to cluster centroids. These are	
	learned jointly with the parameters of the CAE following	
	pretraining	98
6.2	Illustration of the clusters identified by the proposed clustering	
	model when using timestep-level $(local)$, segment-level $(global)$,	
	and all motion features. Samples plotted in green, red, orange,	
	magenta, and blue correspond to bike, walk, car, train and bus	
	classes	106

List of Tables

3.1	Imputation results (MAE, lower is better) for percentages of	•
	artificially dropped GPS points	50
4.1	Trajectory segmentation evaluation results in terms of MAE, PR,	
	and mIoU. Lower MAE, $\mathrm{PR}\approx 1,$ and higher mIoU values are better.	69
4.2	Segmentation model ablation results in terms of MAE, PR, and	
	mIoU	71
5.1	GPS trajectory segmentation evaluation results. Where	
	applicable, accuracies are reported for each class, with ACC	
	denoting global accuracy. Higher ACC, lower MAE, and PR ≈ 1	
	is better. Training time is in minutes	87
5.2	Performance and uncertainty metrics for BTCN over number of	
	Monte Carlo samples	89
6.1	Clustering evaluation results in terms of ACC and NMI (higher	
	values are better)	105
6.2	Comparison of the proposed unsupervised approach (using all	
	features) with competitive semi-supervised baselines	106
6.3	Sensitivity of accuracy to clustering loss strength γ	108
6.4	Accuracy versus target distribution update frequency ϕ	108

Nomenclature

Acronyms / Abbreviations

ACC	Accuracy
AUC	Area Under Curve
CAE	Convolutional AutoEncoder
CNN	Convolutional Neural Network
FCN	Fully Convolutional Network
GAN	Generative Adversarial Network
GIS	Geographic Information System
GMM	Gaussian Mixture Model
GPS	Global Positioning System
HAC	Hierarchical Agglomerative Clustering
ITS	Intelligent Transportation System
KL	Kullback-Leibler
KM	k-Means
<i>k</i> -NN	k-Nearest Neighbors
LSTM	Long Short-Term Memory
MAE	Mean Absolute Error
MC	Monte Carlo
MF	Matrix Factorization
MICE	Multiple Imputation using Chained Equations
mIoU	mean Intersection over Union
MLP	MultiLayer Perceptron

NMI	Normalized Mutual Information
\mathbf{PR}	Prediction Ratio
ReLU	Rectified Linear Unit
RF	Random Forest
RNN	Recurrent Neural Network
SAE	Stacked AutoEncoder
\mathbf{SC}	Spectral Clustering
SVM	Support Vector Machine
TCN	Temporal Convolutional Network
VAE	Variational AutoEncoder

Notation

Lowercase non-bold characters denote scalar quantities (e.g., x, λ); uppercase non-bold characters denote constant scalars (e.g., M, N, K); lowercase bold characters denote vectors (e.g., \mathbf{x}); uppercase bold characters denote matrices (e.g., \mathbf{X}); uppercase bold Euler characters denote tensors (e.g., \mathbf{X}). We let \mathbf{x}_i denote the *i*-th element of vector \mathbf{x} . Instead, $\mathbf{X}_{i,:}$ denotes the *i*-th row of matrix \mathbf{X} , while $\mathbf{X}_{i,j}$ denotes the element at row *i*, column *j*. We use $\mathbf{X} \odot \mathbf{Y}$ to denote the Hadamard or element-wise product between matrices \mathbf{X} and \mathbf{Y} . We denote the transpose operation on matrix \mathbf{X} as \mathbf{X}^{T} . Finally, we use \mathbb{R} and \mathbb{Z}^+ to denote the sets of real numbers and positive integers, respectively.