

Deep Learning for Trajectory-Based
Transportation Mode Identification

by Christos Markos

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Assoc. Prof. Richard Yi Da Xu

University of Technology Sydney
Faculty of Engineering and Information Technology

August 2021

Certificate of Original Authorship

I, Christos Markos declare that this thesis, is submitted in fulfilment of the re-

quirements for the award of Doctor of Philosophy in the School of Electrical and

Data Engineering, Faculty of Engineering and Information Technology at the

University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis. I certify that the work in this thesis has not previously been

submitted for a degree nor has it been submitted as part of the requirements for

a degree at any other academic institution except as fully acknowledged within

the text. This thesis is the result of a Collaborative Doctoral Research Degree

program with the Southern University of Science and Technology.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature:

Date: August 1st, 2021

Production Note:

Signature removed prior to publication.

ABSTRACT

Deep Learning for Trajectory-Based Transportation Mode Identification

by

Christos Markos

Understanding users’ mobility patterns and associated transportation modes is

essential for intelligent transportation management and infrastructure design.

Through the ubiquity of Global Positioning System (GPS) sensors in modern

smartphones and vehicles, rich spatiotemporal trajectories can be readily cap-

tured for use in intelligent transportation applications. Key among the latter

is transportation mode identification, or how to infer travel modes within GPS

trajectories. Although studied extensively, its real-world applicability remains

limited due to several challenges.

GPS trajectories are often incomplete due to signal lapses, thereby compli-

cating subsequent analysis. Since learning from raw GPS data restricts model

generalization to the regions best covered in the training set, this thesis sets an

alternative imputation target: approximate missing GPS points by learning to

impute relative magnitude and angle of displacement features. The proposed

Uncertainty-aware Imputation Generative Adversarial Network (UI-GAN) lever-

ages a Bayesian generator to capture imputation uncertainty and a window-level

discriminator for localized sequence structure penalization. UI-GAN produces

high-fidelity GPS points and outperforms established imputation baselines.

A single GPS trajectory may encompass multiple transportation modes.

Existing trajectory segmentation approaches often exhibit poor scalability and

require extensive feature engineering or transportation domain knowledge. As

such, this thesis reframes trajectory segmentation as timestep-level transportation

mode identification. Concretely, it proposes a shuffling-based data augmentation

scheme and a majority-vote post-processing step to effectively train a convolu-

tional neural network for timestep-level classification and refine the extracted

segments. The proposed segmentation model is nearly twice as accurate as the

best performing baseline in detecting transportation mode changes.

In reality, GPS trajectories are neither automatically annotated nor seg-

mented by transportation mode. In addition, predictive uncertainty tied to model

parameters or noise in GPS readings is typically unaccounted for. Therefore, this

thesis proposes an unsupervised channel-calibrated Bayesian Temporal Convo-

lutional Network (BTCN) trained to maximize the mutual information between

neighboring feature map patches. By approximating variational inference, BTCN

can both classify each input timestep and estimate its predictive uncertainty.

BTCN significantly outperforms established trajectory segmentation baselines

without using any labels.

Finally, this thesis proposes an unsupervised deep learning approach to

transportation mode identification. First, a clustering layer maintaining clus-

ter centroids as trainable weights is attached to the embedding layer of a con-

volutional autoencoder. The composite model is then trained by optimizing

a weighted sum of reconstruction and clustering losses to encourage learning

clustering-friendly representations. By further incorporating segment-level fea-

tures, the proposed model outperforms traditional clustering and state-of-the-art

semi-supervised methods without using any labels.

Dedication

I dedicate this thesis to my wonderful parents Costas and Sophia, whose constant

support, love, and encouragement saw me through the difficult times of this

journey. I also dedicate my thesis to my grandfather, Christos, whose unwavering

pride in me boosted my self-confidence and gave me the motivation to someday

be the man he saw me as. Finally, I dedicate this work to my partner Danae and

her mother Lucy, who were always there to both listen to my frustrations and

celebrate my accomplishments.

Acknowledgements

I am sincerely grateful to my supervisors, Professor Richard Yi Da Xu and Profes-

sor James Jian Qiao Yu (Southern University of Science and Technology), whose

endless support in challenging times and meticulous approach to research were

an endless source of inspiration. The extent to which they influenced me as a

researcher cannot be overstated.

In addition, I thank Dr. Jason Traish for his encouragement and thought-

provoking feedback during our brainstorming meetings. I am also grateful to Wei

Huang, Zayne Zhang, and Dr. Caoyuan Li for our weekend explorations of the

Sydney sights. These trips have left me with countless wonderful memories and at

the time provided me with much-needed energy for resuming work the next day.

Last but not least, I thank Chenhan Zhang, Xiaozhuang Song, Yuanshao Zhu,

and Dr. Shiyao Zhang for our excellent collaboration in producing high-quality

publications.

List of Publications

Journal Papers

J-1. C. Zhang, Y. Zhu, C. Markos, S. Yu, and J. J. Q. Yu, “Towards Crowd-

sourced Transportation Mode Identification: A Semi-supervised Federated

Learning Approach,” IEEE Internet of Things Journal. Under review.

J-2. S. Zhang, C. Markos, and J. J. Q. Yu, “Autonomous Vehicle Intelligent Sys-

tem: Joint Ride-Sharing and Parcel Delivery Strategy,” IEEE Transactions

on Intelligent Transportation Systems. Under review.

J-3. J. J. Q. Yu, C. Markos, and S. Zhang, “Long-Term Urban Traffic Speed

Prediction with Deep Learning on Graphs,” IEEE Transactions on Intelli-

gent Transportation Systems, in press.

Conference Papers

C-1. Y. Zhu, C. Markos, and J. J. Q. Yu, “Improving Transportation Mode

Identification with Limited GPS Trajectories,” in IEEE 24th International

Conference on Intelligent Transportation Systems (ITSC), 2021. Under

review.

C-2. Y. Zhu, C. Markos, R. Zhao, Y. Zheng, and J. J. Q. Yu, “FedOVA: One-vs-

All Training Method for Federated Learning with Non-IID Data,” in 2021

International Joint Conference on Neural Networks (IJCNN), 2021.

C-3. C. Markos, J. J. Q. Yu, and R. Y. D. Xu, “Capturing Uncertainty in Un-

supervised GPS Trajectory Segmentation Using Bayesian Deep Learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),

vol. 35, no. 1, 2021, pp. 390–398.

C-4. C. Markos and J. J. Q. Yu, “Unsupervised Deep Learning for GPS-Based

Transportation Mode Identification,” in IEEE 23rd International Confer-

ence on Intelligent Transportation Systems (ITSC), 2020.

C-5. X. Song, C. Markos, and J. J. Q. Yu, “MultiMix: A Multi-Task Deep

Learning Approach for Travel Mode Identification with Few GPS Data,” in

IEEE 23rd International Conference on Intelligent Transportation Systems

(ITSC), 2020.

Table of Contents

Certificate of Original Authorship i

Abstract iii

Dedication v

Acknowledgements vii

List of Publications ix

List of Figures xv

List of Tables xix

Nomenclature xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 6

1.3 Contributions . 8

1.4 Thesis Outline . 10

2 Literature Review 11

2.1 Trajectory Imputation . 11

2.1.1 Knowledge-Based Approaches 12

2.1.2 Deep Learning Frameworks 13

Table of Contents xii

2.2 Transportation Mode Segmentation 14

2.2.1 Heuristics-Based Approaches 15

2.2.2 Change Point Detection Methods 15

2.3 Semantic Image Segmentation . 17

2.3.1 From Image-Level Classifiers to Fully Convolutional

Networks . 17

2.3.2 DeepLab Model and Variants 19

2.3.3 Optimizing Computational Requirements 21

2.4 Transportation Mode Identification 22

2.4.1 Supervised Machine Learning Approaches 22

2.4.2 Supervised Deep Learning Methods 24

2.4.3 Semi-Supervised and Unsupervised Deep Learning

Frameworks . 26

2.5 Deep Clustering . 29

2.5.1 Autoencoder-Based Approaches 29

2.5.2 Traditional Clustering on Pretrained Network Outputs . . 31

2.5.3 Generative Modelling . 32

2.5.4 Mutual Information Maximization 32

2.6 Conclusions . 33

3 Uncertainty-Aware Generative Trajectory Imputation 35

3.1 Preliminaries . 36

3.1.1 Incomplete GPS Trajectory Reconstruction via Motion

Feature Imputation . 36

3.1.2 Predictive Uncertainty Quantification for Bayesian Neural

Networks . 37

xiii Table of Contents

3.2 Proposed Framework . 38

3.2.1 Missingness-Gated Temporal Convolutions 40

3.2.2 Bayesian Generator . 41

3.2.3 Window-level Discriminator 44

3.3 Experiments . 45

3.3.1 Dataset and Simulation Setup 45

3.3.2 Results . 49

3.4 Summary . 53

4 Supervised Trajectory Segmentation by Transportation Mode 55

4.1 Problem Formulation . 56

4.2 Proposed Framework . 57

4.2.1 Data Preprocessing . 57

4.2.2 Trajectory Segmentation Model 59

4.3 Experiments . 64

4.3.1 Dataset and Simulation Setup 64

4.3.2 Results . 69

4.4 Summary . 73

5 Bayesian Unsupervised Trajectory Segmentation 75

5.1 Bayesian Deep Learning . 76

5.2 Proposed Framework . 77

5.2.1 Bayesian Temporal Convolutional Network 79

5.2.2 Segmentation Objective Function 82

5.3 Experiments . 83

5.3.1 Dataset and Simulation Setup 83

Table of Contents xiv

5.3.2 Results . 87

5.4 Summary . 90

6 Unsupervised Trajectory Transportation Mode Identifica-

tion 93

6.1 Problem Formulation . 94

6.2 Proposed Framework . 95

6.2.1 Convolutional Autoencoder 95

6.2.2 Clustering Layer . 97

6.2.3 Composite Clustering Model 98

6.2.4 Global Features . 100

6.3 Experiments . 101

6.3.1 Dataset and Simulation Setup 101

6.3.2 Results . 105

6.4 Summary . 109

7 Conclusion and Future Work 111

Bibliography 115

List of Figures

1.1 GPS trajectory segmentation aims to extract

single-transportation-mode segments from sequences of GPS points. 3

2.1 Illustration of the transportation mode segmentation algorithm

based on change point detection proposed by Zheng et al. [1].

Trajectories are split into walk and non-walk segments based on

velocity and acceleration thresholds. 16

2.2 The architecture of U-Time [2], a recent U-net variant proposed

for sleep staging. 18

2.3 The SECA architecture [3] jointly trains a convolutional

autoencoder and a CNN classifier. 26

2.4 The DeepCluster architecture [4] iterates between clustering and

leveraging cluster assignments as pseudo-labels to train the model. 31

3.1 Missing (transparent) GPS points are estimated from observed

(opaque) or previously recovered ones after imputing relative

distance d and angle b between initial direction and true north. . . 36

3.2 Overview of the proposed UI-GAN. Dashed arrows indicate

gradient flow, while operations in red only occur at test time. . . . 39

List of Figures xvi

3.3 (a) The generator’s MGTConv block applies dilated 1D

convolutions to capture high-resolution temporal information

without need for downsampling. Always-on dropout is used to

approximate variational inference via MC dropout sampling. (b)

In the discriminator’s MGTConv block, strided convolutions

downsample the input and enlarge D’s receptive field. 42

3.4 MAE when only imputing motion feature timesteps that exceed

confidence thresholds (left). Sensitivity of MAE to number of MC

Samples S (right). In both cases, 40% of observed GPS points

have been purposefully discarded. 51

3.5 Examples of incomplete trajectories imputed by UI-GAN.

Observed, dropped, and estimated GPS points are in black, green,

and red. Note that UI-GAN uses no underlying map information. 52

4.1 The proposed trajectory segmentation model is built by stacking

five encoder and five decoder blocks. At the i-th encoder block,

convolutions use an exponential dilation rate of 2i to increase the

network’s receptive field as the input dimensionality is

downsampled. This information is passed to the decoder side via

skip connections and merged with the upsampled feature maps.

The output of the last decoder block is fed to a standard

softmax-activated convolution layer with K filters of unit length. . 61

4.2 Sensitivity of the proposed segmentation model’s MAE, PR, and

mIoU to a wide range of post-processing window widths W .

Lower MAE, PR ≈ 1, and higher mIoU values are better. 72

xvii List of Figures

5.1 Overview of the proposed trajectory segmentation framework. At

test time, GPS trajectories are preprocessed into sequences of

motion features and repeatedly fed to the proposed BTCN while

dropout remains activated. The mean of these aggregated

softmax probabilities is taken as the final predictions, while their

variance is used to quantify predictive uncertainty. 78

5.2 The main components of the proposed BTCN. Temporal residual

blocks leverage dilated 1D convolutions to capture high-resolution

temporal information without need for downsampling. Always-on

dropout layers are inserted to approximate variational inference

via MC dropout sampling. The feature maps produced by each

temporal residual block are subsequently recalibrated via an SE

block. 80

5.3 Global and per-class accuracy of BTCN when only classifying

timesteps that exceed confidence thresholds. 91

6.1 Overview of the proposed deep clustering model. We connect the

embedding layer of a CAE to a custom clustering layer that holds

trainable weights corresponding to cluster centroids. These are

learned jointly with the parameters of the CAE following

pretraining. 98

6.2 Illustration of the clusters identified by the proposed clustering

model when using timestep-level (local), segment-level (global),

and all motion features. Samples plotted in green, red, orange,

magenta, and blue correspond to bike, walk, car, train and bus

classes. 106

List of Tables

3.1 Imputation results (MAE, lower is better) for percentages of

artificially dropped GPS points. 50

4.1 Trajectory segmentation evaluation results in terms of MAE, PR,

and mIoU. Lower MAE, PR ≈ 1, and higher mIoU values are better. 69

4.2 Segmentation model ablation results in terms of MAE, PR, and

mIoU. 71

5.1 GPS trajectory segmentation evaluation results. Where

applicable, accuracies are reported for each class, with ACC

denoting global accuracy. Higher ACC, lower MAE, and PR ≈ 1

is better. Training time is in minutes. 87

5.2 Performance and uncertainty metrics for BTCN over number of

Monte Carlo samples. 89

6.1 Clustering evaluation results in terms of ACC and NMI (higher

values are better). 105

6.2 Comparison of the proposed unsupervised approach (using all

features) with competitive semi-supervised baselines. 106

6.3 Sensitivity of accuracy to clustering loss strength γ. 108

6.4 Accuracy versus target distribution update frequency φ. 108

Nomenclature

Acronyms / Abbreviations

ACC Accuracy

AUC Area Under Curve

CAE Convolutional AutoEncoder

CNN Convolutional Neural Network

FCN Fully Convolutional Network

GAN Generative Adversarial Network

GIS Geographic Information System

GMM Gaussian Mixture Model

GPS Global Positioning System

HAC Hierarchical Agglomerative Clustering

ITS Intelligent Transportation System

KL Kullback-Leibler

KM k-Means

k-NN k-Nearest Neighbors

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MC Monte Carlo

MF Matrix Factorization

MICE Multiple Imputation using Chained Equations

mIoU mean Intersection over Union

MLP MultiLayer Perceptron

Nomenclature xxii

NMI Normalized Mutual Information

PR Prediction Ratio

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

SAE Stacked AutoEncoder

SC Spectral Clustering

SVM Support Vector Machine

TCN Temporal Convolutional Network

VAE Variational AutoEncoder

Notation

Lowercase non-bold characters denote scalar quantities (e.g., x, λ); uppercase

non-bold characters denote constant scalars (e.g., M , N , K); lowercase bold

characters denote vectors (e.g., x); uppercase bold characters denote matrices

(e.g., X); uppercase bold Euler characters denote tensors (e.g., X). We let xi

denote the i-th element of vector x. Instead, Xi,: denotes the i-th row of matrix

X, while Xi,j denotes the element at row i, column j. We use X�Y to denote

the Hadamard or element-wise product between matrices X and Y. We denote

the transpose operation on matrix X as XT. Finally, we use R and Z+ to denote

the sets of real numbers and positive integers, respectively.

Chapter 1

Introduction

1.1 Motivation

Transportation mode identification is the problem of associating segments of users’

mobility traces to transportation modes. Location-based services can leverage

such knowledge to generate highly accurate, personalized suggestions that are

tied not only to an individual’s real-time location but also their current trans-

portation mode [5]. Examples include electronic billboard advertisements or de-

parture notifications and route recommendations so that users users may reach

their destination in a timely manner [5]. For Intelligent Transportation Systems

(ITSs) aiming to improve traffic management, transportation mode identifica-

tion is critical for operations such as public transportation scheduling and travel

demand analysis [6].

The effectiveness of transportation mode identification methods depends on

the collection and analysis of massive mobility data from fixed-point or mobile

sensors. The presence of Global Positioning System (GPS) sensors in most mod-

ern smartphones and wearable devices, capturing temporally ordered sequences

of geographic coordinates while staying in constant user proximity, provides con-

Introduction 2

siderably wider path coverage compared to standard fixed-point sensors. Never-

theless, the real-world applicability of transportation mode identification based

on GPS data remains limited due to a number of open problems.

A significant challenge is that GPS trajectories may be incomplete, as signal

interruption often occurs in urban areas due to tall buildings, bridges, tunnels, or

extreme weather,∗ resulting in missing GPS data. Training models on incomplete

trajectories introduces ambiguity into the learning process that may significantly

impede not only transportation mode identification, but also other downstream

applications such as destination prediction and travel time estimation. Yet most

such works have neither investigated the effects of missing GPS data on their mod-

els’ reliability and predictive performance nor attempted to impute them. In this

direction, GPS trajectory imputation aims to estimate missing GPS points within

trajectories. The seminal work of Zheng et al. [7] imputes sparsely-sampled tra-

jectories by combining historical data and map-matching. Banerjee et al. [8]

train a higher-order Markov model on trajectories represented as edge-weighted

graphs, with each weight holding the probability of traveling across its corre-

sponding road segment. To alleviate the need for underlying map information, Li

et al. [9] instead build a junction network from aggregated trajectories and fill in

GPS points based on its topology. However, all three approaches are by definition

only applicable to geographic areas sufficiently covered in the training set. More

recently, Wang et al. [10] augment GPS data with curvature information obtained

via high-order polynomial fitting and train a Recurrent Neural Network (RNN)

to reconstruct simulated missing points with a focus on preserving the trajecto-

ries’ overall geometry. Nonetheless, this method requires complete trajectories at

training time.

While it is possible to impute trajectories using traditional machine learn-

∗https://www.gps.gov/systems/gps/performance/accuracy/

3 1.1 Motivation

Figure 1.1 : GPS trajectory segmentation aims to extract single-transportation-

mode segments from sequences of GPS points.

ing methods such as k-Nearest Neighbors (KNN) [11], Matrix Factorization (MF)

[12]. Multiple Imputation using Chained Equations (MICE) [13], or missForest

[14], these methods were designed with tabular rather than sequential data in

mind. Recent work in general time series imputation has reported better re-

sults leveraging RNNs to model long-term temporal dependencies [15, 16]; how-

ever, both GRU-D [15] and BRITS [16] are trained jointly with a supervised

downstream task, limiting their generality and potentially biasing the learned

imputation. Another line of work has successfully adapted Generative Adver-

sarial Networks (GANs) [17] for both general [18, 19] and time-series-specific

[20, 21, 22] imputation. For instance, NAOMI [22] uses a non-autoregressive ad-

versarial framework to recursively estimate missing time series values from coarse

to fine-grained resolutions. Nonetheless, it cannot handle originally incomplete

data such as GPS trajectories.

Another challenge is that users’ trajectories are not automatically seg-

mented by transportation mode, as required for transportation mode identifi-

cation. The challenging problem of GPS trajectory segmentation (Figure 1.1), or

how to split GPS trajectories into segments involving exactly one transportation

Introduction 4

mode, is usually avoided by leveraging the transportation mode labels available

during data preprocessing. Following the naive approach of simply extracting

consecutive nonoverlapping trajectory segments of uniform length [23], duration,

or distance, there may be multiple transportation modes in many of the obtained

segments. Even by mapping these segments to their dominant transportation

mode, one would be injecting the data with additional noise, potentially impact-

ing the performance of transportation mode classifiers. In this direction, the

literature has mostly sought to detect transportation mode change points within

GPS trajectories by leveraging mobility-based heuristics [1, 24, 25, 26, 27], and

more recently, optimization-based algorithms [3]. However, such approaches often

exhibit poor scalability, require extensive feature engineering or transportation

domain knowledge, and assume independent and identically distributed samples,

respectively.

In response to this issue, we note the merit of deep semantic segmentation

approaches commonly used in computer vision applications. Semantic image

segmentation classifies images at pixel-level, allowing for fine-grained detection of

object boundaries. Earlier work [28, 29] repurposes image-level-pretrained CNN

classifiers for semantic segmentation by replacing their fully connected layers with

convolutions, introducing in-network upsampling, adding skip connections from

shallow to deep layers [29], and optimizing a pixel-level loss. Several studies

have since leveraged these Fully Convolutional Networks (FCNs) as a backbone

for developing context aggregation modules [30, 31] to recover the downsampled

spatial information, often including dilated convolutions in cascades [30] or in

parallel [31]. Other architectural adaptations include adding a simple decoder [32]

or a symmetric succession of convolutions and upsampling layers with encoder-

decoder skip connections [33]. More recently, deep semantic segmentation has

been successfully applied to time series data, with U-Time [2] modifying the

5 1.1 Motivation

architecture in reference [33] for sleep staging segmentation.

Because raw geographic coordinates are ill-suited for direct processing by

machine learning models, GPS trajectories are typically preprocessed into se-

quences of relative distance, velocity, acceleration, and other motion features.

Earlier work in transportation mode identification, i.e., classification of single-

transportation-mode segments, has leveraged decision trees [1, 34] or random

forests [35], support vector machines [36], and Bayesian networks [26], to name

a few. Not only are such models suboptimal for learning from large amounts of

data, but also motion features like velocity and accelerations are often noisy due

to missing data, positioning errors, and traffic conditions [1]. With deep learn-

ing models recently attaining state-of-the-art results in challenging applications

of computer vision [37, 38, 39] and natural language processing [40, 41], they

have similarly attracted growing interest in transportation research. Several re-

searchers have designed transportation mode identification frameworks based on

multilayer perceptrons [42] and recurrent [43, 44, 45] or convolutional neural net-

works [3, 46]. Nonetheless, the problem of how to perform either transportation

mode segmentation or identification from entirely unlabeled GPS data has not

yet been addressed. This is crucial for real-world applications, given that user

movement captured by GPS sensors does not contain any information on the

corresponding transportation modes. In addition, users often hesitate to label

their trajectories by transportation mode due to lack of motivation or privacy

concerns, with the former being exacerbated by the difficulty of accurate and

consistent annotation of such voluminous data.

In this direction, recent work in unsupervised learning has proposed several

deep clustering methods. Some approaches optimize image-to-image distance in

a lower-dimensional space typically learned via unsupervised autoencoder pre-

training, by applying k-Means clustering [47] or attaching custom clustering lay-

Introduction 6

ers [48, 49] and minimizing an associated loss. DeepCluster by Caron et al. [4]

instead leverages a CNN pretrained on different datasets by iteratively applying

k-Means clustering to the network’s outputs, setting the cluster memberships as

pseudo-ground-truth labels, and using them to update the network parameters. It

is also possible to leverage denoising [50] or variational [51] autoencoders, as well

as GANs [52]. Another body of research instead clusters data based on mutual

information between pairs of samples typically generated via data augmentation,

or between samples and their latent representations [53, 54, 55]. For instance, Hu

et al. [53] train neural networks to produce similar outputs for input samples and

their augmented versions, while also maximizing the mutual information between

the original samples and their learned representations. Even though these deep

clustering frameworks designed for image and text data have attained encour-

aging results, to the best of our knowledge, there is no evidence regarding their

suitability for GPS trajectory data.

1.2 Research Questions

This section develops the Research Questions (RQs) that both motivated and

guided the undertaking of this thesis. Initially resulting from our literature review

presented in Chapter 2, our RQs were subsequently revised according to novel

challenges discovered in the process of addressing them. To demonstrate the value

of pursuing each RQ, we briefly explain the research gap it aims to fill within the

existing literature.

RQ1: How to impute missing GPS points within densely-sampled tra-

jectories using deep learning? Signal lapses often render users’ GPS trajecto-

ries incomplete, thereby complicating subsequent analysis. This directly affects

transportation mode identification, which is typically performed on sequences of

motion features such as relative distance and bearing, extracted from consecutive

7 1.2 Research Questions

pairs of GPS points. When GPS points are missing, such features are inevitably

computed with arbitrary estimation errors, thereby inserting noise to the data.

Existing approaches rely on the availability of historical data and underlying map

information [7, 8, 9], or require complete trajectories at training time [10]. RQ1

is addressed in Chapter 3.

RQ2: How to divide GPS trajectories that are pointwise labeled by trans-

portation mode into single-transportation-mode segments using deep learn-

ing? Transportation mode identification is typically applied to GPS trajectory

segments involving exactly one transportation mode. To split GPS trajecto-

ries into such segments, the literature has mainly used mobility-based heuris-

tics [1, 24, 25, 26, 27] and optimization-based change point detection algorithms

[3]. Nonetheless, such approaches demand extensive feature engineering or trans-

portation domain knowledge and make the strong assumption of independent and

identically distributed samples, respectively. RQ2 is addressed in Chapter 4.

RQ3: How to split unlabeled GPS trajectories into single-transportation-

mode segments using deep learning? Users’ trajectories are generally not labeled

by transportation mode due to the considerable effort required to accurately and

consistently annotate such data, in addition to privacy concerns. Consequently,

real-world applicability demands that trajectory segmentation models such as

the one resulting from RQ2 be able to operate on trajectories not labeled by

transportation mode. RQ3 is addressed in Chapter 5.

RQ4: How can unlabeled, single-transportation-mode GPS trajectory

segments be clustered by mode of transportation using deep learning? To date,

deep-learning-based approaches to GPS-based transportation mode identification

[56, 23, 46, 44, 57] have largely relied on the availability of labeled data for super-

vised learning. Recent work [58, 3, 45] has partially addressed this problem by

Introduction 8

combining large amounts of unlabeled GPS data with relatively few labeled data

in semi-supervised learning. However, these works have demonstrated varying

degrees of success depending on the percentage of labeled data used during train-

ing, with results suggesting room for improvement especially when using very few

labeled data [3]. In the absence of labels, researchers typically turn to cluster-

ing methods; nonetheless, clustering trajectory segments by transportation mode

is non-trivial since traditional clustering methods tend to underperform when

applied to high-dimensional data [49]. RQ4 is addressed in Chapter 6.

1.3 Contributions

Motivated by the research gaps identified in Section 1.1 and formalized as research

questions in Section 1.2, this thesis explores novel deep learning approaches for

GPS-based trajectory imputation, segmentation, and identification of transporta-

tion modes. Concretely, this thesis makes the following contributions:

1. A framework for imputing incomplete GPS trajectories based on unsuper-

vised deep learning. Rather than operate on raw GPS coordinates and thus

limit model generalization, we propose to reconstruct incomplete time series

of relative magnitude and angle of displacement, from which GPS points

can then be recovered. Specifically, we employ a GAN formulation where

a Bayesian generator reconstructs motion feature sequences in an attempt

to fool a discriminator that penalizes sequences at window-level. The pro-

posed framework is shown to outperform existing work and generate highly

precise GPS points.

2. A supervised deep learning method for dividing labeled GPS trajectories

into same-transportation-mode segments. Instead of relying on heuristics

and transportation domain knowledge, we propose to view trajectory seg-

9 1.3 Contributions

mentation as timestep-level transportation mode identification performed

by a convolutional neural network. We further introduce a majority-vote

post-processing step and a shuffling-based data augmentation scheme to

reduce timestep-level errors and boost performance. Our results indicate

that the proposed framework is approximately twice as accurate as the best

performing baseline.

3. An unsupervised deep learning approach to accomplishing the above task

without using transportation mode labels. Again viewing trajectory seg-

mentation as timestep-level transportation mode identification, this time

a convolutional neural network learns to maximize the mutual information

between nearby patches of feature maps. In addition, the network is able to

approximate variational inference, thereby providing predictive uncertainty

estimates for each timestep in a given trajectory. The proposed frame-

work is shown to significantly outperform existing trajectory segmentation

baselines.

4. A framework based on unsupervised deep learning for clustering medium-

length GPS trajectory segments according to the five most prominent trans-

portation modes in the literature, i.e, walk, bike, bus, car, and train, with-

out using any labels. After pretraining a convolutional autoencoder on

timestep- and segment-level motion features, a clustering layer whose train-

able weights correspond to cluster centroids is attached to the autoencoder’s

embedding layer. The entire model is then retrained by balancing the au-

toencoder’s reconstruction loss against the clustering loss associated with

the clustering layer. Our experiments indicate that the proposed model

outperforms not only semi-supervised transportation mode identification

methods but also traditional clustering algorithms.

Introduction 10

1.4 Thesis Outline

This thesis is structured as follows:

• Chapter 2 surveys the literature on GPS trajectory imputation, transporta-

tion mode segmentation, and transportation mode identification. It also

examines recent developments in semantic image segmentation and deep

clustering, which have inspired the frameworks proposed in Chapters 4, 5,

and 6.

• Chapter 3 presents our proposed approach to unsupervised GPS trajectory

imputation, in line with RQ1.

• Chapter 4 introduces our proposed framework for supervised GPS-based

transportation mode segmentation, following RQ2.

• Chapter 5 details our proposed framework for unsupervised GPS-based

transportation mode segmentation, in keeping with RQ3.

• Chapter 6 presents our proposed approach to unsupervised GPS-based trans-

portation mode identification, according to RQ4.

• Chapter 7 summarizes our findings and recommends future research direc-

tions based on the identified research challenges.

As its structure may indicate, this thesis studies the problem of GPS-based

transportation mode identification from a holistic perspective. Starting from

incomplete trajectory imputation (Chapter 3), the focus then shifts on how to

partition trajectories into single-transportation-mode segments with (Chapter 4)

or without (Chapter 5) the use of transportation mode labels. It then examines

how to leverage these trajectory segments to train a classifier for unsupervised

transportation mode identification (Chapter 6).

Chapter 2

Literature Review

This thesis addresses research gaps tied to three distinct yet highly interdepen-

dent tasks within the GPS-based transportation literature. Starting from trajec-

tory imputation, or how to estimate missing GPS points within users’ trajectories,

transportation mode segmentation then extracts single-travel-mode segments from

trajectories of arbitrary length. Finally, transportation mode identification infers

the travel mode used within each such segment. The following three sections

survey the literature on these tasks in the same order. Note that, in this thesis,

the terms transportation mode segmentation and trajectory segmentation are used

interchangeably. This chapter also reviews recent work in semantic image segmen-

tation and deep clustering, as they have driven the design of the transportation

mode segmentation and identification frameworks introduced in Chapters 4, 5,

and 6.

2.1 Trajectory Imputation

With GPS signal lapses frequently occurring near tall buildings, tunnels, or due to

extreme weather conditions, GPS trajectories collected in urban areas are likely

to be incomplete. Estimation of missing GPS points within trajectories is critical

Literature Review 12

for further mining and subsequent downstream tasks. The literature on GPS

trajectory imputation can be broadly classified into knowledge-based [7, 8, 9] and

deep-learning-based [10, 59].

2.1.1 Knowledge-Based Approaches

Earlier studies predominantly developed knowledge-based approaches to GPS tra-

jectory imputation [7, 8, 9], primarily targeting sparsely-sampled∗ trajectories.

After reducing positioning errors via map-matching and indexing all available

trajectories, Zheng et al. [7] first decompose each target trajectory into pairs of

consecutive GPS points. For each pair, the index is then queried for trajectories

that intersect either of the two points within a desired radius. This action re-

turns a set of reference trajectories on which inference is performed via either a

traverse-graph-based or a nearest-neighbor-based algorithm to produce a set of

local routes. Finally, the resulting local routes are ranked using a scoring func-

tion and combined into a global route by selecting those with the highest scores.

Aiming to model the uncertainty that is inherent in sparsely-sampled trajectories,

Banerjee et al. [8] instead represent them as edge-weighted graphs, with weights

denoting the probability of traversing their associated road segments. To this

end, the authors train a higher-order Markov model on graph representations of

map-matched historical trajectories on the underlying road network. At infer-

ence time, the target trajectory is processed in pairs of consecutive GPS points,

whereby a random walk with restarts is used to simulate routes from the first

point to the second. The proposed approach was shown to outperform the one

in reference [7] by approximately 50% in terms of accuracy.

A significant limitation to both frameworks described above is their reliance

∗In the transportation literature, trajectories are generally considered to be sparsely-sampled
when the sampling interval is 15 seconds or longer (even up to 1–2 minutes) [60, 8, 43].

13 2.1 Trajectory Imputation

on road network information. This can be problematic when handling trajectories

that often deviate from roads, such as trajectories that involve walking, biking, or

taking the train [9]. Aiming to alleviate the need for map matching, Li et al. [9]

build a junction network topology from historical trajectory data and uses it for

trajectory completion. Specifically, the proposed method first extracts a skele-

ton from the GPS point cloud forming each trajectory, resulting in a junction

network graph where junction endpoints constitute vertices and traffic flows are

represented by edges. Next, GPS points are projected to their nearest skeleton

branch and traffic flow clusters are identified via a pairwise voting process ap-

plied to branches. Finally, trajectories are imputed using GPS points from other

trajectories that belong to the same cluster.

2.1.2 Deep Learning Frameworks

More recent research has turned to deep neural networks with a focus on densely-

sampled trajectory imputation [10, 59]. Wang et al. [10] note that GPS trajectory

reconstruction often results in overly smooth segments due to not incorporating

information on inflection points, i.e., points where the implicit trajectory curve

has its curvature sign changed. As such, the authors first fit the latitude and

longitude sequences comprising each trajectory using two high-order polynomi-

als. For each transformed latitude-longitude pair, they then calculate the curva-

ture radius. Next, all three features are embedded using an RNN autoencoder

equipped with an attention mechanism, trained by maximizing the coefficient of

determination between true and reconstructed trajectories. Finally, the latter are

smoothened via a post-processing step combining a moving average algorithm and

Savitzky-Golay filtering. Although the proposed imputation method effectively

preserves the overall geometry of trajectories, it requires complete trajectories at

training time. This limits its applicability to real-world applications, as GPS

Literature Review 14

trajectories are typically incomplete due to signal lapses. Moreover, the sensitiv-

ity of the proposed approach to hyperparameter variations was not investigated.

Rather than operate on raw coordinates, Nawaz et al. [59] first extract point-

wise motion features and then map GPS points to a two-dimensional grid. Both

motion features and grid locations are then fed to a bidirectional Convolutional

Long Short-Term Memory (ConvLSTM) encoder-decoder architecture equipped

with an attention mechanism. Additional global and auxiliary features are also

merged with the decoder’s output before reaching the final, fully connected layer.

While the proposed method demonstrated promising results, inference is tied to

the granularity of grid cells, a practice that is not without limitations. Intuitively,

if cells are too large, some may cover multiple roads; on the other hand, cells that

are too small may introduce redundancy by including areas that in reality are

unreachable.

Finally, it is important to emphasize how GPS trajectory imputation differs

from related imputation tasks within the transportation domain. Traffic flow

[61, 62] and speed [63] imputation both recover spatiotemporal measurements that

are aggregated over multiple users; these measurements are typically captured by

stationary rather than mobile sensors, such as inductive loop detectors or traffic

microwave sensors. In contrast, GPS trajectory imputation estimates missing

GPS points within individual users’ trajectories, as recorded by GPS sensors in

their smartphones or vehicles.

2.2 Transportation Mode Segmentation

Users’ GPS trajectories may contain numerous trips, with each trip likely en-

compassing multiple transportation modes. For instance, reaching one’s place of

employment may involve first walking to the train station, taking the train, and

finally boarding the bus. As such, trajectories must first be divided into trips,

15 2.2 Transportation Mode Segmentation

from which single-transportation-mode segments can then be extracted (trans-

portation mode segmentation) and subsequently classified (transportation mode

identification) [1, 56, 3]. In this direction, Zheng et al. [1] detect a new trip

whenever the time interval between two consecutive GPS points exceeds 20 min-

utes. This simple heuristic has since been predominantly used throughout the

literature [23, 3, 64, 45]. Others have proposed clustering-based approaches to

identifying trips: Gong et al. [65] extract a new trip upon formation of any

cluster of points that remain within 50 meters of each other for longer than 200

seconds. Similarly, Xiao et al. [26] rely on point-clustering thresholds and abrupt

changes of direction. Finally, Zhu et al. [66] use affinity propagation clustering

with distance and time constraints, detecting a new trip whenever a stay point is

found.

2.2.1 Heuristics-Based Approaches

Regarding the more challenging problem of transportation mode segmentation,

a naive approach is uniform-length segmentation, whereby trajectories are par-

titioned into non-overlapping segments of a fixed number of GPS points (or

timesteps). For instance, Dabiri and Heaslip [23] use a window equal to the

median length of all labeled trajectories in the Geolife dataset. Much like any

one-size-fits-all method, uniform-length segmentation offers simplicity at the ex-

pense of often producing segments involving multiple transportation modes; this

is also true for approaches such as uniform-duration or uniform-distance segmen-

tation. Such segments may introduce ambiguity when training transportation

mode identification models, thereby impacting classification performance.

2.2.2 Change Point Detection Methods

Most GPS-based transportation mode segmentation methods have focused on

detecting transportation mode change points, i.e., the discrete timesteps where

Literature Review 16

Figure 2.1 : Illustration of the transportation mode segmentation algorithm based

on change point detection proposed by Zheng et al. [1]. Trajectories are split into

walk and non-walk segments based on velocity and acceleration thresholds.

the transportation mode changes. This has been predominantly achieved via

mobility-related heuristics [1, 34, 24, 25, 26, 27]. Following the intuition that

walking must precede any change of transportation mode, the seminal work by

Zheng et al. [1, 34] divides trajectories into alternating walking and non-walking

segments based on distance, velocity, and acceleration thresholds. Following a

similar approach, Schüssler et al. [24], Biljecki et al. [25], and Xiao et al. [26]

detect change points at the boundaries of not only walking but also gap segments

caused by signal lapses; Biljecki et al. [25] further identify stops exceeding a

certain threshold as potential change points. Finally, Zhu et al. [27] extend [1]

by applying a timestep-level label revision step to mitigate the effect of erroneous

GPS points in the identified walking and non-walking segments.

More recently, Dabiri et al. [3] proposed an optimization-based approach

to transportation mode change point detection. After applying uniform-length

17 2.3 Semantic Image Segmentation

segmentation to each trajectory, the authors convert the obtained segments into

multivariate time series of velocity and acceleration features and feed them to an

optimization-based model. The latter attempts to extract subsegments such that

the homogeneity within each subsegment is maximized, while the number of iden-

tified change points is penalized by a hyperparameter-controlled linear function.

Nonetheless, this method makes the strong assumption that the random variables,

i.e., velocity and acceleration, are independent and identically distributed.

2.3 Semantic Image Segmentation

In the area of computer vision, semantic image segmentation is the task of pixel-

level classification of images for fine-grained distinction of different objects in

the image. Recent developments in semantic image segmentation have inspired

the design of our transportation mode segmentation frameworks, which will be

introduced in Chapters 4 and 5.

2.3.1 From Image-Level Classifiers to Fully Convolutional Networks

Long et al. [29] repurpose three pretrained image-level CNN classifiers for seman-

tic segmentation by replacing their fully connected layers with convolution ones,

introducing in-network upsampling, and optimizing a pixel-level multinomial lo-

gistic loss. They also add skip connections from shallow to deep layers, enabling

local predictions to benefit from global information. The proposed modifications

allowed the resulting Fully Convolutional Networks (FCNs) to produce dense,

pixel-level predictions for arbitrary-sized inputs, resulting in an mIoU of 62.7%

on PASCAL VOC 2012. Yu et al. [30] argue that image-level CNN classifiers

subsequently adapted to pixel-wise predictions may contain redundant, poten-

tially sub-optimal components. They demonstrate this in two ways: first, they

craft a front-end module by removing the pooling layers of a pretrained VGG-16

Literature Review 18

Figure 2.2 : The architecture of U-Time [2], a recent U-net variant proposed for

sleep staging.

network and replacing the standard convolutions with dilated ones. Dilated con-

volutions help maintain high coverage and resolution as network depth increases

by exponentially expanding the network’s receptive field. The front-end module

alone significantly outperformed [29] on the PASCAL VOC 2012 dataset. The

same authors also propose a simplified context aggregation module consisting

of successive dilated convolutions, attached to the front-end module. Combined

with the front-end module, it achieved the highest mIoU among all evaluated

methods. Ronneberger et al. [33] extend the contracting FCN architecture [29]

with a symmetric succession of convolution and upsampling layers. The proposed

U-net architecture includes a skip connection from each layer in the contracting

path to its counterpart in the expansive sub-network. U-net is trained by opti-

mizing the pixel-wise cross entropy loss. In their experiments, the authors showed

that U-net significantly outperformed the evaluated baselines on a cell tracking

dataset in terms of mIoU. They also found that applying data augmentation,

in this case through elastic deformations of the training samples, significantly

improved U-net’s capacity to learn from few data.

The U-net architecture has since inspired numerous semantic segmentation

19 2.3 Semantic Image Segmentation

works. Jegou et al. [67] use a similar architecture to U-net, instead replacing con-

volution layers with DenseNet blocks due to their parameter efficiency, implicit

deep supervision, and feature reuse properties. To avoid parameter explosion in

the upsampling path, the input of dense blocks is not concatenated with their

respective output; information at a given spatial resolution is preserved via skip

connections from the contracting path. The proposed modifications to the up-

sampling path resulted in this framework outperforming U-net in terms of mIoU

and global accuracy. It also fared better than [29], who leveraged transfer learn-

ing by fine-tuning neural networks pretrained on image-level classification tasks,

as well as [28], who used a conditional random field to encourage structure con-

sistency in the produced segmentations. Perslev et al. [2] propose U-Time, an

adaptation of the U-net architecture to time series segmentation, specifically the

task of sleep staging. U-Time uses encoder-decoder skip connections as in [33],

along with dilated convolutions in its encoder. It processes physiological time

series sampled at 30-second intervals, producing dense predictions which are fi-

nally averaged over fixed intervals to obtain the final outcomes. U-Time achieved

state-of-the-art results in all evaluated sleep staging datasets.

2.3.2 DeepLab Model and Variants

Papandreou et al. [68] train a deep CNN with a fully connected conditional ran-

dom field on few, pixel-level-annotated images, combined with a large number

of weakly-labeled ones. The latter consist of either bounding boxes or image-

level labels, from which pixel-level segmentation information is extracted using

expectation-maximization methods. While only training on image-level labels

was found to not produce highly accurate results, the proposed approach almost

matched the segmentation performance of fully-supervised, pixel-level segmenta-

tion models on the PASCAL VOC 2012 dataset. Papandreou et al. also leveraged

Literature Review 20

weak and pixel-level annotations from two related datasets, reporting a final mIoU

of 73.9%. Chen et al. [31] identify three challenges in performing semantic image

segmentation using deep CNNs originally designed for image-level classification:

lower feature resolution due to downsampling operations, existence of objects at

diverse scales, and lower boundary detection capacity due to the inherent trans-

lation invariance of CNNs. To address these issues, they propose Atrous Spatial

Pyramid Pooling (ASPP) for multi-scale object segmentation, paired with a con-

ditional random field to improve boundary localization. The main component

of ASPP is atrous convolution, i.e., convolution with pixel skipping, which was

independently investigated by Yu et al. [30] as dilated convolution. The authors

replace the fully connected layers within the VGG-16 and ResNet-101 networks

with convolutional layers as in [29], and combine atrous convolutions with bi-

linear interpolation for upsampling instead of using deconvolutions. The final

model, DeepLabv2, achieved an mIoU of 79.7% on PASCAL VOC 2012.

Follow up work by the same authors introduces DeepLabv3 [69], which

leverages a cascade of dilated convolutions followed by an improved ASPP mod-

ule incorporating image-level features. Specifically, the new ASPP module con-

sists of a single 1× 1 and three 3× 3 convolutions, while image-level features are

obtained through global average pooling, a 1× 1 convolution, and upsampling of

the model’s final feature map. DeepLabv3 significantly outperformed DeepLabv2,

attaining an mIoU of 85.7% on the PASCAL VOC 2012 test set without using con-

ditional random fields at post-processing time as was done in [31]. DeepLabv3+

[32] adopts an encoder-decoder architecture by using DeepLabv3 as an encoder

and attaching a decoder module to recover the downsampled spatial informa-

tion and improve segmentation near object boundaries. The authors also apply

depthwise dilated convolution to the ASPP and decoder modules, splitting reg-

ular convolution into a faster sequence of depthwise and pointwise convolutions.

21 2.3 Semantic Image Segmentation

DeepLabv3+ was shown to outperform its predecessor, DeepLabv3, reaching an

mIoU performance of 89.0% on PASCAL VOC 2012.

2.3.3 Optimizing Computational Requirements

Wu et al. [70] introduce a specialized upsampling module in place of the more

computationally complex dilated convolutions often used in semantic segmen-

tation. Using their proposed module to upsample an FCN’s last three feature

maps, they noted no decrease in segmentation performance. In addition, they

reported a three-fold reduction in computation and memory requirements. Not-

ing the reliance of deep semantic segmentation models on the availability of large

annotated data, Zhu et al. [71] propose a video-based method for synthesis of

training samples. This method leverages the ability of video prediction models to

predict future frames for label generation. Specifically, the authors explore two

approaches: label propagation, which forms new samples by pairing propagated

labels with their corresponding original future frames, and joint image-label prop-

agation, which instead combines propagated labels with their related propagated

images. The experimental results showed that the latter training set augmenta-

tion technique improved prediction accuracy for segmentation networks. Arguing

that color and texture should be examined separately from shape information for

semantic image segmentation, Takiwawa et al. [72] propose Gated-SCNN, which

processes these two streams of information in parallel and combines them through

gated convolution layers. During training, the binary and standard cross entropy

losses are jointly optimized to address the suggested duality between segmenta-

tion and boundary prediction. In the authors’ experiments, this dual loss was

shown to indeed improve the accuracy of boundary detection up to 3%.

Literature Review 22

2.4 Transportation Mode Identification

Given single-transportation-mode segments, obtained either via ground-truth la-

bels or either of the trajectory segmentation methods discussed in Section 2.2,

transportation mode identification is the task of classifying each segment by trans-

portation mode.

2.4.1 Supervised Machine Learning Approaches

Most GPS-based studies, especially earlier ones, have used supervised machine

learning for transportation mode identification. The seminal work of Zheng et

al. [1] classifies transportation modes by combining the output of a decision

tree classifier with the conditional probability of transitioning from the previous

transportation mode to the predicted one. In their follow-up work, the authors

instead model the probability distribution of travel modes by extracting a graph

of density-based transportation change point clusters [34]. They also introduce

three additional handcrafted features, namely the heading change rate, stop rate,

and velocity change rate. Combining decision tree predictions with the knowl-

edge of the transportation modes’ distribution resulted in a higher accuracy-by-

distance than the authors’ previous work. Sun et al. [36] train an SVM to classify

cars and trucks using features related to acceleration and deceleration. Since the

data for the two classes were collected in the same city at different locations and

time periods, these features were shown to be more discriminative than velocity-

based ones. Although the authors reported a relatively low misclassification rate,

their self-collected dataset has several non-negligible limitations which we briefly

discuss in Section 2.6. Xiao et al. [26] train a Bayesian network classifier on

six handcrafted features and reports high accuracy on the authors’ self-collected

dataset. Xiao et al. [73] train an eXtreme Gradient Boosting (XGBoost) ensem-

ble classifier on GPS-track-level global features and segment-level local features.

23 2.4 Transportation Mode Identification

Soares et al. [64] feed 60-second chunks of trajectory segments to a random for-

est classifier. However, the sample size of the proprietary dataset used in the

authors’ experiments may be too small to draw safe conclusions. Guo et al. [74]

train a decision-tree-based ensemble classifier termed deep forest on 72 statistical

features of velocity, acceleration, turning angle, and sinuosity.

Other machine-learning-based works have complemented their models with

Geographic Information System (GIS) information. Stenneth et al. [35] train a

random forest classifier on features including Euclidean distances from rail lines,

bus stops, and real-time bus locations. This not only improved the accuracy of

distinguishing between various motorized modes of transport, but also allowed

for identifying which bus a given passenger had taken. Although the proposed

approach attained high precision and recall, it was evaluated on a dataset whose

total duration is just three hours. Bolbol et al. [60] use an SVM to estimate

the transportation mode for consecutive overlapping triples of GPS points and

identifies change points whenever the mode of two successive triples is different.

Shah et al. [75] train a decision tree classifier on time- and frequency-domain fea-

tures of accelerometer data to distinguish between motorized and non-motorized

motion. After computing motion features from GPS data in conjunction with

transit route and location information, they train another decision tree to clas-

sify above-ground transportation modes. Finally, a rule-based classifier is used to

identify mixed-mode and underground travel. Simoncini et al. [76] explore a low-

frequency GPS sampling scenario where GPS points are sampled once every 90 or

120 seconds. They train an SVM to classify light- and heavy-duty vehicles using

the same features as reference [36] together with distance- and velocity-related

ones. Using recursive feature elimination, the authors identified 69 highly dis-

criminative features, using them to train an SVM on their self-collected dataset.

After classifying each track individually and then aggregating the results of mul-

Literature Review 24

tiple tracks for each vehicle, they achieved an even higher Area Under Curve

(AUC). Although the experimental results seem promising, the final aggregation

step and the need for reverse geocoding to calculate the road type feature might

hinder the performance of the proposed framework in applications with real-time

requirements.

2.4.2 Supervised Deep Learning Methods

With the exception of Gonzalez et al. [77], the literature has only recently begun

to explore deep-learning-based transportation mode identification. Gonzalez et

al. [77] train an MLP on subsets of the original GPS points consisting of crit-

ical points, selected such that the original GPS traces could be approximately

recreated from them. This work was one of the first to effectively apply neural

networks to transportation mode identification. However, it is limited by only

considering three transportation modes, using a rather small dataset, and re-

quiring manual trajectory segmentation. Endo et al. [56] generate image-like

representations for each labeled trajectory segment by clipping a rectangular grid

of GPS points sampled at a fixed time interval and setting the pixel value of each

grid according to the number of its GPS points. These images are then used

to train a stacked denoising autoencoder, with the learned features of its last

hidden layer being concatenated with the handcrafted ones proposed in reference

[34] to finally train a logistic regression classifier. Mäenpää et al. [78] investigate

the usefulness of several features for training an MLP on sparsely sampled GPS

data. They found spectral bins to be the most significant features, while auto-

and cross-correlations, kurtoses, and skewnesses of velocities and accelerations

were deemed relatively ineffective. Wang et al. [42] design point-level features to

train a sparse autoencoder and use sequences of the learned point-level features to

train a CNN and learn trajectory-level features. They finally combine the latter

25 2.4 Transportation Mode Identification

with handcrafted trajectory-level features to train a 2-hidden-layer MLP classi-

fier. After dividing trajectories into fixed-size segments and extracting pointwise

motion features, Dabiri and Heaslip [23] train an ensemble of seven CNNs and av-

erages their predictions for the final classification. Following a similar approach,

Yazdizadeh et al. [79] train a CNN ensemble as a base learner and uses a random

forest classifier as a meta-learner. Zhang et al. [46] combine the DenseNet convo-

lutional architecture with the attention mechanism to learn both transportation

modes and speeds. To capture information in different granularities, the authors

map GPS trajectories to multi-scale grids, using coarser and finer ones separately

to train the two sub-networks of their neural architecture. Yu [44] preprocesses

GPS trajectories into multivariate time series of motion features and estimates

their frequency-domain counterparts via discrete Fourier and wavelet transforms,

using both sets of features to train an LSTM classifier and achieving 92.7% ac-

curacy on Geolife [1, 34].

A number of deep-learning-based works have also integrated GIS informa-

tion. For instance, Zhu et al. [66] incorporate features measuring closeness to

bus lines and subway stops before performing unsupervised training of a Stacked

AutoEncoder (SAE), finally attaching a softmax layer for supervised learning.

Song et al. [80] train a deep Long Short-Term Memory (LSTM) architecture on

GPS and GIS data to jointly learn users’ movements and selected transportation

modes. In the proposed architecture, the input encoding layer is followed by

two shared hidden layers and an output decoding layer. Simoncini et al. [43]

train a deep LSTM architecture to classify three vehicle weight classes using

low-frequency GPS data. In addition to the standard LSTM layers, the authors

include input-to-recurrent and recurrent-to-output feedforward layers. To handle

class imbalance, the loss function is weighted by the inverse of the class sizes.

While including GIS information can help improve performance, it may also not

Literature Review 26

Figure 2.3 : The SECA architecture [3] jointly trains a convolutional autoencoder

and a CNN classifier.

always be up to date or even available for certain areas.

2.4.3 Semi-Supervised and Unsupervised Deep Learning Frameworks

A major limitation to the real-world applicability of transportation mode iden-

tification is the lack of GPS trajectories labeled by transportation mode. This

can be attributed in part to the fact that GPS sensors do not readily capture

travel mode information. Some users may be unwilling to manually label their

own trips, as doing so both accurately and consistently requires significant indi-

vidual effort. For others, such a process may raise privacy concerns. To the best

of our knowledge, only a few works have attempted to alleviate the dependency

of transportation mode identification methods on the availability of labeled data

[81, 58, 3, 45, 57].

27 2.4 Transportation Mode Identification

Some have investigated semi-supervised deep learning approaches [58, 3, 45].

Using a label propagation algorithm with the k-Nearest Neighbors (k-NN) kernel,

Rezaie et al. [58] achieved competitive accuracy using fewer than 30% of labels.

A limitation to this work is that each segment was assigned its predominant travel

mode during preprocessing, a practice that simplifies trajectory segmentation at

the expense of producing noisy† segments. Dabiri et al. [3] jointly train a con-

volutional autoencoder and a CNN classifier for semi-supervised transportation

mode identification by optimizing the weighted sum of their losses. The proposed

SEmi-supervised Convolutional Autoencoder (SECA) architecture is illustrated

in Figure 2.3. At preprocessing time, arbitrary-length GPS trajectories are first

split into non-overlapping fixed-size segments and converted into velocity and ac-

celeration time series. Next, these are fed to an optimization-based algorithm for

travel mode change point detection. After the identified change points are used

for trajectory resegmentation, four velocity- and acceleration-based features are

extracted from each resulting GPS segment and used to train the two networks

within SECA. During training, their losses are initially balanced until conver-

gence, with the supervised loss gradually being assigned more weight. Compared

to supervised machine and deep learning baselines, the proposed method consis-

tently achieved higher accuracy when using as few as 20% of the labeled data.

Yu [45] extracts the same features as in reference [44] before feeding them to a

stacked LSTM to extract their latent representations. The resulting three sets of

features are finally used in multi-view semi-supervised training of an LSTM en-

semble. The latter consists of a main network trained on all three feature sets and

three view networks trained on different subsets thereof. During training, orig-

inally unlabeled trajectory segments are assigned proxy labels if either all three

†In the context of transportation mode identification, trajectory segments are referred to as
noisy if they involve multiple travel modes.

Literature Review 28

view networks predict the same travel mode or at least one of them matches the

main network’s prediction. The proposed framework significantly outperformed

reference [3], achieving an accuracy of nearly 85% on Geolife [1, 34] using just 1%

of labeled data.

Another way to address the lack of labeled GPS trajectories involves lever-

aging generative models to create synthetic annotated samples. For example, Li

et al. [57] first train a GAN conditioned on transportation mode classes to balance

the Geolife dataset [1] via upsampling. Both ground truth and synthetic motion

features are then used in supervised training of a CNN classifier. Nonetheless,

the reported deviation between the original and generated feature distributions

suggests room for improvement of the data generation process.

To the best of our knowledge, only the work of Patterson et al. [81] has

investigated fully unsupervised learning in the context of transportation mode

identification. The proposed method represents street maps as graphs and in-

tegrates information on bus stops and routes, using graph-constrained particle

filters to estimate both transportation modes and routes in an unsupervised man-

ner. Although it achieved promising accuracy on the authors’ self-collected GPS

dataset, this framework depends on the availability of up-to-date GIS informa-

tion and cannot generalize to locations beyond those adequately covered in the

training set.

We note that closely related to transportation mode identification is the task

of vehicle classification, which aims to classify vehicles into fine-grained classes.

For instance, some works attempt to distinguish between cars and taxis [56, 46],

trains and subways [56, 73, 46], or even various types of ships [46]. Although

methods used in one research area may be useful for the other [36], features

typically used for transportation mode identification may not be as effective for

29 2.5 Deep Clustering

vehicle classification [43]. Nonetheless, we have summarized a few such studies

due to their relevance to this research.

2.5 Deep Clustering

The frameworks proposed in Chapters 5 and 6 perform unsupervised transporta-

tion mode segmentation and identification of GPS trajectories by clustering their

associated motion feature sequences at timestep- and sequence-level, respectively.

This methodology is tied to a set of techniques for clustering data via unsuper-

vised deep learning, referred to in the literature as deep clustering.

2.5.1 Autoencoder-Based Approaches

Earlier deep clustering studies first perform autoencoder pretraining using the

original high-dimensional inputs and cluster the learned lower-dimensional rep-

resentations by merely minimizing a clustering-specific objective. Yang et al.

[47] apply agglomerative clustering to autoencoder-learned features. The pro-

posed method starts with a large number of clusters, gradually merging them

on the forward pass and learning the embedding on the backward pass. In their

seminal work, Xie et al. [48] propose Deep Embedded Clustering (DEC) to si-

multaneously learn a low-dimensional feature space and cluster assignments in a

self-supervised manner. After pretraining a 4-layer denoising Stacked AutoEn-

coder (SAE) to obtain an initial target distribution, they replace the decoder with

a clustering layer maintaining cluster centroids as trainable weights, initialized

using the k-Means algorithm. At each iteration, the clustering layer assigns soft

labels to each training sample using Student’s t-distribution formula; these soft

labels are then used to estimate the target distribution and calculate the cluster-

ing loss using Kullback-Leibler (KL) divergence. Instead, Li et al. [49] attach a

soft k-Means layer in place of the decoder and retrain the composite model with

Literature Review 30

samples of ascending (estimated) clustering difficulty.

More recently, joint optimization of the autoencoder reconstruction loss

together with a clustering loss has generated better results. Unlike reference

[48], Guo et al. [82] maintain the decoder to preserve the representation space

learned by minimizing the reconstruction loss at pretraining time. They then

add a weighted clustering loss term to the objective function and retrain the

composite model. Similarly to Xie et al. [48], the clustering loss estimates the

KL divergence between the cluster assignments and the target distribution. The

authors’ experimental results using a 4-layer denoising SAE trained on MNIST

showed that maintaining the decoder indeed improved the clustering accuracy.

Guo et al. [83] expand on their previous work by replacing the SAE with a

Convolutional AutoEncoder (CAE). However, the reported clustering accuracy

of the proposed Deep Convolutional Embedded Clustering (DCEC) on MNIST

was not significantly higher than merely training the CAE and applying k-Means

clustering to the encoded data. Yang et al. [84] instead estimate the clustering

loss based on the mean squared error and update the network weights, cluster

memberships, and centroids separately. The proposed Deep Clustering Network

(DCN) handles class imbalance by updating cluster assignments more rigorously

for clusters having fewer members than others. Despite showing promising results,

DCN often did not significantly outperform the baseline of pretraining the SAE

and applying k-Means clustering to the learned latent representations. To address

class imbalance, Ghasedi et al. [50] design a denoising autoencoder and instead

minimize the KL divergence between predicted and target distributions (as in

reference [48]) with the addition of a uniform prior controling the frequency of

cluster assignments.

31 2.5 Deep Clustering

Figure 2.4 : The DeepCluster architecture [4] iterates between clustering and

leveraging cluster assignments as pseudo-labels to train the model.

2.5.2 Traditional Clustering on Pretrained Network Outputs

Caron et al. [4] propose DeepCluster, a framework trained by iteratively using

k-Means to group the output of a convolutional neural network (pretrained using

supervision on other datasets) and leveraging the obtained cluster assignments as

ground-truth labels to optimize its parameters. If a cluster becomes empty, the

proposed method first selects one of the remaining centroids at random, then adds

some noise to it in order to generate a new one, and finally distributes all points of

the former centroid among the two. Moreover, to handle class imbalance, samples

are selected using a uniform distribution over the pseudo-labels. DeepCluster, an

overview of which is shown in Figure 2.4, demonstrated promising performance

on established image datasets using the AlexNet and VGG-16 CNN architectures.

However, DeepCluster relies on the availability of CNNs that have been pretrained

using supervised learning, and applies k-Means to features reduced via Principal

Component Analysis (PCA) rather than include dimensionality reduction in the

learning process.

Literature Review 32

2.5.3 Generative Modelling

Another body of deep clustering research leverages generative models such as

variational autoencoders [51] and GANs [52]. Jiang et al. [51] propose Vari-

ational Deep Embedding (VaDE), whereby a Gaussian Mixture Model (GMM)

first selects a cluster from which an embedding is generated and subsequently

decoded by a Variational AutoEncoder (VAE) into an observation. Compared

to frameworks based on standard autoencoders, like DEC [48], its generative na-

ture allows VaDE to produce and cluster new high-fidelity samples. Noting that

traditional GAN formulations do not involve encoder networks and thus do not

directly allow for clustering in the latent space, Mukherjee et al. [52] train a

GAN together with an encoder network by incorporating a clustering loss in the

standard GAN objective function.

2.5.4 Mutual Information Maximization

It is also viable to cluster data by exploiting the mutual information between

samples and their generated augmentations or learned latent representations

[53, 54, 55]. Hu et al. [53] encourage neural networks to output similar feature

maps for input samples and their augmented versions, while also maximizing the

mutual information between samples and their latent representations. Hjelm et

al. [54] instead maximize the mutual information between latent representations

and local input regions, at the same time matching the former to a prior dis-

tribution. Finally, Ji et al. [55] maximize the mutual information between the

latent representations of pairs of samples and their augmentations, improving

performance by simultaneously training an auxiliary overclustering component.

33 2.6 Conclusions

2.6 Conclusions

For GPS trajectory data to be safely used in downstream applications, naturally

missing GPS points due to signal lapses must first be imputed. This is especially

true for the task of transportation mode identification, which is typically per-

formed on sequences of motion features extracted from consecutive GPS points

in a pairwise manner: the more GPS points are missing, the noisier the estimated

motion features. Nonetheless, the effectiveness of existing approaches is condi-

tioned on either the availability of historical trajectories and knowledge of the

underlying map [7, 8, 9], which may not always be up to date, or on access to

complete trajectories at model training time [10].

Before performing transportation mode identification, it is necessary to first

identify trips within users’ GPS trajectories from which single-transportation-

mode segments can then be extracted [56, 3]. While detecting trips has been

shown to be more straightforward, with simple time-based heuristics often pro-

ducing satisfactory results [1], transportation mode segmentation remains an open

problem, especially in the absence of transportation mode labels. To date, re-

searchers have predominantly approached trajectory segmentation as transporta-

tion mode change point detection, using mobility-based heuristics [1, 24, 25, 26,

27] and more recently optimization-based algorithms [3]. However, such meth-

ods depend on extensive feature engineering or transportation domain knowledge

and assume independent and identically distributed samples, respectively. In

addition, heuristics alone may not sufficiently account for the complexity of all

possible traffic scenarios.

To date, GPS-based transportation mode identification has been tackled

using a wide range of machine learning models, including but not limited to

Bayesian networks [26], decision trees [1, 34], random [35] or deep forests [74], and

Literature Review 34

support vector machines [36]. More recently, deep learning has increasingly gained

popularity in the transportation domain, with researchers successfully applying

MLPs [42] and convolutional [23, 3, 46, 79] or recurrent neural networks [43,

44, 45] to transportation mode identification. With the exception of references

[81, 75, 3, 45], however, most of the above studies have used models trained in

fully supervised settings. As such, they have largely relied on the availability

of ground-truth labels, which is often limited in real-world applications, at the

same time failing to incorporate the typically much larger amounts of available

unlabeled data.

As a final remark, it is worth noting that several transportation mode seg-

mentation and identification studies were evaluated on self-collected datasets,

which makes it difficult to draw safe conclusions when comparing the effective-

ness of their proposed methods. Self-collected datasets also risk containing bias;

for instance, Sun et al. [36] identified bias in their dataset due to the trucks’ GPS

devices being automatically turned off when velocity fell below 2 m/s. Further-

more, many such datasets are limited by either their small sample size or total

duration [60]. To avoid the above issues, the methods proposed in this thesis are

primarily evaluated on the openly available Geolife dataset [34, 1] released by Mi-

crosoft Asia Research, as it has been established as a benchmark in transportation

research.

Chapter 3

Uncertainty-Aware Generative

Trajectory Imputation

In this chapter, we propose to indirectly learn how to estimate missing GPS points

by setting an alternative target: imputing point-wise motion features measuring

magnitude and angle of displacement, i.e., relative distance and bearing (see Fig-

ure 3.1). To this end, we introduce an Uncertainty-aware Imputation Generative

Adversarial Network (UI-GAN) trained on incomplete motion features extracted

from incomplete GPS trajectories. In UI-GAN, the Bayesian generator G per-

forms Monte Carlo (MC) dropout sampling [85] for multiple imputation and

uncertainty estimation, while the discriminator D examines real and imputed se-

quences at window-level. Inspired by recent work in computer vision [86, 87], both

G and D leverage missingness-gated temporal convolutions to handle originally

missing data. UI-GAN is shown to generate high-fidelity GPS points from im-

puted motion features, outperforming competitive baselines on a large, real-world

dataset.

Uncertainty-Aware Generative Trajectory Imputation 36

Figure 3.1 : Missing (transparent) GPS points are estimated from observed

(opaque) or previously recovered ones after imputing relative distance d and angle

b between initial direction and true north.

3.1 Preliminaries

This section first defines domain-related terms and formalizes the problem to

be addressed in this chapter, before introducing uncertainty quantification via

Bayesian deep learning.

3.1.1 Incomplete GPS Trajectory Reconstruction via Motion Feature Impu-

tation

Definition 3.1 (GPS Point). We denote GPS point p as a 4-tuple 〈t, lat, lon,mode〉,

where t measures the decimal number of days since a reference date, −90 ≤ lat ≤

90 and −180 ≤ lon ≤ 180 are latitude and longitude coordinates in decimal de-

grees, and mode ∈ {walk, bike, bus, car, train} denotes the transportation mode

label associated with p. More details regarding the target transportation mode

classes will be presented in Section 4.3.1.

Definition 3.2 (GPS Trajectory). We represent GPS trajectory T as a tem-

porally ordered sequence {p(0),p(1), . . . ,p(‖T‖−1)} of arbitrary length ‖T‖ ∈ Z+.

Since the frameworks proposed in this thesis are all based on deep convolutional

37 3.1 Preliminaries

neural networks (thus requiring fixed-size inputs), we partition T into b‖T‖/Lc

non-overlapping sequences of fixed length L > 0.

Definition 3.3 (Motion Feature Sequence). Directly training machine or

deep learning models on raw GPS data inadequately captures spatiotemporal

information and biases generalization towards the locations best covered in the

training set. As such, we follow established transportation mode identification

literature [1, 3, 44] in preprocessing each GPS trajectory T into a motion feature

sequence X = {x(0),x(1), . . . ,x(‖T‖−1)} by transforming each p ∈ T into a vector

x ∈ RN of N motion features. This process will be detailed in Section 4.2.1.

Definition 3.4 (Masking Matrix). Incomplete GPS trajectories T produce

incomplete motion feature sequences X. For each X ∈ RL×N , we construct a

masking matrix M ∈ {0, 1}L×N such that Ml,n = 1 if Xl,n is observed or Ml,n = 0

otherwise. Unobserved GPS points and their associated motion features in X are

identified and inserted based on elapsed time and velocity thresholds, as per

Section 5.3.1.

Problem 3.1 (GPS Trajectory Reconstruction). Given an incomplete GPS

trajectory T ∈ RL×3 preprocessed into a sequence of incomplete motion features

X ∈ RL×N , we propose to impute the missing motion features indexed by masking

matrix M ∈ {0, 1}L×N to produce the complete sequence X̃ ∈ RL×N and use it to

estimate the missing GPS points in T, thus obtaining the reconstructed trajectory

T̃. The process of determining raw GPS points based on imputed motion features

and previously observed or imputed points will be detailed in Section 3.2.2.

3.1.2 Predictive Uncertainty Quantification for Bayesian Neural Networks

Bayesian modelling considers epistemic uncertainty tied to model weights

and heteroscedastic aleatoric uncertainty due to input noise that varies for dif-

ferent observations. Capturing the epistemic uncertainty of a neural network

Uncertainty-Aware Generative Trajectory Imputation 38

requires placement of a prior distribution over its weights followed by calculation

of the posterior. The latter is typically intractable, as it requires integration with

respect to the space of all network parameters which often lacks a closed form

[85].

In the proposed framework, the generator estimates the posterior by approx-

imating variational inference using MC dropout sampling, and captures aleatoric

uncertainty by regressing observation noise S ∈ RL×N as an additional model

output [85]. The former corresponds to injecting the generator’s otherwise deter-

ministic weights with noise sampled from a Bernoulli distribution, hence creating

their stochastic counterparts. In practice, we apply dropout with probability of

dropping connections pdrop after each convolution layer except for the output at

both training and inference time. For inference, we perform S stochastic forward

passes to obtain imputations X̂ ∈ RS×L×N , which are averaged to produce the

predictive mean X′ ∈ RL×N .

Given S MC dropout samples, the total predictive uncertainty for the l-th

timestep X̂:,l,: can be approximated by its variance as follows [85]:

Var(X̂:,l,:) ≈
1

S

S∑
s=1

X̂
2

s,l,: −

(
1

S

S∑
s=1

X̂s,l,:

)2

︸ ︷︷ ︸
epistemic

+
1

S

S∑
s=1

Ŝ
2

s,l,:︸ ︷︷ ︸
aleatoric

. (3.1)

3.2 Proposed Framework

This section first introduces the Missingness-Gated Temporal Convolution (MGT-

Conv) block proposed for operating on time series with missing data. Next, it

describes the generator and discriminator networks that form our GAN-based

approach to GPS trajectory imputation. Finally, it explains how the generator

approximates variational inference to both estimate predictive uncertainty and

reduce imputation error.

39 3.2 Proposed Framework

M C Dropout Sampling

Generator

Incomplete GPS Traj ectory

Incomplete M otion Sequence

Discriminator

Imputed M otion Sequence

M asked M AE

Imputed GPS Traj ectory

. . .

.

. . .

Figure 3.2 : Overview of the proposed UI-GAN. Dashed arrows indicate gradient

flow, while operations in red only occur at test time.

Uncertainty-Aware Generative Trajectory Imputation 40

An overview of the proposed UI-GAN is given in Figure 3.2. At train-

ing time, incomplete time series of motion features are extracted from incomplete

GPS trajectories and fed to the generator G, which uses MGTConv blocks to han-

dle unobserved values. G learns to produce better imputations by reconstructing

the observed parts of its input and by convincing the discriminator D that the

reconstructed sequences are real. D penalizes sequences at window-level, leverag-

ing MGTConv blocks to process missing features within real and imputed data.

At inference time, incomplete motion feature sequences are similarly extracted

and then sampled from the trained G multiple times while dropout is activated

to approximate variational inference. These aggregated outputs are averaged to

obtain the final imputation, while their variance is used to estimate aleatoric and

epistemic uncertainties. Finally, imputed relative distances and bearings are used

to estimate raw GPS points.

3.2.1 Missingness-Gated Temporal Convolutions

Feature learning based on standard temporal convolutions involves sliding

the same trainable filters over the entire input sequence. Such practice is reason-

able when every timestep holds valid data, but becomes problematic when feature

values are missing: the latter must still be numerically represented with place-

holder constants. Applying the same convolutional filters to both valid and invalid

features is undesirable, as it creates ambiguity during training [86]. Although

one could simply use RNNs, where masked processing is supported by design,

temporal convolutional networks benefit from high parallelism, lower memory re-

quirements, and have even outperformed recurrent architectures∗ in established

sequence modelling tasks [88].

Inspired by recent work on image inpainting [89, 86] and occluded pose es-

∗This excludes Transformers, as they do not involve recurrence.

41 3.2 Proposed Framework

timation [87], we design missingness-gated temporal convolution blocks for the

generator (Figure 3.3(a)) and discriminator (Figure 3.3(b)) networks in UI-GAN

to effectively process incomplete time series. Note that, while X contains miss-

ing features, M does not: the indices where data are available are in fact fully

observed. Therefore, our intuition is that M should be processed separately from

X, so that the fully observed information encoded in M is preserved in deeper

layers. In addition, using intermediate feature maps of M to gate those of X at

the l-th block may attenuate the influence of missing values on the next block

and ultimately on the generated motion features.

Excluding bias terms for readability, the discriminator’s MGTConv block

is defined as:

X̄(l) = φ(X(l−1) ∗W
(l)
f), (3.2)

M(l) = σ(M(l−1) ∗W(l)
g), (3.3)

X(l) = X̄(l) �M(l), (3.4)

where W
(l)
f , W

(l)
g are convolution filters, φ, σ are the Leaky Rectified Linear Unit

(LReLU) and sigmoid activation functions, X̄(l) is the intermediate output of the

l-th block before gating, and � is the Hadamard product that produces the final

gated output X(l). The generator’s version of the MGTConv block is described

in Section 3.2.2.

3.2.2 Bayesian Generator

Architecture The generator G is built by stacking MGTConv blocks (Figure

3.3(a)). For G, the convolutions in Eqs. (2), (3) are dilated, applying filters

over a larger area than their own by skipping input values with step d, otherwise

known as dilation rate. This allows convolution layers to expand their receptive

fields as the network depth grows, preserving input resolution without need for

Uncertainty-Aware Generative Trajectory Imputation 42

Strided
Conv1D

Strided
Conv1D

Dilated
Conv1D

Dropout Dropout

Dilated
Conv1D

Conv1DConv1D

(a) (b)

Figure 3.3 : (a) The generator’s MGTConv block applies dilated 1D convolutions

to capture high-resolution temporal information without need for downsampling.

Always-on dropout is used to approximate variational inference via MC dropout

sampling. (b) In the discriminator’s MGTConv block, strided convolutions down-

sample the input and enlarge D’s receptive field.

43 3.2 Proposed Framework

downsampling. Skip connections are also added to facilitate gradient flow. Note

that both residual paths have an optional convolution with unit kernel size applied

to X(l−1) to ensure that the number of input channels equals the number of output

channels; this is only required for the block following the input layer. Finally,

dropout layers are inserted to approximate variational inference at test time, as

per Section 3.1.2.

Missing values in the incomplete input sequence X are estimated by feeding

it to G and superimposing G(X) = X′ over X at the indices where features are

missing, as indicated by M, producing the complete (imputed) sequence X̃ as

follows:

X̃ = X�M + X′ � (1−M), (3.5)

where 1 is a matrix of ones with the same dimensionality as M and � is the

Hadamard product.

The generator is trained by optimizing the weighted sum of the adversarial

hinge loss [90] and the Mean Absolute Error (MAE) between true and generated

features at the indices where true ones are observed:

LG = −EX̃∼PX̃
[D(X̃)] +

λ

L

L∑
l=1

Ml,:

(
1

2
exp(− log Ŝ2

l,:)
∣∣Xl,: −X′l,:

∣∣+
1

2
log Ŝ2

l,:

)
,

(3.6)

where PX̃ is the distribution of imputed motion feature sequences and hyperpa-

rameter λ controls the influence of the MAE loss. Note that we regress log Ŝ2
l,:

instead of Ŝ2
l,: for numerical stability.

Estimating GPS Points from Imputed Motion Features After imputing the rel-

ative geodesic distance d(i) and bearing b(i) between p(i) and its missing successor

Uncertainty-Aware Generative Trajectory Imputation 44

p(i+1) as per Section 5.3.1, the latter’s coordinates are estimated as follows:

lat(i+1) = arcsin(sin(lat(i)) ∗ cos(d(i)/R)

+ cos(lat(i)) ∗ sin(d(i)/R) ∗ cos(b(i))), (3.7a)

lon(i+1) = lon(i) + arctan2(α, β), (3.7b)

α = sin(b(i)) ∗ sin(d(i)/R) ∗ cos(lat(i)), (3.7c)

β = cos(d(i)/R)− sin(lat(i)) ∗ sin(lat(i+1))), (3.7d)

where all coordinates are in radians, and d(i), R (the Earth’s radius) are in kilo-

meters. Note that p(i) may either be observed or previously imputed.

3.2.3 Window-level Discriminator

Should D penalize entire motion feature sequences at once, or is it more

informative to consider smaller segments independently? The answer may depend

on both the temporal dependencies between mobility patterns encoded in each

trajectory, as well as the percentage of missing GPS points. The latter implies

that, since trajectories with fewer missing points are easier to impute and harder

for D to detect, it may benefit D to examine sequences in shorter windows.

Therefore, we design D as a modification to the PatchGAN discriminator

[91] originally proposed for patch-level image-to-image translation. By replac-

ing all standard convolutions with MGTConv blocks as per Section 3.2.1 (Figure

3.3(b)), D can now handle incomplete GPS trajectories. In each block, D ap-

plies strided convolutions for downsampling, thus increasing the window length

(receptive field) WD by which the input is processed. WD is a function of the

stride s, the kernel size k, and the number of layers; for instance, a 4-layer archi-

tecture with s = 2, k = 5, will result in D examining sequences of length L using

WD = 61 and output shape RL/16.

The discriminator receives real sequences X and imputed sequences X̃. Cru-

45 3.3 Experiments

cially, both X and X̃ are masked at the indices where features are originally

missing in X (as indexed by its associated M), to ensure that D discriminates

based on originally observed data only. Thus, D optimizes the hinge version of

the adversarial loss [90]:

LD = EX∼PX
[max(0, 1−D(X))] + EX̃∼PX̃

[max(0, 1 +D(X̃))], (3.8)

where PX, PX̃ are the distributions of input and imputed motion feature se-

quences.

3.3 Experiments

After detailing our experimental setup, this section presents and analyzes our

results.

3.3.1 Dataset and Simulation Setup

We conducted our experiments on a server equipped with an Intel Xeon

Silver 4210 CPU clocked at 2.20GHz and NVIDIA GeForce RTX 2080Ti GPUs

with 11 GB of GDDR6 memory. The reported results were averaged over 5 runs.

Dataset We evaluate the proposed approach on the GAIA open dataset† by DiDi

Chuxing. GAIA contains ride-hailing drivers’ trajectories obtained in November

2016 in Chengdu, China at sampling intervals of 2− 4 seconds, totalling nearly 2

billion GPS points; this corresponds to about 66 million GPS points per day. As

such, we select all data from November 1 for our experiments. After preprocess-

ing them according to the following subsection and dividing them into fixed-size

segments of length L = 128, we obtain 120, 000 samples and generate training,

validation, and test sets using a 80/10/10 split.

†Available at https://gaia.didichuxing.com.

Uncertainty-Aware Generative Trajectory Imputation 46

Although evaluation on an additional dataset would be ideal, to the best

of our knowledge no other real-world GPS dataset exists that is both openly

available and densely sampled.‡ While the Geolife dataset [1, 34] by Microsoft

Research Asia satisfies these requirements and includes numerous trajectories

involving several transportation modes, it does not contain enough trajectories

of a single transportation mode to train deep neural networks on. Geolife will,

however, be used in Chapters 4, 5 and 6 to evaluate the transportation mode

segmentation and identification frameworks that will be introduced.

Preprocessing Missing GPS points in trajectory T with mode sampling interval

tm are identified and inserted via placeholders after p(i) when both 2m/s < v(i) <

50m/s and b((t(i+1)− t(i))− tm)/tmc > 1. We thereby estimate that nearly 10% of

GPS points in our training set are missing. For each GPS point p(i), we then com-

pute the relative geodesic distance d(i) = Geodesic(lat(i), lon(i), lat(i+1), lon(i+1))

(in meters), velocity v(i) = d(i)/(t(i+1)−t(i)), acceleration a(i) = (v(i+1)−v(i))/(t(i+1)−

t(i)), and jerk k(i) = (a(i+1) − a(i))/(t(i+1) − t(i)). After converting latitudes and

longitudes to radians, we also calculate the bearing b(i) ∈ [0, 360]:

b(i) = arctan(γ, δ), (3.9a)

γ = cos(lat(i)) ∗ sin(lat(i+1))

− sin(lat(i)) ∗ cos(lat(i+1)) ∗ cos(lon(i+1)− lon(i)), (3.9b)

δ = sin(lon(i+1)− lon(i)) ∗ cos(lat(i+1)). (3.9c)

Following the above preprocessing steps, GPS point p(i) is associated with motion

feature vector x(i) = {d(i), v(i), a(i), k(i), b(i)} ∈ R5. For every p ∈ T marked as

missing, all motion features that involve it in their computation are marked as

‡In the transportation literature, trajectories are typically considered “densely-sampled”
when GPS points are collected every 1–5 seconds on average [23].

47 3.3 Experiments

missing and set to zero in the corresponding matrices M and X, respectively.

Each motion feature is then linearly scaled to [−1, 1] based on observed values.

We note that, when GPS points are consecutively missing, their associated

motion features will also be consecutively missing. In addition, we clarify that

relative distance and bearing are selected for the purpose of missing GPS point

estimation. The remaining motion features are empirically selected following

established travel mode identification literature [1, 44], as learning from relative

distance alone can be misleading when sampling intervals are not consistent.

As a final remark, the proposed framework focuses on imputing densely

sampled trajectories with missing GPS points. For datasets where trajectories

are not incomplete but rather sparsely sampled (e.g., every 15 or 30 seconds),

one may desire to artificially lower the mode sampling interval by inserting place-

holders between observed GPS points and performing motion feature imputation.

However, the route uncertainty between originally observed GPS points may be

too high for motion feature reconstruction be accurate. We leave the investiga-

tion of how to extend our proposed framework for the above use case as future

work.

Model Configuration G leverages 6 MGTConv blocks. Within the i-th block,

convolution layers use a kernel size k = 3 with 256 channels and exponentially

increasing dilation rates d = 2i, i ∈ {0, . . . , 5}. Each of G’s two outputs is

obtained by applying a standard temporal convolution with 1 filter and unit

stride. The dropout probability is set to pdrop = 0.5 and maintained at test time

for MC dropout sampling, from which S = 100 samples are obtained. For LG,

we tested λ ∈ {0.1, . . . , 1.0} and ultimately set λ = 0.3. D has 4 MGTConv

blocks with 256 channels, k = 5, and stride s = 2, corresponding to window

width WD = 61; the output layer applies a standard temporal convolution with

Uncertainty-Aware Generative Trajectory Imputation 48

1 filter and unit stride. All convolutions within UI-GAN are spectral-normalized

[90], while G and D are trained in a 1 : 1 alternating fashion using the default

Adam optimizer with learning rates 0.0001 and 0.0004. UI-GAN is trained with

a batch size of 512 for about 200 epochs, using early stopping conditioned on the

validation set. The final model was developed using TensorFlow 2.3.0, has 3.9M

parameters, and takes 0.28s per batch at training time, with G taking 0.6s per

MC sample per sequence at inference time. All hyperparameters were empirically

selected via trial-and-error based on the mean absolute error on the validation set.

Our ablation studies in Table 3.1 (bottom half) and Figure 3.4 (right subplot)

also provide guidelines into hyperparameter selection for the proposed UI-GAN.

Baselines and Evaluation Metrics Since our dataset contains naturally incom-

plete trajectories resulting in incomplete time series of motion features, we do

not include baselines that cannot handle originally missing data [22, 10] or are

ill-suited for time series [18, 19]. Therefore, UI-GAN is evaluated against (1)

mean and (2) forward (last value) imputation, (3) k-Nearest Neighbors (KNN)

[11], (4) Matrix Factorization (MF) [12], (5) Multiple Imputation using Chained

Equations (MICE) [13], (6)MissForest [14], (7) BRITS [16], and (8) E2GAN [21].

BRITS and E2GAN were selected because they are the state-of-the-art in multi-

variate time series imputation; while both leverage recurrent neural networks, the

proposed UI-GAN is instead based on CNNs for their computational efficiency

and demonstrated success with time series data [88]. While E2GAN resembles

our proposed framework in that both employ a GAN formulation, E2GAN does

not account for predictive uncertainty. Both BRITS and E2GAN were imple-

mented using their publicly available code, while the rest were provided by the

fancyimpute and missingpy libraries for Python. For k-NN, we found k = 10

to perform best.

49 3.3 Experiments

In the following experiments, we report the MAE calculated over all im-

puted and artificially dropped (but originally observed) motion features in the

normalized test set.

3.3.2 Results

Motion Feature Imputation To evaluate UI-GAN against the baselines on mo-

tion feature imputation, we report the MAE after artificially dropping 20%, 40%,

60%, and 80% of observed GPS points (and their corresponding motion features)

by sampling from a Bernoulli distribution. Our experimental results, summarized

in Table 3.1, show that UI-GAN consistently and significantly outperformed all

evaluated methods for all percentages of missing GPS points. In the case of 80%

missing data, UI-GAN attained an 18% improvement over E2GAN, which was

the best performing baseline. The subpar performance of BRITS may be in part

due to the lack of class labels in GAIA; this method was designed to jointly im-

pute and classify time series based on a downstream task. Among the machine

learning baselines, MissForest achieved the lowest MAE on average, followed by

MICE for all but 80% of missing data.

Ablation Study To empirically validate the contribution of dropout variational

inference, MGTConv blocks, and window-level D to the imputation performance

of UI-GAN, we repeated our experiments by varying WD ∈ {13, 29, 61, 125}, as

well as by removing either component while maintaining the other. Note that

the above range of window widths resulted from setting s = 2, k = 5 for D and

varying the number of layers in {2, 3, 4, 5}. As shown in Table 3.1, either using

a deterministic G or non-gated convolutions resulted in considerable increase in

MAE when more than 40% of data were missing. This is not surprising, as a de-

terministic G cannot account for the growing uncertainty caused by having fewer

Uncertainty-Aware Generative Trajectory Imputation 50

Table 3.1 : Imputation results (MAE, lower is bet-

ter) for percentages of artificially dropped GPS

points.

Missing Data
Method 20% 40% 60% 80%

Mean 0.198 0.200 0.201 0.202
Forward 0.101 0.108 0.120 0.146
KNN 0.107 0.113 0.126 0.177
MF 0.141 0.146 0.148 0.156
MICE 0.087 0.095 0.117 0.187
MissForest 0.073 0.080 0.092 0.124
BRITS 0.079 0.086 0.098 0.135
E2GAN 0.057 0.066 0.085 0.120

Non-Bayesian G 0.048 0.058 0.079 0.122
Non-gated Conv. 0.047 0.061 0.088 0.134
DW = 13 0.046 0.057 0.074 0.114
DW = 29 0.048 0.056 0.076 0.111
DW = 61 0.049 0.057 0.073 0.100
DW = 125 0.050 0.058 0.075 0.108

observations available during training, while standard convolutions are applied

to more features with invalid (zero) values. Moreover, smaller discriminator win-

dows DW performed better for sequences with lower percentages of missing data,

while DW = 61 worked better for higher percentages. This supports our intuition

towards designing a window-level rather than one-size-fits-all discriminator.

Uncertainty-filtered Imputation The ability to selectively impute values based

on some measure of confidence can be highly beneficial, as inaccurate estima-

tions may adversely affect subsequent data analysis and downstream applica-

51 3.3 Experiments

Figure 3.4 : MAE when only imputing motion feature timesteps that exceed con-

fidence thresholds (left). Sensitivity of MAE to number of MC Samples S (right).

In both cases, 40% of observed GPS points have been purposefully discarded.

tions. Defining confidence as the negative aleatoric or epistemic uncertainty, the

left subplot of Figure 3.4 shows that both were effective predictors of MAE. Fi-

nally, the right subplot of Figure 3.4 shows the sensitivity of MAE to the number

of MC samples S. Since MAE demonstrated marginal improvement for S > 100,

we selected this value throughout our experiments.

GPS Point Estimation While UI-GAN imputes motion features, the ultimate

aim is to estimate raw GPS points. Figure 3.5 visualizes our results for exemplar

trajectory segments exhibiting challenging patterns in change of direction. Ob-

served GPS points are in black, while dropped and estimated ones are in green

and red, respectively. In cases where GPS points were consecutively missing,

each was estimated using the last imputed point as the origin in eqs. (3.7a –

3.7d). Our qualitative results suggest that the proposed approach can generate

high-fidelity GPS points. We note that the median distance between imputed

and artificially dropped GPS points in the test set was 5.6 meters, or 18.4 feet.

Uncertainty-Aware Generative Trajectory Imputation 52

Figure 3.5 : Examples of incomplete trajectories imputed by UI-GAN. Observed,

dropped, and estimated GPS points are in black, green, and red. Note that

UI-GAN uses no underlying map information.

53 3.4 Summary

3.4 Summary

In this chapter, we viewed GPS trajectory imputation from a novel perspective to

address the shortcomings of related work in learning from incomplete trajectories

and capturing imputation uncertainty. Specifically, we first extracted incomplete

sequences of motion features measuring magnitude and angle of displacement; we

then trained an Uncertainty-aware Imputation GAN (UI-GAN) to impute them

and finally used the recovered motion features to estimate missing GPS points.

We also conducted an ablation study to empirically validate the necessity of

UI-GAN’s components, showing that its Bayesian generator effectively captured

uncertainty by producing lower MAE for motion features with lower aleatoric and

epistemic uncertainties.

Chapter 4

Supervised Trajectory Segmentation

by Transportation Mode

Since GPS trajectories may contain multiple transportation modes, it is stan-

dard practice to first segment them by transportation mode before feeding the

resulting segments to a classifier. In this chapter, we leverage recent develop-

ments in semantic image segmentation to propose a supervised deep learning

approach for extraction of same-transportation-mode segments from GPS trajec-

tories of arbitrary length. We achieve 71.7% mIoU on Microsoft’s Geolife dataset

[1, 34] without significantly over- or under-predicting transportation mode change

points. Compared to the best performing baseline, the proposed segmentation

model attains a nearly 2× reduction in mean absolute error between true and

predicted change points. We also introduce (1) a simple yet highly effective data

augmentation technique tailored to the above method, and (2) a majority-vote

post-processing step to smoothen the predicted segments, thereby minimizing

false timestep-level predictions. Both techniques are shown to significantly im-

prove segmentation performance.

The rest of this chapter is structured as follows. Section 4.1 formulates

Supervised Trajectory Segmentation by Transportation Mode 56

the problem of GPS trajectory segmentation. Section 4.2 describes the proposed

trajectory segmentation framework, including our data preprocessing steps, as

well as the proposed augmentation and post-processing techniques. Section 4.3

then presents our simulation setup and analyzes our experimental results. Section

2.3 examines the literature on semantic image segmentation, which inspired the

proposed trajectory segmentation approach. Finally, Section 4.4 concludes this

chapter.

4.1 Problem Formulation

In this section, we formulate the problem of partitioning GPS trajectories such

that each segment involves exactly one transportation mode. This is often a nec-

essary preprocessing step before transportation mode identification [56, 23]. For

the definitions of GPS point p, GPS trajectory T, and motion feature sequence

X, we refer the reader to Definitions 3.1, 3.2, and 3.3 in Section 3.1.1, respectively.

Definition 4.1 (GPS Trajectory Segment). Definitions 3.1 and 3.2 mean

that trajectory T may involve the use of multiple transportation modes. As

such, T can be partitioned into M > 0 consecutive non-overlapping segments

{G(0),G(1), . . . ,G(M−1)} such that each segment contains exactly one transporta-

tion mode. Defined formally, segment G(k) must satisfy the condition that

mode(i) = mode(j)∀(p(i),p(j)) ∈ G(k).

Definition 4.2 (Motion Feature Sequence Segment). Following Definitions

3.3 and 4.1, we convert single-transportation-mode trajectory segment G(k) into

a motion feature sequence segment F(k). The extraction of single-transportation-

mode trajectory segments (and associated motion feature sequence segments) is

required for our proposed shuffling-based data augmentation technique, which

will be presented in Section 4.2.2.

57 4.2 Proposed Framework

Problem 4.1 (Transportation Mode Segmentation). Given K target trans-

portation mode classes and GPS trajectory T of length ‖T‖ preprocessed into

a multivariate time series of N motion features X ∈ R‖T‖×N , predict the trans-

portation modes y ∈ {0, . . . , K−1}‖T‖ for each timestep t, where 0 ≤ t ≤ ‖T‖−1.

4.2 Proposed Framework

This section starts by detailing our data preprocessing pipeline, including fea-

ture extraction, outlier deletion, feature standardization, and appropriate reseg-

mentation or truncation of single-transportation-mode segments for use with the

proposed trajectory segmentation model. It then introduces the architecture of

the proposed trajectory segmentation model, as well as two techniques that we

devise in order to improve its performance: a preprocessing, shuffling-based data

augmentation technique, and a majority-vote post-processing step.

4.2.1 Data Preprocessing

We take the Geolife dataset [1, 34] by Microsoft Research Asia as an illustra-

tive example of real-world GPS trajectories in practice. It consists of both labeled

and unlabeled GPS trajectories, many of which involve multiple transportation

modes. For this reason, we first perform trajectory segmentation at preprocess-

ing time, identifying a new segment whenever there is a change in transportation

mode or the elapsed time between a pair of consecutive GPS points is larger than

twenty minutes. This threshold was introduced by Zheng et al. [1] and has since

been used by multiple studies [34, 3].

Following trajectory segmentation, we convert the available raw GPS data

to motion feature sequences. Concretely, we begin by calculating the relative

geodesic distance d(i) between p(i) and p(i+1) (in meters) using the established

Vincenty formula [92]; we also obtain the elapsed time t(i+1) − t(i) (in seconds).

Supervised Trajectory Segmentation by Transportation Mode 58

We then estimate higher-order derivatives of distance, including velocity v(i),

acceleration a(i), and jerk k(i):

d(i) = Geodesic(lat(i), lon(i), lat(i+1), lon(i+1)), (4.1)

v(i) =
d(i)

t(i+1) − t(i)
, (4.2)

a(i) =
v(i+1) − v(i)

t(i+1) − t(i)
, (4.3)

j(i) =
a(i+1) − a(i)

t(i+1) − t(i)
. (4.4)

We follow previous transportation mode identification literature [3, 46] as

well as our own preliminary experiments in selecting velocity, acceleration, and

jerk to train the proposed transportation mode segmentation model. We then

remove GPS points deemed unrealistic based on a set of heuristics [3]. Concretely,

we eliminate GPS points satisfying one or more of the following conditions:

• Either of its coordinates is invalid, i.e., lat(i) /∈ [−90, 90] or lon(i) /∈ [−180, 180];

• Its timestamp is greater or equal than its successor’s, i.e., t(i) ≥ t(i+1);

• Its velocity or acceleration is unreasonably high [3] based on its associated

travel mode.

Next, we discard any GPS point whose velocity, acceleration, or jerk exceeds

the 99th percentile. We also remove GPS points if their acceleration or jerk do not

surpass the 1st percentile. Observing that the distribution of velocities is highly

skewed towards near-zero values, we apply a cubic root transformation, before

finally standardizing all motion features to zero mean and unit variance.

Given that the above motion features are calculated for each GPS point,

it is important to address the common problem of missing data, indicated by

59 4.2 Proposed Framework

abnormally long distances between pairs of consecutive GPS points. While several

data imputation techniques could be applied to rectify this issue, including the one

proposed in Chapter 3, we note that reasonable amounts of missing data might not

be detrimental to transportation mode identification. Intuitively, suppose that a

user enters a tunnel where the GPS signal is blocked until the user finally exits,

resulting in a pair of GPS points separated by a 250-meter gap; it is expected

that the velocity of the first point with regards to the second would not be

overly anomalous, since their relative distance would increase proportionately

to the elapsed time. It is partly to address such cases that we do not employ

relative distance as a motion feature. We also note that, although the trajectory

imputation framework proposed in Chapter 3 could be leveraged to estimate

missing GPS points prior to motion feature calculation, this would condition the

performance of the proposed trajectory segmentation framework on that of the

imputation framework, thereby affecting the evaluation of the former.

4.2.2 Trajectory Segmentation Model

This section first describes the formatting of the preprocessed GPS data

for use with the proposed trajectory segmentation model, as well as the simple

shuffling-based data augmentation technique that we devised to improve segmen-

tation performance. Next, it presents the architecture of our trajectory segmenta-

tion model and analyzes its main components. Finally, this section concludes with

the post-processing step that we apply to the segmentation model’s timestep-level

predictions in order to refine the extracted segments.

Input Data and Augmentation

As will be discussed in the sequel, the proposed trajectory segmentation

model leverages a supervised deep convolutional architecture for timestep-level

classification. To learn segmentation boundaries between transportation modes,

Supervised Trajectory Segmentation by Transportation Mode 60

it requires samples containing sequences of multiple single-mode segments. There-

fore, after extracting such segments from raw GPS trajectories according to Sec-

tion 4.2.1, we first concatenate them into a single sequence before resegmenting

them into non-overlapping chunks of L timesteps, producing samples X ∈ RM×N

where N = 3 is the number of features. Since the segmentation model outputs

timestep-level predictions, the class labels for each segment are one-hot encoded

and repeated according to the segment’s length, resulting in labels y of shape

(M,K), where K = 5 is the number of classes.

We hypothesize that there is an inherent limitation to the standard prac-

tice of merely shuffling the training set during training, stemming from the nature

and size of our labeled dataset, as well as the segmentation task itself. Specifi-

cally, the model could be biased towards learning transitions (i.e., segmentation

boundaries) between transportation modes occurring more frequently in the la-

beled dataset. To mitigate this issue, we devise the following shuffling-based

data augmentation technique: after every training epoch, we shuffle the single-

transportation-mode segments within the training set and resegment them into

new non-overlapping chunks X ∈ RM×N together with their corresponding la-

bels y. In our experiments, this simple modification was shown to significantly

improve segmentation performance.

Model Architecture

Learning to detect high-precision boundaries between arbitrary-length seg-

ments, each involving a single transportation mode, requires a segmentation

model that can perform dense, timestep-level classification. Following seminal

work originally applied to images [29, 33, 30], as well as a recent related approach

to segmenting time series data [2], we design a fully convolutional encoder-decoder

architecture for trajectory segmentation. Figure 4.1 offers a high-level view of the

61 4.2 Proposed Framework

Encoder Block

5x
Decoder Block

 Input / Output
 1D Convolution

 Batch Normalization
Max Pooling

 Upsampling
1D Deconvolution

Skip
Connection

 } Concatenate

5x

Figure 4.1 : The proposed trajectory segmentation model is built by stacking five

encoder and five decoder blocks. At the i-th encoder block, convolutions use an

exponential dilation rate of 2i to increase the network’s receptive field as the input

dimensionality is downsampled. This information is passed to the decoder side

via skip connections and merged with the upsampled feature maps. The output

of the last decoder block is fed to a standard softmax-activated convolution layer

with K filters of unit length.

Supervised Trajectory Segmentation by Transportation Mode 62

proposed architecture, inspired by U-net [33].

For the most part, the encoder sub-network resembles a standard contract-

ing CNN: each encoder block halves its input dimensions while doubling the num-

ber of channels. To do so, it applies two zero-padded 1D convolutions and a max

pooling operation for downsampling. Each convolution layer is batch-normalized

to accelerate training convergence and reduce overfitting.

Where the encoder side mainly differs from traditional CNN architectures is

the use of dilated convolutions [30, 31]. Dilation allows convolutions to skip input

locations with step (or rate) d ∈ Z+, thus requiring fewer layers to increase the

network’s receptive field compared to standard convolutions. With fewer layers

implying fewer trainable parameters, such practice further reduces the risk of

overfitting. The two convolution layers at the i-th encoder block use a dilation

rate of 2i; for instance, the first encoder block corresponds to d = 20 = 1, which

reduces to standard convolution.

The decoder sub-network attempts to gradually recover the resolution of

the original input, aided by the incorporation of encoder-downsampled informa-

tion at each scale. This is achieved via the use of skip connections from each

encoder block to its same-scale decoder block. Specifically, each decoder block

first applies a nearest-neighbor upsampling operation to its input, followed by

a 1D deconvolution and batch normalization, then merges the resulting feature

map with the one from the encoder side by concatenating them along the channel

axis. Next, the decoder block applies two more 1D deconvolutions, each followed

by a batch normalization operation. Finally, a point-wise, standard 1D convolu-

tion with K scalar filters is applied to the feature map of the final decoder block

to produce K scores for each timestep of the input. Note that deconvolutions at

the decoder side are not dilated; while this was implemented at the encoder size

63 4.2 Proposed Framework

to expand the convolutions’ receptive fields, this information is readily available

to the decoder blocks due to the presence of the corresponding skip connections.

To train deep semantic segmentation models, most image-based studies

optimize the pixel-level cross entropy loss [28, 33, 67, 70]. Depending on the

properties of the data at hand, however, different objective functions may be more

suitable. For instance, to handle class imbalance within samples, [2] minimizes

the generalized dice loss; a viable alternative is to optimize the pixel-level cross

entropy loss with sample re-weighting. As discussed in Section 4.2.2, we train

the proposed segmentation model on samples consisting of concatenated variable-

length trajectory segments. Therefore, to avoid producing a model biased towards

longer segments, we optimize the generalized dice loss, defined as:

Ldice(Y, Ŷ) = 1− 2

K

∑K
k

∑L
l Yk,lŶk,l∑K

k

∑L
l Yk,l + Ŷk,l

, (4.5)

where Y, Ŷ are matrices containing predicted and ground-truth labels, respec-

tively, and K is the number of classes. Indeed, during our preliminary exper-

iments, we empirically found that minimizing the above loss rather than the

timestep-level cross entropy loss produced significantly better results.

Post-processing

After training the segmentation model, one could obtain single-transportation-

mode segments by simply performing inference on the test set and concatenating

consecutive timesteps classified into the same class. However, timestep-level er-

rors could result in either fragmented or noisy segments, as empirically supported

by our experiments in Section 4.3.2. Such segments could subsequently compli-

cate transportation mode identification.

To reduce timestep-level errors and smoothen the extracted segments, we

propose a simple majority-vote post-processing step, which is applied in an over-

Supervised Trajectory Segmentation by Transportation Mode 64

lapping sliding window manner to the segmentation model’s flattened output

following inference. Moving from left to right, the predicted class at timestep t is

set to the modal value of theW/2 classes preceding and theW/2 classes following

timestep t, where hyperparameter W is defined as the post-processing window

width. When there are fewer than W/2 timesteps before or after t, as may be

the case near the beginning or ending of the model’s flattened output, we simply

calculate the modal value using as many timesteps as available.

4.3 Experiments

In this section, we first introduce the dataset used to evaluate the proposed tra-

jectory segmentation model and the hardware on which we performed our exper-

iments. Then, we provide a description of our segmentation model configuration,

as well as the established baselines and performance metrics that we use to eval-

uate it. After analyzing our experimental findings, we finally assess the necessity

of the segmentation model’s main components through an ablation study.

4.3.1 Dataset and Simulation Setup

Our experiments were conducted on the same computing server as described

in Section . We report the averaged results of five independent executions for all

evaluation metrics.

Dataset

We evaluate the proposed framework on the real-world, openly available

Geolife dataset [1, 34], which has been established as a benchmark in transporta-

tion research. Geolife encompasses 18, 670 GPS trajectories obtained from 182

individuals during five years, totaling nearly 25 million GPS points and 1.3 mil-

lion kilometers. Most trajectories were sampled every 1 − 5 seconds in Beijing,

65 4.3 Experiments

China. Only 69 users partially annotated their trajectories by transportation

mode. For model evaluation purposes, only labeled trajectories are used in our

experiments. We note that it would be possible to also include unlabeled trajecto-

ries, for instance, by having the trained segmentation model perform inference on

them and then incorporating the extracted segments in training of the clustering

model. However, the selected standard evaluation metrics demand ground-truth

labels, and hence may only be applied to labeled samples. Learning from unla-

beled trajectories is also possible via semi-supervised or unsupervised training of

the segmentation model. To the best of our knowledge, such methods have not

yet been explored in the context of GPS trajectory segmentation, and are left for

future work.

Regarding the transportation modes included in Geolife, we follow Zheng

et al. [1, 34] in treating taxis and private cars as a single class, car ; we do

the same for trains and subways, which are merged into the train class. We

follow standard practice [1, 34, 3] and only keep the transportation mode classes

sufficiently represented in the dataset, i.e., walk, bike, bus, car, and train. For

the segmentation model, the labeled trajectories are then divided into training,

validation, and test sets using an 80/10/10 split. The resulting trajectories are

then preprocessed into sequences of motion features as described in Section 4.2.1

and prepared for the segmentation model as per Section 4.2.2.

Model Configuration

Our trajectory segmentation model first downsamples its input via five en-

coder blocks, whose convolution layers have 16, 32, 64, 128, and 256 filters, re-

spectively; their dilation rates are 1, 2, 4, 8, and 16. Each convolution layer uses

same padding and a kernel with length 3, and is connected to a batch normal-

ization layer. The decoder leverages five decoder blocks to gradually restore the

Supervised Trajectory Segmentation by Transportation Mode 66

original dimensionality through nearest-neighbor upsampling and deconvolution

layers with 256, 128, 64, 32, and 16 filters. All deconvolution layers use same

padding and a kernel of length 3, and are connected to a batch normalization

layer. We apply the Rectified Linear Unit (ReLU) activation function to all con-

volutions and deconvolutions, except for the convolution having unit kernel length

that follows the final decoder layer, which has 5 filters and produces timestep-

level predictions using the softmax function. The segmentation model is trained

for 400 epochs using the Adam optimizer with learning rate 10−4 and default

hyperparameters β1 = 0.9, β2 = 0.999; this was empirically found to produce

the best results on the validation set. Regarding the sample length L, although

L ∈ {128, 256, 512} worked reasonably well in preliminary experiments, we set

L = 2048 for improved computational efficiency during training. For the selected

value of L, the optimal post-processing window width W was determined to be

256 using the same validation set, following the experimental results visualized

in Figure 4.2.

Baselines

To assess the accuracy of the proposed trajectory segmentation model, we

evaluate it against the four most prominent segmentation methods among the

relatively few used in the GPS-based transportation mode identification litera-

ture:

1. Uniform segmentation. A naive approach to trajectory segmentation is to

extract fixed-size, non-overlapping chunks of timesteps from each trajectory.

Dabiri and Heaslip [23] use a window of 200 points, which they found to be

the median length of the labeled GPS trajectories in Geolife.

2. Heuristics-based change point detection. Following the intuition that walk-

ing must precede any change of transportation mode, Zheng et al. [1] pro-

67 4.3 Experiments

pose a four-step method that divides trajectories into alternating walk and

non-walk segments, based on distance, velocity, and acceleration thresholds.

Xiao et al. [26] additionally identify gaps caused by GPS signal interruption,

extracting change points at the boundaries of both walk and gap segments.

Note that we omit references [24, 25, 27] from our experiments since they

are largely hyperparameter variations of Zheng et al. [1]; in our preliminary

experiments, they only attained marginal improvements.

3. Optimization-based change point detection. The two-step trajectory seg-

mentation method proposed by Dabiri et al. [3] first applies uniform seg-

mentation to each trajectory, and then converts the obtained segments into

multivariate time series of velocity and acceleration features before feed-

ing them to an optimization-based model. The latter attempts to produce

subsegments such that the homogeneity within each subsegment is maxi-

mized, while the number of change points is penalized by a hyperparameter-

controlled linear function.

We implement each baseline as per the description in its cited study, including any

hyperparameters or data preprocessing steps. For fair comparison, all evaluated

methods are assessed on the same test set, which comprises 10% of the labeled

data. We note that, while other semantic image segmentation frameworks like

DeepLab [31] may also be adapted to transportation mode segmentation, our aim

is to evaluate the proposed framework against existing work designed specifically

for transportation mode segmentation of GPS trajectories.

Evaluation Metrics

The proposed semantic segmentation model labels each timestep by trans-

portation mode. On the contrary, the above baselines detect transportation mode

change points, i.e., the discrete timesteps where the transportation mode changes,

Supervised Trajectory Segmentation by Transportation Mode 68

without knowledge of the specific mode corresponding to each segment. Since

these methods are label-agnostic, evaluation metrics commonly used in the se-

mantic segmentation literature, such as the dice coefficient or the mean Inter-

section over Union, are not applicable to them. To allow for direct comparison

with our model, we simply scan its output from left to right, extracting change

points as the timesteps where the predicted transportation mode changes. We

then evaluate the above baselines using the following evaluation metrics:

• Mean Absolute Error (MAE). As the number of predicted and ground-

truth change points may differ, we first identify for each predicted change

point ĉi ∈ ĉ its nearest ground-truth cj ∈ c. As most trajectories in

Geolife have been sampled at a rate of 1−5 seconds, we preserve generality

by measuring the distance between two change points by the number of

timesteps separating them. Then, given ‖ĉ‖ predicted change points ĉ and

their nearest ground-truth change points c′, the MAE is calculated as:

MAE =
1

‖ĉ‖

‖ĉ‖−1∑
i=0

|c′i − ĉi|. (4.6)

We select this metric as it estimates the average magnitude of the error

without considering direction. The underlying assumption is that the num-

ber of timesteps between c′i and ĉi matters more than whether ĉi precedes

or comes after c′i. Please note that the definition of MAE here is different

from the one in Chapter 3.

• Prediction Ratio (PR). The PR is computed as:

PR =
‖ĉ‖
‖c‖

. (4.7)

When PR < 1 or PR > 1, the segmentation model is said to under- or over-

predict change points. Either case could complicate transportation mode

identification, even if the MAE is low: too few change points could mean

69 4.3 Experiments

Table 4.1 : Trajectory segmentation evaluation

results in terms of MAE, PR, and mIoU. Lower

MAE, PR ≈ 1, and higher mIoU values are bet-

ter.

Segmentation Method MAE PR mIoU

Dabiri and Heaslip [23] 728.4 3.12 -

Dabiri et al. [3] 526.1 1.23 -

Xiao et al. [26] 287.7 2.34 -

Zheng et al. [1] 234.5 1.91 -

Proposed 119.4 1.02 0.717

noisy segments with more than one transportation mode, while too many

would result in short segments that might be harder to classify. Therefore,

a segmentation model should strive for values of PR ≈ 1.

• Mean Intersection over Union (mIoU). The mIoU metric, typically used

in evaluating semantic image segmentation models [29, 31], quantifies the

overlap between predicted and ground-truth segments as:

mIoU =
1

K

∑
i

Ni,i∑
j Ni,j +

∑
j Nj,i −Ni,i

, (4.8)

where K is the number of classes, Ni,j is the number of ground-truth

timesteps in class i predicted as belonging to class j, and
∑

j Ni,j is the

total number of ground-truth timesteps in class i.

4.3.2 Results

Our experimental results are presented in Table 4.1. The proposed tra-

jectory segmentation model consistently outperformed all evaluated baselines,

Supervised Trajectory Segmentation by Transportation Mode 70

demonstrating the lowest MAE of 119.4 while at the same time not significantly

over- or under-predicting change points.

Although each of the selected baselines has its own merit, they are not

without limitations. Uniform segmentation [23] offers simplicity at the expense

of producing noisy segments likely to contain multiple transportation modes.

Indeed, in our experiments, uniform segmentation attained both the highest MAE

and PR among all methods. Guided by domain-specific knowledge, the heuristics-

based segmentation baselines [1, 26] both produced much lower MAEs, although

they still predicted approximately twice the number of change points compared

to the ground truth. This might be due to such methods not always being able

to account for unexpected traffic conditions [1].

Scoring the second highest MAE of 526.1, despite having the second best

PR, the sub-par performance of optimization-based segmentation [3] is not sur-

prising: this method is applied to each fixed-size segment individually, thereby

failing to consider the entire data distribution. However, the assumption of sam-

ples being independent and identically distributed may not hold for trajectory

data collected from numerous users with likely different road behaviors, such as

the data at hand.

Ablation Study and Hyperparameter Tuning

We posit that the promising performance of our trajectory segmentation

model depends on its following distinguishing components: (1) shuffling-based

data augmentation, (2) dilated encoder convolutions, (3) encoder-decoder skip

connections, and (4) segmentation post-processing. To quantify the influence of

these components on the selected evaluation metrics, we iteratively remove one

of them and train our model from scratch while maintaining the rest. As such,

the corresponding ablations are defined as follows:

71 4.3 Experiments

Table 4.2 : Segmentation model ablation results in terms of MAE, PR, and mIoU.

Ablation Post-processing MAE PR mIoU

1
7 242.4 9.94 0.557

3 186.7 1.23 0.591

2
7 233.6 4.45 0.694

3 167.7 1.36 0.703

3
7 203.0 2.06 0.675

3 149.7 1.08 0.682

Proposed
7 225.9 2.82 0.713

3 119.4 1.02 0.717

1. Shuffling-based data augmentation. Once the training set for the segmenta-

tion model is generated as per Section 2.2.2, the samples are merely shuffled

into new batches on every epoch following standard neural network training

practice.

2. Dilated encoder convolutions. The exponentially dilated convolutions at

each encoder block are replaced with standard convolutions.

3. Encoder-decoder skip connections. The skip connections from encoder

blocks to their counterparts at the decoder side are removed.

Table 4.2 shows the experimental results of the ablation study, with each

ablation being evaluated with and without the post-processing step introduced

in Section 4.2.2. It is evident that not including the proposed shuffling-based

data augmentation scheme, i.e., ablation 1, caused the largest degradation in seg-

mentation performance. In addition, ablations 2 and 3 both demonstrated worse

Supervised Trajectory Segmentation by Transportation Mode 72

Figure 4.2 : Sensitivity of the proposed segmentation model’s MAE, PR, and

mIoU to a wide range of post-processing window widths W . Lower MAE, PR ≈ 1,

and higher mIoU values are better.

results than the proposed method, especially without the proposed majority-vote

post-processing step. While ablation 3 achieved somewhat comparable results to

our segmentation model when the post-processing step was applied to both, the

former required approximately 150 more training epochs until convergence.

Crucially, the proposed post-processing step seems to considerably improve

segmentation performance for all ablations, provided that its window width W is

tuned accordingly. Figure 4.2 plots the values of the selected evaluation metrics

on the training, validation, and test sets as W ranges from 0 to 2048. It is

evident that W = 256 produced the best combination of scores for the selected

evaluation metrics on the validation set; this might be linked to the median

segment length, which is 291 following our data preprocessing steps in Section

4.2.1. While W < 256 had little effect on mIoU, it resulted in much higher

MAE and change point over-prediction. On the other hand, W > 256 did not

significantly affect the MAE, except when W = 2048. Nonetheless, it caused

a significant reduction in mIoU, as well as under-prediction of change points.

We note that larger values for W may include less related predictions in the

voting scheme; in this direction, we leave the exploration of weighted majority-

vote schemes for future work.

73 4.4 Summary

4.4 Summary

Learning to detect transportation modes within segments of users’ often unla-

beled GPS trajectories is essential for travel demand analysis, transportation

management, and infrastructure design. In this chapter, we proposed a deep

learning framework to address the challenging task of GPS-based trajectory seg-

mentation by transportation mode. Following extraction of motion features from

raw GPS data, we first trained a deep convolutional segmentation architecture

for timestep-level classification, drawing inspiration from recent developments in

semantic image segmentation. We then obtained single-mode segments by merg-

ing consecutive timestep-level instances of the same transportation mode in the

model’s output. Our results showed that the proposed trajectory segmentation

approach considerably outperformed existing baselines, with our shuffling-based

data augmentation and majority-vote post-processing techniques further refin-

ing the predicted segments to achieve 71.7% mIoU on Geolife, without over- or

under-predicting transportation mode change points.

Chapter 5

Bayesian Unsupervised Trajectory

Segmentation

In the previous chapter, we proposed a transportation mode segmentation frame-

work based on supervised deep learning. With GPS trajectories typically not

being labeled by transportation mode due to privacy concerns or lack of motiva-

tion, it is imperative to design a transportation mode segmentation framework

that is not dependent on label availability. Drawing inspiration from recent devel-

opments in semantic segmentation, deep clustering, and Bayesian deep learning,

in this chapter we reframe GPS trajectory segmentation as timestep-level trans-

portation mode identification; the latter follows our methodology in Chapter 4.

As such, we design a channel-calibrated Bayesian Temporal Convolutional Net-

work (BTCN) for unsupervised, uncertainty-aware GPS trajectory segmentation.

BTCN extends standard TCNs, recently proposed as a sequence modelling alter-

native to recurrent neural networks [88], with (1) Squeeze-and-Excitation (SE)

blocks [93] to encourage learning interdependencies between channels, and (2)

Monte Carlo (MC) dropout sampling as an approximation of variational infer-

ence [85] to not only capture predictive uncertainty but also use it to refine

Bayesian Unsupervised Trajectory Segmentation 76

predictions. In our experiments on Microsoft’s Geolife dataset [1, 34], BTCN

achieved 65.8% timestep-level accuracy without using any labels, outperforming

established baselines as well as its non-Bayesian variant.

The rest of this chapter is organized as follows. Section 5.1 introduces

Bayesian deep learning. Section 5.2 details the architecture of BTCN, includ-

ing how it performs dropout variational inference and quantifies predictive un-

certainty, as well as the unsupervised segmentation objective function that is

optimized during training. Section 5.3 then presents our simulation setup and

analyzes our experimental results. Section 2.5 examines the literature on deep

clustering, a body of works that perform clustering using deep neural networks,

which inspired the unsupervised segmentation technique used to train the pro-

posed framework. Finally, Section 5.4 concludes this chapter. For definitions of

key GPS-trajectory-related terms used in this chapter, as well as our formulation

of the transportation mode segmentation problem, we refer the reader to Sec-

tion 4.1. The content of this chapter is taken from a conference paper [94] that

has been published in the Proceedings of the 35th AAAI Conference on Artificial

Intelligence.

5.1 Bayesian Deep Learning

Let D = {(X(i),y(i))}n−1
i=0 be a dataset of observations X and targets y.

For a standard fully connected neural network with L stacked hidden layers and

parameters θ = {(W(l),b(l))}Ll=0, the ReLU-activated output of the l-th hidden

layer can be written as:

H(l) = ReLU(W(l)H(l−1) + b(l)). (5.1)

For K-class classification, the neural network’s output logits are typically acti-

vated using the softmax activation function. The model likelihood is then given

77 5.2 Proposed Framework

by:

p(y = e(j)|X, θ) =
exp
(
W

(L)
j,: h(L−1) + b(L)

)
∑

k∈K exp
(
W

(L)
k,: h(L−1) + b(L)

) , (5.2)

where e(j) is a one-hot encoded vector, i.e., e
(j)
j = 1 and all other elements are

zeros.

In contrast, Bayesian neural networks place a prior distribution p(θ) on

their weights and biases, resulting in the posterior distribution:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=

∏n−1
i=0 p(y

(i)|X(i), θ)p(θ)

p(D)
, (5.3)

and the following predictive distribution for new inputs X′, y′:

p(y′|X′,D) =

∫
Θ

p(y′|X′, θ)p(θ,D) dθ. (5.4)

However, analytical estimation of the posterior is typically intractable, as it re-

quires integration with respect to Θ, i.e., the space of all parameters, for which

a closed form often does not exist. One way to approximate the posterior is

through variational inference, which optimizes the Kullback-Leibler divergence

between the posterior p(θ|D) and a variational distribution qω(θ) with parame-

ters ω [95]. Another approach is to approximate variational inference itself by

applying stochastic regularization techniques like dropout to non-Bayesian neural

networks. As will be detailed in the following section, we approximate variational

inference via MC dropout sampling [85].

5.2 Proposed Framework

This section first introduces the Bayesian temporal convolutional network pro-

posed for GPS trajectory segmentation. Next, it explains how we approximate

variational inference and capture uncertainty to refine model predictions. Finally,

it presents the objective function that is optimized to learn the unsupervised seg-

mentation task.

Bayesian Unsupervised Trajectory Segmentation 78

Temporal Residual Block

SE Block

BTCN

GPS Traj ectory

M C Dropout Sampling

M otion Feature Ex traction

0 0 0 0 2 2 2 2 3 3 3 30 0 0 0 2 2 2

Temporal Residual Block

SE Block

Temporal Residual Block

SE Block

Figure 5.1 : Overview of the proposed trajectory segmentation framework. At

test time, GPS trajectories are preprocessed into sequences of motion features

and repeatedly fed to the proposed BTCN while dropout remains activated. The

mean of these aggregated softmax probabilities is taken as the final predictions,

while their variance is used to quantify predictive uncertainty.

79 5.2 Proposed Framework

A high-level architectural view of BTCN is given in Figure 5.1. BTCN

fuses TCNs with SE blocks [93] to enrich the learned temporal trajectory repre-

sentations with knowledge of feature map interdependencies. At inference time,

a sequence of motion features is extracted from each GPS trajectory and sampled

from BTCN multiple times while dropout is activated. Variational inference is

approximated by the mean of these aggregated softmax probabilities constitut-

ing the final predictions, while their variance is used to estimate aleatoric and

epistemic uncertainties.

5.2.1 Bayesian Temporal Convolutional Network

Given GPS trajectory T converted into a sequence of motion features X,

one way to approach trajectory segmentation is via standard sequence modelling

practice, i.e., using recurrent neural networks. However, recurrent architectures

can be cumbersome to train, owing to reduced parallelism, vanishing or exploding

gradients, as well as high memory requirements [88]. On the other hand, recent

work has demonstrated that TCNs can effectively address the above issues and

even outperform recurrent architectures in established sequence modelling tasks

[88]. As such, the architecture of the proposed BTCN is based on TCNs.

Architecture

Similarly to TCNs, the basic component of BTCN is the temporal residual

block. As shown in Figure 5.2(a), the residual path first performs an optional

1D convolution with unit kernel size to ensure that the number of input features

matches the desired number of output channels. Crucially, the latter is set equal

to the length of the input sequence, allowing TCNs to produce sequences of the

same length as their input. Next, the block applies two consecutive 1D convo-

lutions that are dilated, ReLU-activated, and batch-normalized, before feeding

their output to a final dropout layer. Contrary to standard convolutions, dilated

Bayesian Unsupervised Trajectory Segmentation 80

Global Avg
Pooling 1D

Dense

Dense

Dilated
Conv1D

BatchNorm

Dropout

 (or) (or) (or) (or) (or) (or) (or) (or) (or) (or) (or) (or) (or)

(a) Temporal Residual Block (b) SE Block

Conv1D

Figure 5.2 : The main components of the proposed BTCN. Temporal residual

blocks leverage dilated 1D convolutions to capture high-resolution temporal in-

formation without need for downsampling. Always-on dropout layers are inserted

to approximate variational inference via MC dropout sampling. The feature maps

produced by each temporal residual block are subsequently recalibrated via an

SE block.

ones apply filters over a larger area than their own by skipping input values with

step d, otherwise known as dilation rate. As a result, dilation allows convolution

layers to expand their receptive fields as the network depth grows, preserving

input resolution without need for downsampling.

While stacking temporal residual blocks allows TCNs to uncover tempo-

ral dependencies among timesteps, we posit that it may not sufficiently account

for dependencies within the channels themselves. Consequently, we follow recent

work in this direction [93] and incorporate SE blocks after each temporal residual

block. As shown in Figure 5.2(b), the SE block first embeds channel informa-

81 5.2 Proposed Framework

tion in X̂ ∈ RM×N across the temporal dimension using global average pooling.

Specifically, a vector z ∈ RM is built such that:

zm =
1

M

M−1∑
m=0

cm. (5.5)

Then, the SE block scales down the resulting feature maps by a factor of r ∈ Z+,

before rescaling them and applying a self-gating mechanism. This is achieved

using two fully connected (or dense) layers with weights W(0) ∈ RM/r and W(1) ∈

RM ; the operations can be formally described as follows:

ẑ = σ(W(1)(ReLU(W(0)z))), (5.6)

where σ(·) denotes the sigmoid activation function. The gated output ẑ is fi-

nally multiplied with the block’s input to construct the final output X̃ ∈ RM×N ,

effectively promoting the most useful channels.

Dropout Variational Inference

As mentioned earlier, BTCN approximates variational inference via dropout.

This corresponds to injecting each deterministic W(l) ∈ θ with noise following a

Bernoulli distribution to create its stochastic counterpart. In practice, dropout is

applied after each convolution in the network with probability of dropping con-

nections pdrop, except for the output layer. Importantly, dropout is enabled not

only during training but also at inference time; we perform S stochastic forward

passes of X to obtain class probabilities P ∈ RM×K×S, which are averaged to

produce the posterior distribution of class probabilities P̂ ∈ RM×K . This process

is known as MC dropout sampling [85].

Predictive Uncertainty Quantification

Given S MC dropout samples with class probabilities P ∈ RM×K×S re-

shaped into P ∈ RS×M×K , the total predictive uncertainty can be approximated

Bayesian Unsupervised Trajectory Segmentation 82

by the variance σ[P]2 of P, defined by Ribeiro et al. [96] as:

σ[P]2 ≈ tr(E[diag(P)−PPT]︸ ︷︷ ︸
aleatoric

+E[P2]− E[P]2︸ ︷︷ ︸
epistemic

)

= tr(A) + tr(E), (5.7)

where matrices A and E correspond to aleatoric and epistemic uncertainties, re-

spectively. Their traces are then taken to produce a single aleatoric and epistemic

uncertainty value per timestep.

5.2.2 Segmentation Objective Function

For unsupervised trajectory segmentation, we leverage the mutual-information-

based deep clustering method in reference [55] for its demonstrated effectiveness

in semantic image segmentation over centroid-based clustering approaches. It

takes the K-dimensional softmax predictions for each timestep in the input se-

quence and attempts to maximize the mutual information between neighboring

pairs of timestep patches.

Note that the original image-based work obtained pairs of neighboring

patches not only within each image in the dataset, but also from synthetic images

generated via multiple data augmentations; however, time series data augmen-

tation is non-trivial, especially for the problem at hand. Intuitively, it would be

hard to verify whether perturbed motion features would still realistically corre-

spond to the same transportation mode. Therefore, considering only adjacent

pairs of timestep patches centered at u and u + t, where t ∈ T ⊂ Z+ is a small

displacement, the original clustering objective can be written as:

max
f

1

|T |
∑
t∈T

I(Pt), (5.8a)

Pt =
1

n|Ω|

n−1∑
i=0

∑
u∈Ω

fu(X(i)) · [f(X(i))]Tu+t, (5.8b)

83 5.3 Experiments

where f is a neural network, in this case BTCN, and fu(X(i)) is its output for

patch u ∈ Ω = {0, . . . ,M − 1} centered at timestep u within the input motion

feature sequence X(i).

5.3 Experiments

5.3.1 Dataset and Simulation Setup

We conducted our experiments on the hardware detailed in . Deep learning

models were developed using TensorFlow 2.3.0. Each baseline was implemented

as per the description in its cited study. The reported values for all evaluation

metrics were averaged over five executions.

Dataset

We evaluate BTCN and the selected baselines (see below) on Geolife [1, 34],

a description of which was provided in Section 4.3.1. In accordance with Zheng et

al. [1, 34], we view taxis and private cars as a single car class, while subways and

trains are merged into the train class. We follow the literature [1, 34, 3] in only

selecting trajectories that involve segments of the following classes: walk, bike,

bus, car, and train. For evaluation purposes, we only use labeled trajectories; no

ground-truth labels are involved in model training. All trajectories are split into

chunks of length M and divided into training and test sets using a 90/10 ratio.

Preprocessing

For each trajectory, we first discard any GPS point whose timestamp ex-

ceeds that of the following point, or whose geographic coordinates fall outside of

valid ranges. Next, we extract velocity, acceleration, and jerk features using eqs.

Bayesian Unsupervised Trajectory Segmentation 84

(4.1 – 4.4). We also estimate the turn u(i) as follows:

u(i) = tan−1 Geodesic(lat(i), lon(i), lat(i−1), lon(i))

Geodesic(lat(i), lon(i), lat(i), lon(i−1))

− tan−1 Geodesic(lat(i), lon(i), lat(i+1), lon(i))

Geodesic(lat(i), lon(i), lat(i), lon(i+1))
. (5.9)

Note that we empirically select these four motion features following established

transportation mode identification literature [1, 3, 44]. The features are finally

standardized by removing the mean and scaling to unit variance. We empirically

set the sample length M to 128, such that X ∈ R128×4.

Model Configuration

BTCN uses 3 consecutive pairs of temporal residual and SE blocks. Within

the i-th temporal residual block, both convolutions combine a larger kernel size of

8 with exponentially increasing dilation rates d = 2i, i ∈ {0, 1, 2}. The dropout

probability pdrop is set to 0.2 for all dropout layers, as in reference [96]; it is

maintained at test time as required for MC dropout sampling, from which S = 50

samples are obtained. For all SE blocks, the reduction ratio r is set to 8. We

train BTCN for 200 epochs using the Adam optimizer with a learning rate of

10−5 and default hyperparameters β1 = 0.9, β2 = 0.999.

Baselines

BTCN is evaluated against the four most prominent trajectory segmenta-

tion methods among the relatively few found in the GPS-based transportation

mode identification literature:

• Uniform segmentation. Dabiri and Heaslip [23] follow a simple approach

to trajectory segmentation by partitioning trajectories into fixed-size, non-

overlapping segments. Specifically, they use a window of 200 points, which

85 5.3 Experiments

they reported as the median length of the labeled GPS trajectories in the

Geolife dataset.

• Heuristics-based change point detection. Zheng et al. [1] follow the intu-

ition that walking segments must separate any other transportation modes,

proposing a method that divides trajectories into alternating walk and non-

walk segments based on distance, velocity, and acceleration thresholds. Xiao

et al. [26] build on this seminal approach by also identifying gaps due to

GPS signal interruption as change points. We do not include references

[24, 25, 27] in our experiments since they constitute to a considerable ex-

tent hyperparameter variations of Zheng et al. [1].

• Optimization-based change point detection. After applying uniform seg-

mentation to each trajectory, Dabiri et al. [3] convert the resulting segments

into multivariate time series of velocity and acceleration and pass them to

an optimization-based model. This model produces subsegments such that

the homogeneity within each is maximized, while the number of change

points is managed via a hyperparameter-controlled linear function.

We note that, while other deep clustering frameworks such as the ones in

references [53, 54] may also be adapted to transportation mode segmentation,

our aim is to evaluate the proposed framework against existing work designed

specifically for transportation mode segmentation of GPS trajectories.

Evaluation Metrics

Following standard clustering evaluation practice [48, 55], all classes pre-

dicted by BTCN and its variants are first mapped to the ground-truth classes

using linear assignment [97]. Segmentation performance is then measured by

timestep-level accuracy (ACC).

Bayesian Unsupervised Trajectory Segmentation 86

Although BTCN assigns transportation mode labels at timestep-level, the

evaluated baselines are not endowed with label information. Instead, they only

detect transportation mode change points (the discrete timesteps where the mode

changes), without explicit knowledge of the previous or the next transportation

mode. To enable direct comparison with the proposed BTCN, we simply scan

its predictions from left to right and detect change points at the timesteps where

the predicted transportation mode changes. We finally evaluate BTCN against

the selected baselines using the following evaluation metrics:

• Mean Absolute Error (MAE). Since the number of predicted and ground-

truth change points is likely to differ, we first map each predicted change

point ĉi ∈ ĉ to its nearest ground-truth cj ∈ c. With most trajectories

in Geolife having been sampled every 1–5 seconds, we maintain generality

by measuring the distance separating two change points by the number of

discrete timesteps between them. Given ‖ĉ‖ predicted change points ĉ and

their nearest ground-truth change points c′, we then calculate the MAE

as MAE = 1
‖ĉ‖
∑‖ĉ‖−1

i=0 |c′i − ĉi|. Our choice of this metric is under the

assumption that the number of timesteps between c′i and ĉi matters more

than whether ĉi precedes or comes after c′i.

• Prediction Ratio (PR). Let ‖ĉ‖, ‖c‖ denote the total numbers of predicted

change points ĉ and true change points c, respectively. We compute the

PR as PR = ‖ĉ‖/‖c‖. When PR < 1, the segmentation model is said

to under-predict change points, resulting in noisy segments with multiple

transportation modes. In the case of over-prediction (PR > 1), the segmen-

tation model tends to produce shorter segments that are less informative

and thus harder to classify. Either case may complicate transportation

mode identification even if the MAE is low.

87 5.3 Experiments

Table 5.1 : GPS trajectory segmentation evaluation results. Where applicable,

accuracies are reported for each class, with ACC denoting global accuracy. Higher

ACC, lower MAE, and PR ≈ 1 is better. Training time is in minutes.

Segmentation Method Walk Bike Bus Car Train ACC MAE PR Train (min)

Dabiri and Heaslip [23] N/A N/A 728.4 3.12 N/A

Dabiri et al. [3] N/A N/A 526.1 1.23 0.02

Xiao et al. [26] N/A N/A 287.7 2.34 N/A

Zheng et al. [1] N/A N/A 234.5 1.91 N/A

TCN (non-Bayesian, no SE) 0.821 0.755 0.416 0.376 0.726 0.619 31.5 3.51 33.89

TCN (non-Bayesian, r = 8) 0.799 0.782 0.441 0.367 0.812 0.640 26.1 2.92 45.12

BTCN (no SE) 0.792 0.752 0.414 0.391 0.775 0.625 29.7 2.84 33.67

BTCN (r = 2) 0.827 0.727 0.349 0.478 0.753 0.627 25.8 2.04 45.14

BTCN (r = 4) 0.809 0.773 0.353 0.485 0.744 0.632 28.3 2.43 45.21

BTCN (r = 8) 0.820 0.811 0.396 0.475 0.789 0.658 24.7 1.97 45.15

BTCN (r = 16) 0.773 0.799 0.454 0.416 0.751 0.638 28.1 2.44 44.93

5.3.2 Results

Performance Evaluation

Our experimental results are summarized in Table 5.1. BTCN consistently

and significantly outperformed all evaluated methods, with its lowest MAE of

24.7 constituting a nearly 10× improvement over the best-performing baseline

[1]. Recall that our definition of MAE measures the mean number of discrete

timesteps between true and predicted change points; for unit GPS sampling rate,

our result means BTCN would only take approximately 25 seconds on average to

identify a change in transportation mode, while the above baseline would require

nearly 4 minutes. Although the proposed method did demonstrate change point

over-prediction on par with the baselines, it is important to note that BTCN is

designed for timestep-level classification rather than change point detection. In

Bayesian Unsupervised Trajectory Segmentation 88

fact, we formalized trajectory segmentation based on mutual information maxi-

mization alone, without explicitly penalizing over-segmentation. This is an open

problem, especially in the absence of labels, and is left for future work.

Regarding the baselines, we find that despite its simplicity of implementa-

tion, uniform segmentation [23] ultimately resulted in noisy segments involving

multiple transportation modes. This is empirically supported by our experiments,

where uniform segmentation attained not only the highest MAE but also the high-

est PR. The heuristics-based baselines [1, 26] both fared significantly better in

terms of MAE, but still predicted nearly twice the number of change points com-

pared to the ground truth. This is likely because hard thresholds are unable to

account for a wide range of unexpected traffic conditions [1]. We also observe

that optimization-based segmentation [3] achieved the best PR yet had the sec-

ond highest MAE of 526.1. This result is within our expectations, as this method

is individually applied to uniformly-segmented samples and does not consider the

entire distribution. In other words, it makes the strong assumption that the sam-

ples are independent and identically distributed. Such an assumption is unlikely

to be true for trajectories collected from numerous users at different times and

traffic or weather conditions.

Ablation Study

To quantify the contribution of dropout variational inference and SE blocks

to the performance of BTCN, we evaluate the latter when both components are

disabled, as well as by removing either component while maintaining the other.

As shown in Table 5.1, the non-Bayesian variant without SE blocks achieved the

lowest global and per-class accuracy. Adding MC dropout pushed the global ac-

curacy from 61.9% to 62.5%, while enabling SE blocks with r = 8 instead boosted

it to 64.0%, and combining both components resulted in the highest global accu-

89 5.3 Experiments

Table 5.2 : Performance and uncertainty metrics for BTCN over number of Monte

Carlo samples.

S ACC MAE PR Aleatoric Epistemic

1 0.6763 32.6 4.03 1.047E-02 0.0

2 0.6769 31.0 3.23 1.050E-02 3.902E-01

5 0.6775 29.3 2.76 1.043E-02 6.401E-01

10 0.6776 28.3 2.41 1.042E-02 7.162E-01

20 0.6777 27.2 2.22 1.048E-02 7.516E-01

50 0.6778 26.5 2.08 1.044E-02 7.746E-01

100 0.6778 26.1 2.02 1.047E-02 7.818E-01

racy at 65.8%. In fact, the best accuracy for four out of five classes was attained

by the full BTCN, albeit with different reduction ratios r, while removing either

of the Bayesian or SE components resulted in nearly twice the over-prediction of

change points. We note that, while some ablations were relatively close in terms

of MAE, the results for ACC and PR were much more varied, thus painting a

clearer picture of how each ablation influenced segmentation performance.

Finally, Table 5.2 shows the sensitivity of evaluation and uncertainty metrics

to the number of MC samples S. For this experiment, we used the best-performing

BTCN out of 5 executions. Although global accuracy did not seem to drastically

improve as S increased, the MAE dropped by about 19% and the PR was nearly

halved. No noticeable improvement to accuracy was observed when S > 50,

which is the value we used throughout our experiments.

Bayesian Unsupervised Trajectory Segmentation 90

Uncertainty-filtered Segmentation

For safety-critical intelligent transportation applications involving GPS tra-

jectory segmentation, the ability of a model to selectively make timestep-level

predictions based on some measure of confidence could be beneficial. Figure

5.3 shows how global and per-sample accuracy varies under different confidence

percentiles for the best-performing BTCN out of 5 executions. In this context,

confidence was simply defined as the negative aleatoric or epistemic uncertainty.

It appears that selectively classifying timesteps with higher aleatoric con-

fidence consistently achieved higher global and per-class accuracy. On the con-

trary, we noted minimal global accuracy improvement in the case of epistemic

confidence; there were almost no variations until the 90th percentile, followed by

a sharp drop for the 95th and 99th percentiles. It is hypothesized that the poor

performance of epistemic confidence as a measure of accuracy in our work is tied

to the unsupervised, mutual-information-based objective function that BTCN

was trained with.

5.4 Summary

In this chapter, we introduced a novel GPS trajectory segmentation approach

to address the shortcomings of related GPS-based work in learning from unla-

beled data and capturing predictive uncertainty. Viewing trajectory segmentation

through the scope of semantic image segmentation, the proposed BTCN reached

65.8% timestep-level accuracy on Microsoft’s Geolife dataset, significantly outper-

forming established GPS-based baselines. We also conducted an ablation study

to empirically validate the necessity of its components, and showed that BTCN

effectively captured uncertainty by producing higher accuracy for input timesteps

with lower aleatoric uncertainty.

91 5.4 Summary

0 25 50 75 100
Aleatoric Confidence Percentile

0.68

0.69

0.70

0.71

0.72

0.73

Gl
ob

al
 A

cc
ur

ac
y

0 25 50 75 100
Aleatoric Confidence Percentile

0.5

0.6

0.7

0.8

Pe
r-C

la
ss

 A
cc

ur
ac

y

walk
bike
bus
car
train

0 25 50 75 100
Epistemic Confidence Percentile

0.64

0.65

0.66

0.67

0.68

Gl
ob

al
 A

cc
ur

ac
y

0 25 50 75 100
Epistemic Confidence Percentile

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
r-C

la
ss

 A
cc

ur
ac

y

Figure 5.3 : Global and per-class accuracy of BTCN when only classifying

timesteps that exceed confidence thresholds.

Chapter 6

Unsupervised Trajectory

Transportation Mode Identification

In the previous chapter, we introduced a transportation mode segmentation model

based on unsupervised deep learning to handle use cases where transportation

mode labels are not available. Here, we focus on scenarios where trajectories

are again unlabeled but have already been segmented by transportation mode.

This can be achieved via any of the existing segmentation methods based on

heuristics or change point detection; please refer to Section 2.2 for more details.

Concretely, this chapter develops an unsupervised deep learning framework for

transportation mode identification based on GPS data. First, we pretrain a

Convolutional AutoEncoder (CAE) on fixed-length, single-transportation-mode

trajectory segments converted in sequences of local motion features. Next, we

connect the embedding layer of the CAE to a custom clustering layer whose

trainable weights correspond to cluster centroids, following Guo et al. [83]. We

finally resume training the resulting clustering model by balancing its clustering

and reconstruction losses such that clustering-friendly structure is encouraged in

the learned input representations. Since label information is not used at training

Unsupervised Trajectory Transportation Mode Identification 94

time, we also integrate motion-related statistics computed over each segment as

global features. The proposed clustering framework attains 80.5% accuracy on

Geolife [1, 34] without depending on ground-truth labels. As far as we know, this

constitutes the first approach to grouping GPS trajectory segments by mode of

transportation based on unsupervised deep learning.

The remainder of this chapter is organized as follows. Section 6.1 formulates

the problem of clustering segments of GPS trajectories by travel mode. Section

6.2 presents the proposed framework, including our data preprocessing pipeline,

the segment-level or global features that we incorporated to boost clustering ac-

curacy, and the components of the clustering model. Section 6.3 describes our

experimental setup and ablation study results, with Section 6.4 concluding this

chapter. For definitions of key GPS-trajectory-related terms used in this chapter,

please refer to Section 4.1. The content of this chapter is taken from a con-

ference paper [98] that has been published in the proceedings of the IEEE 23rd

International Conference on Intelligent Transportation Systems.

6.1 Problem Formulation

Problem 6.1 (Clustering by Transportation Mode). Given GPS trajectory T

transformed into motion feature sequence X, we frame the problem of cluster-

ing the single-transportation-mode segments in X into K clusters as the mini-

mization of a custom clustering loss. Concretely, we aim to assign each single-

transportation-mode segment to one of K disjoint clusters such that the prob-

ability distance between an approximated auxiliary distribution Q and a true

distribution P of neural-network-encoded trajectory segments is optimized. For

further details on the proposed approach, the reader is referred to Section 6.2 .

95 6.2 Proposed Framework

6.2 Proposed Framework

This section first describes the CAE that we use to learn lower-dimensional em-

beddings of high-dimensional input data. Then, it specifies the custom clustering

layer holding learnable weights corresponding to cluster centroids that we con-

nect to the embedding layer of the CAE. Finally, it introduces the two objective

functions that fuse the clustering layer with the CAE, resulting in the proposed

clustering model.

6.2.1 Convolutional Autoencoder

Autoencoders are a class of neural networks that aim to reconstruct their

input under deliberate constraints that are set to promote the extraction of mean-

ingful embeddings or latent representations. Without sacrificing generality, an

autoencoder comprises an encoder network that embeds X to a latent repre-

sentation H, based on which a decoder network produces X̂ in an attempt to

recover X. As a special case of autoencoders, CAEs leverage convolutions to pro-

cess their inputs. When the dimensionality of the input is larger than that of the

autoencoder’s embedding layer, we refer to the autoencoder as undercomplete.

We draw inspiration from deep clustering approaches (see Section 2.5) in-

volving joint optimization of the reconstruction and clustering losses [83, 84], due

to their balance between simplicity and effectiveness. To learn preliminary input

embeddings, a fully convolutional undercomplete autoencoder is first pretrained;

the term fully convolutional means that no fully connected (or dense) layers are

employed, which is unlike related work in CAE-based deep clustering [84, 48, 83].

For this adaptation, we leverage convolutions with unit kernel length and shape

transformation layers. We design the encoder and decoder networks to be sym-

metrical, with the former being built by stacking convolution layers connected to

max pooling layers; that is, with the exception of the encoder’s embedding layer,

Unsupervised Trajectory Transportation Mode Identification 96

which is its last convolution layer and is not connected to a max pooling layer.

The decoder network stacks deconvolution and upsampling layers, instead. We

configure convolution and deconvolution layers to use same padding so that their

outputs maintain the input length. Each convolution and deconvolution layer

(except for the output layer) is batch-normalized to accelerate training conver-

gence.

Following our trajectory preprocessing steps in Section 4.2.1, all trajectories

are converted to multivariate motion feature sequences of velocity, acceleration,

and jerk. We then partition these sequences using the available labels so that

each of the resulting segments involves exactly one mode of transportation. The

resulting single-transportation-mode segments vary significantly in length. Yet

our CAE only accepts fixed-size sequences of shape (L,N), where L denotes the

number of GPS points (or timesteps) in a segment of N motion features. For

the proposed framework, we have empirically selected L = 128, N = 3 based on

preliminary experiments. We therefore partition all single-transportation-mode

segments into non-overlapping slices X ∈ RL×N and eliminate any segment with

fewer than L remaining GPS points.

Note that a simple way to circumvent the CAE’s requirement for fixed-size

inputs is to use recurrent autoencoders. Nonetheless, recurrent neural networks

are significantly slower to train and often suffer from gradient vanishing or explo-

sion issues [88]. Besides, setting a minimum number of GPS points per segment

follows the intuition that short segments, especially those where a large portion

of their GPS points have near-zero velocity, may not be informative enough to

cluster confidently. For instance, Dabiri et al. [3] set a much smaller minimum

number of 20 GPS points per segment of length 248 and perform zero-padding;

however, zero-padded features are still processed by CNNs, and the authors did

not mask or otherwise account for these features when designing the cost function.

97 6.2 Proposed Framework

To avoid biasing the learned trajectory representations, in contrast to Dabiri et al.

[3], we do not implement zero-padding and do not make additional assumptions

such as minimum segment distance or duration to preserve generality.

We pretrain the CAE by minimizing the reconstruction loss Lr, measured by

the mean squared error between original sample X ∈ RL×N and its reconstruction
ˆX ∈ RL×N as follows:

Lr =
1

LN

∑
i,j

(Xi,j − X̂i,j)
2. (6.1)

We note that our CAE operates on fixed-size, medium-length inputs. This

ensures that the segments to be subsequently clustered each correspond to exactly

one transportation mode and are long enough to be informative, at the expense

of discarding smaller amounts of otherwise potentially useful data.

6.2.2 Clustering Layer

After the CAE is pretrained, we connect its embedding layer to a custom

clustering layer as in reference [83]. The latter holds cluster centroids as trainable

weights A, where Aj,: denotes the j-th centroid’s coordinates and K refers to the

number of desired clusters. In this study, we set K = 5 to equal the number of

classes that we aim to recognize in the dataset, as will be discussed in Section

6.3.1.

During forward propagation, we employ Student’s t-distribution to esti-

mate probabilities of cluster membership Qi,j for the i-th embedded sample Z(i)

according to:

Qi,j =
(1 + ‖Z(i) −Aj,:‖2)−1∑
j (1 + ‖Z(i) −Aj,:‖2)−1

. (6.2)

Given Qi,j, we obtain soft label q(i) for Z(i) as the index of the maximum proba-

bility in Qi,: and approximate the normalized target distribution P by:

Pi,j =
Q2

i,j/
∑

i Qi,j∑
j (Q2

i,j/
∑

i Qi,j)
. (6.3)

Unsupervised Trajectory Transportation Mode Identification 98

 Input / Output
 1D Convolution

 Batch Normalization
1D Deconvolution

4x
Encoder Block Decoder Block

qi

Clustering Layer

Reshape
Max Pooling

Upsampling

4x

Figure 6.1 : Overview of the proposed deep clustering model. We connect the em-

bedding layer of a CAE to a custom clustering layer that holds trainable weights

corresponding to cluster centroids. These are learned jointly with the parameters

of the CAE following pretraining.

During backpropagation, embedded samples Z ∈ Z are clustered through

optimization of the Kullback-Leibler (KL) divergence between distributions P

and Q:

Lc = KL(P ‖ Q) =
∑
i

∑
j

Pi,j log
Pi,j

Qi,j

. (6.4)

6.2.3 Composite Clustering Model

Our clustering model, visualized in Figure 6.1, is initialized by pretrain-

ing a CAE and connecting its embedding layer to a specialized clustering layer

according to Sections 6.2.1 and 6.2.2. Next, the clustering model is trained by

optimizing the following:

L = Lr + γLc, (6.5)

99 6.2 Proposed Framework

where γ is a hyperparameter that adjusts the influence of the clustering loss.

Selecting γ = 1 and Lr = 0 reduces the above to the objective function employed

by Xie et al. [48]. This essentially discards the decoder of the CAE and is likely

to cause the optimization process to distort the learned representations. Instead,

Guo et al. [83] use γ = 0.1 to regulate the effect of the clustering loss, which they

show results in better-defined clusters.

A significant consideration is the frequency by which the target distribution

P should be updated. While doing so too often may destabilize the clustering

process, the opposite may also trap it in local minima. To adjust the frequency

of updating the target distribution, we define hyperparameter φ as a fraction of

a training epoch. For example, φ = 0.5 calls for updating the target distribution

twice in a single epoch, while φ = 2 instead results in updating it once per two

epochs.

It is important to note that, by predicting the transportation mode for

every timestep in the input motion feature sequence, the segmentation model

that we introduced in Section 4.2 can be used for both trajectory segmentation

and mode identification. However, while it learns to distinguish transportation

modes strictly based on labels, the clustering model is instead guided by the

motion feature similarity between segments. As such, the latter could help experts

gain useful insights into designing and optimizing ITSs by uncovering various

mobility-related patterns that the supervised segmentation model could not. For

instance, it could highlight classes with high sample variance; as shown in the

leftmost subplot of Figure 6.2, cars were often mistaken for buses and trains

due to exhibiting similar point-level motion patterns. Another use case could be

to cluster segments for individual users, thereby helping understand their traffic

behaviors in relation to other users. Finally, given the time-consuming, error-

prone nature of manual trajectory annotation, it is likely that any such dataset

Unsupervised Trajectory Transportation Mode Identification 100

will contain erroneous labels. While training the supervised segmentation model

on mislabeled samples could result in misclassified segments, the latter could still

be safely used to train the clustering model since it does not learn from label

information.

We also note that, in our experiments, we can determine the transportation

modes associated with each cluster because the ground-truth labels are available

(but not seen by the model during training). In real-world applications where

ground-truth data are not available, determining the specific transportation mode

associated with each cluster may require further analysis by transportation do-

main experts, since the proposed clustering method clusters trajectory segments

based on their motion features.

6.2.4 Global Features

Along with the three local features extracted using eqs. (4.2 – 4.4) in

Section 4.2.1 (velocity v, acceleration a, jerk k), we further integrate four features

based on velocity for each trajectory segment. Our intuition is that these global,

segment-level features may serve as meaningful clues at training time.

Specifically, we estimate for each truncated segment X of length L the

(1) mean, (2) expectation of, and (3) max velocity. Drawing inspiration from

reference [34], we further compute the (4) stop rate, which Zheng et al. define

as the ratio of the number of timesteps where velocity falls below a set value

to the overall distance of the associated segment. Instead, we modify the above

definition to divide by the segment length L. Our definition of the stop rate

can be formalized as ‖S‖/L, where S = {p(i)|p(i) ∈ X, v(i) < 3m/s}. To fuse

our global features with the three timestep-level (local) features, the former are

repeated L times and concatenated with the latter, resulting in seven features in

total.

101 6.3 Experiments

6.3 Experiments

In this section, we first introduce the dataset used to evaluate the proposed trans-

portation mode identification model and the hardware on which we performed

our experiments. Then, we specify the model configuration, baselines, and eval-

uation metrics, before finally presenting our experimental results and ablation

studies and hyperparameter sensitivity tests.

We conducted our experiments on the same computing server as in Section

5.3.1. We report the averaged results of five separate executions for all selected

evaluation metrics.

6.3.1 Dataset and Simulation Setup

Dataset

We base our experiments on the openly available Geolife dataset [1, 34]

which was described in Section 4.3.1. For model evaluation purposes, we only use

labeled trajectories (belonging to 69 out of 182 participants) in our experiments.

We note that it would be possible to also include unlabeled trajectories, e.g.,

by having the trained segmentation model in Section 4.2.1 perform inference on

them and then incorporating the extracted segments in training of the clustering

model. However, this would condition the evaluation of the clustering model on

the aptitude of the segmentation model. Since the selected standard evaluation

metrics require ground-truth labels, they are only applied to the labeled data.

We follow established transportation mode identification literature [1, 34,

3] in only retaining sufficiently-represented classes, namely walk, bike, bus, car

(cars and taxis), and train (trains and subways). As per standard practice in

unsupervised learning [48, 50], all labeled trajectories are used to both train and

evaluate the clustering model; crucially, no ground-truth labels are involved when

Unsupervised Trajectory Transportation Mode Identification 102

training the latter. The originally labeled trajectories are finally preprocessed into

sequences of local and global motion features, as described in Sections 4.2.1 and

6.2.4, respectively.

Model Configuration

The encoder network within the CAE is built by stacking five convolution

layers with {32, 64, 128, 256, 1} filters, respectively. The first three layers employ

same padding and kernels of length 3, while the remaining ones use valid padding

and a stride of 7 and 1, respectively. We use the ReLU function to activate every

convolution and deconvolution layer, minus the final convolution on the encoder

side and the final deconvolution of the decoder; these are not activated. We

employ the Adam optimizer to pretrain the CAE for 600 epochs using an initial

learning rate of 0.001 and default hyperparameters β1 = 0.9, β2 = 0.999. We

then attach the custom clustering layer and resume training the entire model

with learning rate 0.0001. Except for our ablation studies, we set clustering

hyperparameters φ = 2, γ = 20 in our experiments. Training stops when, during

an epoch, not more than 0.1% of segments are assigned to another cluster.

Baselines

To assess the hypothesized advantage of fusing local features with global

ones, clustering performance is reported when using either local, global, or both

sets of features. We evaluate the proposed framework against the following ten

baselines, grouped into three categories:

1. Traditional clustering on high-dimensional features. We evaluate the k-

Means (KM), Spectral Clustering (SC), and Hierarchical Agglomerative

Clustering (HAC) algorithms on high-dimensional samples X. We use their

implementation as provided by the scikit-learn Python library. Because

103 6.3 Experiments

these implementations are not designed for high-dimensional inputs, each

feature is represented by its mean value for a given sample.

2. Traditional clustering on embedded features. In contrast to the above

baseline group, where traditional clustering algorithms are applied to high-

dimensional samples X, here we apply them to K-dimensional samples Z

as embedded by our pretrained CAE (without the clustering layer and as-

sociated loss). We disambiguate the resulting clustering cases as CAE-KM,

CAE-SC, and CAE-HAC.

3. Semi-supervised classification on high-dimensional features. Given that,

to the best of our knowledge, the literature has not yet explored unsuper-

vised GPS-based transportation mode identification, we compare the per-

formance of the proposed framework with the following four semi-supervised

classification baselines: Semi-Two-Steps (STS), Semi-Pseudo-Label (SPL),

SEmi-supervised Convolutional Autoencoder (SECA) [3], and Multi-View

training with Proxy Labels (MVPL) [45]. STS first pretrains an autoen-

coder on labeled and unlabeled samples and then attaches a softmax layer,

using the encoder-learned latent representations in supervised training. SPL

generates pseudo-labels for the unlabeled data by selecting the most likely

predicted class on every update of the neural network’s weights, thereby al-

lowing for joint supervised training on labeled and unlabeled instances. For

a summary of SECA and MVPL, please refer to Section 2.4. The reported

results for STS, SPL, and SECA are obtained from reference [3], where they

are trained using 10% of the labeled data. The reported results for MVPL,

which is trained on just 1% of labeled data, are similarly obtained from

reference [45].

Unsupervised Trajectory Transportation Mode Identification 104

Evaluation Metrics

Given predicted cluster assignments ŷ ∈ {0, . . . , K − 1}L and ground-truth

labels y ∈ {0, . . . , K−1}L, we quantify clustering performance using the following

evaluation metrics:

• Accuracy (ACC). According to reference [99], clustering accuracy can be

defined as:

ACC(y, ŷ) =
1

‖y‖

‖y‖−1∑
i=0

δ(y(i),Map(ŷ(i))), (6.6)

where δ(y, ŷ) = 1 if y = ŷ, otherwise δ(y, ŷ) = 0. Function Map(ŷ(i))

returns a mapping of predicted label ŷ(i) to its associated ground-truth.

The assignment Map(ŷ(i)) is formulated as a linear program and determined

based on the Hungarian method [97]. Please note that, unlike its prior

definition in Chapter 5, accuracy here is measured at instance- rather than

timestep level.

• Normalized Mutual Information (NMI). We define NMI as:

NMI(y, ŷ) =
MI(y, ŷ)

max(H(y), H(ŷ))
, (6.7a)

MI(y, ŷ) =

‖y‖−1∑
i=0

‖ŷ‖−1∑
j=0

|y(i) ∩ ŷ(j)|
m

log
m|y(i) ∩ ŷ(j)|
|y(i)||ŷ(j)|

, (6.7b)

where H(y) and H(ŷ) are the entropies of vectors y and ŷ, and MI(y, ŷ)

denotes their mutual information. Here, NMI quantifies how much our

knowledge about the ground-truth classes would increase given the pre-

dicted clusters.

Note that, although there exist evaluation metrics that do not rely on ground-

truth labels, such as the Silhouette Coefficient or the Calinski-Harabasz Index, we

select ACC and NMI following standard practice in the deep clustering literature.

105 6.3 Experiments

Table 6.1 : Clustering evaluation results in terms of ACC and NMI (higher values

are better).

Features Local Global All

Method ACC NMI ACC NMI ACC NMI

KM .544 .387 .731 .589 .618 .507

SC .405 .304 .699 .585 .591 .512

HAC .521 .361 .662 .573 .595 .505

CAE-KM .642 .419 .659 .544 .774 .610

CAE-SC .479 .368 .657 .540 .752 .603

CAE-HAC .649 .425 .618 .534 .757 .593

Proposed .701 .479 .738 .586 .805 .644

Importantly, this also enables direct comparison with published results from the

semi-supervised baselines.

6.3.2 Results

Our experimental results are reported in in Tables 6.1 and 6.2. The pro-

posed clustering framework considerably outperformed the traditional clustering

algorithms when using either local or all features. Compared with the semi-

supervised baselines, it considerably outperformed STS, SPL, and SECA, with

the latter reaching 62.9% accuracy using not only trajectory segments of approx-

imately twice the length (248 GPS points, whereas we merely used 128), but

also 10% ground-truth label information (versus our 0%). Although MVPL at-

tained a higher accuracy than our framework, we note that it still leverages label

information and benefits from 128 additional features extracted via Fourier and

Unsupervised Trajectory Transportation Mode Identification 106

Table 6.2 : Comparison of the proposed unsupervised approach (using all fea-

tures) with competitive semi-supervised baselines.

Method Labeled Data ACC

STS [3] 10% .544

SPL [3] 10% .589

SECA [3] 10% .629

MVPL [45] 1% .848

Proposed 0% .805

Figure 6.2 : Illustration of the clusters identified by the proposed clustering model

when using timestep-level (local), segment-level (global), and all motion features.

Samples plotted in green, red, orange, magenta, and blue correspond to bike,

walk, car, train and bus classes.

107 6.3 Experiments

wavelet transforms. We leave the exploration of these features towards improving

the performance of our clustering model for future work. Overall, it appears that

the combination of point-level or local features with segment-level or global ones

produced significant ACC and NMI improvements for all baselines.

Figure 6.2 provides a visualization of the proposed framework’s generated

clusters in the two-dimensional space. When using local features (left subplot),

we observe good overall cluster separation with the exception of the one associ-

ated with the car class. Even though just using global features attained higher

accuracy, we note in the middle subplot that these features produced ill-formed

clusters, thereby emphasizing the expected advantage of fusing local features with

global ones. Indeed, this fusion resulted in not only the highest clustering accu-

racy but also the best formed clusters, as shown in the right subplot.

Regarding the traditional clustering methods, their subpar performance

with either local or the combined features of the original high-dimensional data

is not surprising. This partly because the features for each sample were averaged

over 128 timesteps to obtain the appropriate dimensionality. Indeed, we ob-

serve that the same methods scored far better results with the lower-dimensional

CAE-learned representations of the aforementioned features. They also fared

significantly better on the global features, where k-Means almost matched the

accuracy of the proposed framework; an intuitive explanation for this is that low

dimensionality of the global features should better fit these clustering methods.

Hyperparameter Sensitivity

Since unsupervised learning is not guided by ground-truth annotations,

model hyperparameter tuning becomes a non-trivial task. As such, it is de-

sirable that the performance of unsupervised models not degrade significantly for

sensible hyperparameter variations.

Unsupervised Trajectory Transportation Mode Identification 108

Table 6.3 : Sensitivity of accuracy to clustering loss strength γ.

Features
γ

.1 .2 .5 1 2 5 10 20 50 100

Local .657 .668 .676 .681 .684 .690 .689 .701 .698 .699

Global .708 .714 .693 .718 .692 .700 .721 .738 .696 .680

All .796 .794 .786 .786 .792 .785 .791 .805 .790 .783

Table 6.4 : Accuracy versus target distribution update frequency φ.

Features
φ

.1 .2 .5 1 2 5 10 20 50 100

Local .515 .535 .626 .693 .701 .694 .699 .700 .700 .699

Global .648 .650 .665 .685 .738 .719 .706 .721 .726 .723

All .769 .756 .799 .788 .805 .783 .802 .805 .804 .803

To examine the sensitivity of the proposed framework to hyperparameters

γ and φ, we begin by setting φ = 2 (i.e., a value that performs well in practice)

and evaluate γ ∈ {0.1, 0.2, 0.5, 1, 2, . . . , 100}. The results in terms of clustering

accuracy are shown in Table 6.3. We observe that our model is rather sensitive to

γ < 1 when using local features, as well as γ > 20 in the case of global features. On

the contrary, when trained on both local and global features, it remains relatively

stable throughout the selected range of γ values.

We then select γ = 20 and assess the proposed clustering framework for φ ∈

{0.1, 0.2, 0.5, 1, 2, . . . , 100}. According to Table 6.4, it appears that considerable

instability occurs when using (i) local features and φ < 1, or (ii) global features

109 6.4 Summary

and φ < 2. Moreover, φ < 0.5 also degrades clustering accuracy when using both

local and global features. Overall, the proposed clustering framework is more

robust to different values of φ when employing all features.

6.4 Summary

In this chapter, we introduced a framework based on unsupervised deep learning

to cluster segments of GPS trajectories according to their associated transporta-

tion mode. After pretraining a convolutional autoencoder on fixed-length trajec-

tory segments converted to motion feature sequences, we connected its embedding

layer to a specialized clustering layer holding cluster centroids as learnable pa-

rameters. Next, we retrained the entire clustering model by jointly minimizing

the weighted sum of the autoencoder’s reconstruction loss and the custom layer’s

clustering loss. The proposed clustering framework attained 70.1% clustering

accuracy on Geolife using point-level or local features, considerably outperform-

ing not only traditional clustering methods but also the state-of-the-art in semi-

supervised travel mode identification. Importantly, the fusion of local features

with global ones computed for every trajectory segment boosted clustering accu-

racy to an even higher 80.5%. We conducted extensive case studies to evaluate

the proposed framework’s hyperparameter sensitivity and found that it is robust

to the weight of the clustering loss as well as to the frequency by which we update

the target distribution.

Chapter 7

Conclusion and Future Work

Transportation mode identification lies at the core of future intelligent transporta-

tion systems. The ability to deduce users’ transportation modes from their GPS

traces can benefit a variety of ITS operations, ranging from personalized adver-

tisements and route recommendations to dynamic public transportation schedul-

ing and traffic light optimization. Nonetheless, there remain significant challenges

to its real-world applicability.

Although signal lapses in urban areas often render users’ trajectories incom-

plete, most transportation mode identification approaches have not attempted to

recover missing GPS points prior to preprocessing and classification. In Chapter

3, we introduced an uncertainty-aware imputation GAN to reconstruct incom-

plete sequences of magnitude and angle of displacement, before estimating unob-

served GPS points using the recovered motion features. The proposed alternative

imputation target allows UI-GAN to generalize to any geographic area without

underlying map information.

With GPS sensors not readily capturing transportation mode informa-

tion, the resulting trajectories are not automatically segmented by transporta-

Conclusion and Future Work 112

tion mode. Inspired by recent developments in semantic image segmentation, in

Chapter 4 we reframed trajectory segmentation as timestep-level transportation

mode identification. Different from existing approaches focusing on identifying

transportation mode change points using heuristics or optimization-based meth-

ods, the proposed deep learning framework is the first to learn the segmentation

task from transportation mode labels.

Combined with privacy concerns, the labor-intensive nature of manual an-

notation mean that users’ trajectories are typically not labeled by transportation

mode. To this end, in Chapter 5 we proposed an unsupervised channel-calibrated

Bayesian temporal convolutional network that learns to segment trajectories by

maximizing the mutual information between temporally neighboring feature map

patches, without using any transportation mode labels. BTCN leverages chan-

nel attention to capture feature map interdependencies and approximates vari-

ational inference via Monte Carlo dropout, using the mean and variance of the

predicted distributions for timestep-level classification and predictive uncertainty

estimation. To the best of our knowledge, BTCN is the first trajectory segmenta-

tion framework to leverage unsupervised deep learning and support uncertainty-

filtered segmentation.

For the same reason, we introduced the first unsupervised deep learning

framework for transportation mode identification in Chapter 6. After reducing

the trajectory segments’ dimensionality via unsupervised pretraining of an under-

complete convolutional autoencoder, we equip its embedding layer with a cluster-

ing module whose weights correspond to cluster centroids and resume training.

We strike a balance between its reconstruction and clustering losses to encourage

clustering-friendly latent representations and further incorporate motion-related

features computed over each segment to improve accuracy.

113

We demonstrated the effectiveness of the proposed approaches via extensive

experiments on established real-world datasets. Our experiments confirmed their

superiority over existing approaches as well as the necessity of their components.

Future trajectory imputation and segmentation studies may consider using

graph neural networks to capture not only temporal but also spatial information

from non-Euclidean road network representations. Another promising research

direction is how to effectively penalize over-segmentation in the absence of labels.

This may be achieved via the design of novel segmentation objective functions,

possibly in combination with appropriate post-processing schemes.

Most GPS-based transportation mode identification studies typically pre-

process trajectories into sequences of motion features such as velocity or accel-

eration. These representations have been shown to be more suitable than raw

GPS points for training machine or deep learning models, offering better gener-

alization to geographic areas insufficiently covered in the training set. However,

incomplete or irregularly-sampled trajectories result in noisy motion features and

thus uncertain samples at training and test time. As such, it may be worthwhile

to explore data-driven feature extraction in place of manual motion feature pre-

processing. Finally, future work may investigate early classification approaches

to satisfy the requirements of time-critical transportation applications.

Bibliography

[1] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation mode from

raw GPS data for geographic applications on the web,” in Proceedings of the

17th International Conference on World Wide Web, Beijing, China, 2008,

pp. 247–256.

[2] M. Perslev, M. Jensen, S. Darkner, P. J. Jennum, and C. Igel, “U-time:

A fully convolutional network for time series segmentation applied to sleep

staging,” in Advances in Neural Information Processing Systems, Vancouver,

Canada, 2019, pp. 4417–4428.

[3] S. Dabiri, C.-T. Lu, K. Heaslip, and C. K. Reddy, “Semi-supervised deep

learning approach for transportation mode identification using GPS trajec-

tory data,” IEEE Transactions on Knowledge and Data Engineering, vol. 32,

no. 5, 2020.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for

unsupervised learning of visual features,” in Proceedings of the European

Conference on Computer Vision, Munich, Germany, 2018, pp. 132–149.

[5] A. C. Prelipcean, G. Gidofalvi, and Y. O. Susilo, “Transportation mode

detection – an in-depth review of applicability and reliability,” Transport

Reviews, vol. 37, no. 4, pp. 442–464, 2017.

Bibliography 116

[6] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing transporta-

tion systems via deep learning: A survey,” Transportation Research Part C:

Emerging Technologies, vol. 99, pp. 144–163, 2019.

[7] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of low-

sampling-rate trajectories,” in IEEE 28th International Conference on Data

Engineering. Arlington, VA, USA: IEEE, 2012, pp. 1144–1155.

[8] P. Banerjee, S. Ranu, and S. Raghavan, “Inferring uncertain trajectories

from partial observations,” in 2014 IEEE International Conference on Data

Mining. Shenzhen, China: IEEE, 2014, pp. 30–39.

[9] Y. Li, Y. Li, D. Gunopulos, and L. Guibas, “Knowledge-based trajectory

completion from sparse GPS samples,” in Proceedings of the 24th ACM

SIGSPATIAL International Conference on Advances in Geographic Infor-

mation Systems, San Francisco, CA, USA, 2016, pp. 1–10.

[10] Z. Wang, S. Zhang, and J. J. Yu, “Reconstruction of missing trajectory

data: A deep learning approach,” in IEEE 23rd International Conference on

Intelligent Transportation Systems (ITSC). Rhodes, Greece: IEEE, 2020,

pp. 1–6.

[11] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,

D. Botstein, and R. B. Altman, “Missing value estimation methods for dna

microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–525, 2001.

[12] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[13] I. R. White, P. Royston, and A. M. Wood, “Multiple imputation using

chained equations: issues and guidance for practice,” Statistics in Medicine,

vol. 30, no. 4, pp. 377–399, 2011.

117 Bibliography

[14] D. J. Stekhoven and P. Bühlmann, “MissForest—non-parametric missing

value imputation for mixed-type data,” Bioinformatics, vol. 28, no. 1, pp.

112–118, 2012.

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural

networks for multivariate time series with missing values,” Scientific Reports,

vol. 8, no. 1, pp. 1–12, 2018.

[16] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional

recurrent imputation for time series,” in Advances in Neural Information

Processing Systems, 2018, pp. 6775–6785.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.

[18] J. Yoon, J. Jordon, and M. Van Der Schaar, “GAIN: Missing data imputation

using generative adversarial nets,” in International Conference on Machine

Learning, 2018.

[19] S. C.-X. Li, B. Jiang, and B. Marlin, “MisGAN: Learning from incomplete

data with generative adversarial networks,” in International Conference on

Learning Representations, 2019.

[20] Y. Luo, X. Cai, Y. Zhang, J. Xu et al., “Multivariate time series imputation

with generative adversarial networks,” in Advances in Neural Information

Processing Systems, 2018, pp. 1596–1607.

[21] Y. Luo, Y. Zhang, X. Cai, and X. Yuan, “E2GAN: End-to-end generative

adversarial network for multivariate time series imputation,” in Proceedings

of the 28th International Joint Conference on Artificial Intelligence. AAAI

Press, 2019, pp. 3094–3100.

Bibliography 118

[22] Y. Liu, R. Yu, S. Zheng, E. Zhan, and Y. Yue, “NAOMI: Non-autoregressive

multiresolution sequence imputation,” in Advances in Neural Information

Processing Systems, 2019, pp. 11 238–11 248.

[23] S. Dabiri and K. Heaslip, “Inferring transportation modes from GPS trajec-

tories using a convolutional neural network,” Transportation Research Part

C: Emerging Technologies, vol. 86, pp. 360–371, 2018.

[24] N. Schüssler and K. W. Axhausen, “Processing raw data from global po-

sitioning systems without additional information,” Transportation Research

Record, vol. 2105, no. 1, pp. 28–36, 2009.

[25] F. Biljecki, H. Ledoux, and P. Van Oosterom, “Transportation mode-based

segmentation and classification of movement trajectories,” International

Journal of Geographical Information Science, vol. 27, no. 2, pp. 385–407,

2013.

[26] G. Xiao, Z. Juan, and C. Zhang, “Travel mode detection based on GPS track

data and Bayesian networks,” Computers, Environment and Urban Systems,

vol. 54, pp. 14–22, 2015.

[27] Q. Zhu, M. Zhu, M. Li, M. Fu, Z. Huang, Q. Gan, and Z. Zhou, “Identifying

transportation modes from raw gps data,” in International Conference of

Pioneering Computer Scientists, Engineers and Educators. Springer, 2016,

pp. 395–409.

[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-

mantic image segmentation with deep convolutional nets and fully connected

CRFs,” arXiv preprint arXiv:1412.7062, 2014.

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-

mantic segmentation,” in Proceedings of the IEEE Conference on Computer

119 Bibliography

Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 3431–3440.

[30] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-

tions,” in International Conference on Learning Representations, San Juan,

Puerto Rico, 2016.

[31] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[32] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmentation,”

in Proceedings of the European Conference on Computer Vision, Munich,

Germany, 2018, pp. 801–818.

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Medical

Image Computing and Computer-assisted Intervention, Munich, Germany,

2015, pp. 234–241.

[34] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility

based on GPS data,” in Proceedings of the 10th International Conference on

Ubiquitous Computing, Seoul, Korea, 2008, pp. 312–321.

[35] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode detec-

tion using mobile phones and GIS information,” in Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, Chicago, IL, USA, 2011, pp. 54–63.

[36] Z. Sun and X. J. Ban, “Vehicle classification using GPS data,” Transportation

Research Part C: Emerging Technologies, vol. 37, pp. 102–117, 2013.

Bibliography 120

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems, Lake Tahoe, NV, USA, 2012, pp. 1097–1105.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] Q. Xie, E. Hovy, M.-T. Luong, and Q. V. Le, “Self-training with noisy stu-

dent improves ImageNet classification,” arXiv preprint arXiv:1911.04252,

2019.

[40] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks

for text classification,” in Twenty-ninth AAAI Conference on Artificial In-

telligence, Austin, TX, USA, 2015.

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[42] H. Wang, G. Liu, J. Duan, and L. Zhang, “Detecting transportation modes

using deep neural network,” IEICE Transactions on Information and Sys-

tems, vol. 100, no. 5, pp. 1132–1135, 2017.

[43] M. Simoncini, L. Taccari, F. Sambo, L. Bravi, S. Salti, and A. Lori, “Vehicle

classification from low-frequency GPS data with recurrent neural networks,”

Transportation Research Part C: Emerging Technologies, vol. 91, pp. 176–

191, 2018.

[44] J. J. Q. Yu, “Travel mode identification with GPS trajectories using wavelet

transform and deep learning,” IEEE Transactions on Intelligent Transporta-

tion Systems, 2020.

121 Bibliography

[45] J. J. Q. Yu , “Semi-supervised deep ensemble learning for travel mode identi-

fication,” Transportation Research Part C: Emerging Technologies, vol. 112,

pp. 120–135, 2020.

[46] R. Zhang, P. Xie, C. Wang, G. Liu, and S. Wan, “Classifying transporta-

tion mode and speed from trajectory data via deep multi-scale learning,”

Computer Networks, vol. 162, p. 106861, 2019.

[47] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep

representations and image clusters,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016,

pp. 5147–5156.

[48] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for

clustering analysis,” in Proceedings of the 33rd International Conference on

Machine Learning, New York, NY, USA, 2016, pp. 478–487.

[49] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clustering

with fully convolutional auto-encoders,” Pattern Recognition, vol. 83, pp.

161–173, 2018.

[50] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep

clustering via joint convolutional autoencoder embedding and relative en-

tropy minimization,” in Proceedings of the IEEE International Conference

on Computer Vision, Venice, Italy, 2017, pp. 5736–5745.

[51] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep em-

bedding: An unsupervised and generative approach to clustering,” in Inter-

national Joint Conference on Artificial Intelligence, Melbourne, Australia,

2017.

Bibliography 122

[52] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “ClusterGAN: Latent space

clustering in generative adversarial networks,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, Honolulu, HI, USA, 2019, pp.

4610–4617.

[53] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning

discrete representations via information maximizing self-augmented train-

ing,” in International Conference on Machine Learning. PMLR, 2017, pp.

1558–1567.

[54] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,

A. Trischler, and Y. Bengio, “Learning deep representations by mutual in-

formation estimation and maximization,” in International Conference on

Learning Representations, 2019.

[55] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering for

unsupervised image classification and segmentation,” in Proceedings of the

IEEE International Conference on Computer Vision, 2019, pp. 9865–9874.

[56] Y. Endo, H. Toda, K. Nishida, and A. Kawanobe, “Deep feature extrac-

tion from trajectories for transportation mode estimation,” in Pacific-Asia

Conference on Knowledge Discovery and Data Mining. Springer, 2016, pp.

54–66.

[57] L. Li, J. Zhu, H. Zhang, H. Tan, B. Du, and B. Ran, “Coupled application of

generative adversarial networks and conventional neural networks for travel

mode detection using GPS data,” Transportation Research Part A: Policy

and Practice, vol. 136, pp. 282–292, 2020.

[58] M. Rezaie, Z. Patterson, J. Y. Yu, and A. Yazdizadeh, “Semi-supervised

travel mode detection from smartphone data,” in IEEE International Smart

123 Bibliography

Cities Conference. Wuxi, China: IEEE, 2017, pp. 1–8.

[59] A. Nawaz, Z. Huang, S. Wang, A. Akbar, H. AlSalman, and A. Gumaei,

“GPS trajectory completion using end-to-end bidirectional convolutional re-

current encoder-decoder architecture with attention mechanism,” Sensors,

vol. 20, no. 18, p. 5143, 2020.

[60] A. Bolbol, T. Cheng, I. Tsapakis, and J. Haworth, “Inferring hybrid trans-

portation modes from sparse GPS data using a moving window SVM clas-

sification,” Computers, Environment and Urban Systems, vol. 36, no. 6, pp.

526–537, 2012.

[61] Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang, “An efficient realization of

deep learning for traffic data imputation,” Transportation Research Part C:

Emerging Technologies, vol. 72, pp. 168–181, 2016.

[62] Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using parallel

data and generative adversarial networks,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 4, pp. 1624–1630, 2019.

[63] L. Li, B. Du, Y. Wang, L. Qin, and H. Tan, “Estimation of missing values in

heterogeneous traffic data: Application of multimodal deep learning model,”

Knowledge-Based Systems, 2020.

[64] E. F. d. S. Soares, K. Revoredo, F. Baião, C. A. de MS Quintella, and

C. A. V. Campos, “A combined solution for real-time travel mode detection

and trip purpose prediction,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 20, no. 12, pp. 4655–4664, 2019.

[65] H. Gong, C. Chen, E. Bialostozky, and C. T. Lawson, “A GPS/GIS method

for travel mode detection in New York city,” Computers, Environment and

Urban Systems, vol. 36, no. 2, pp. 131–139, 2012.

Bibliography 124

[66] X. Zhu, J. Li, Z. Liu, S. Wang, and F. Yang, “Learning transportation anno-

tated mobility profiles from GPS data for context-aware mobile services,” in

2016 IEEE International Conference on Services Computing (SCC). IEEE,

2016, pp. 475–482.

[67] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one

hundred layers tiramisu: Fully convolutional DenseNets for semantic seg-

mentation,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, Honolulu, HI, USA, 2017, pp. 11–19.

[68] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly- and

semi-supervised learning of a deep convolutional network for semantic im-

age segmentation,” in Proceedings of the IEEE International Conference on

Computer Vision, Santiago, Chile, 2015, pp. 1742–1750.

[69] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking

atrous convolution for semantic image segmentation,” arXiv preprint

arXiv:1706.05587, 2017.

[70] H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu, “FastFCN: Rethink-

ing dilated convolution in the backbone for semantic segmentation,” arXiv

preprint arXiv:1903.11816, 2019.

[71] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and B. Catan-

zaro, “Improving semantic segmentation via video propagation and label re-

laxation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Long Beach, CA, USA, 2019, pp. 8856–8865.

[72] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-SCNN: Gated

shape CNNs for semantic segmentation,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, Seoul, Korea, 2019, pp. 5229–5238.

125 Bibliography

[73] Z. Xiao, Y. Wang, K. Fu, and F. Wu, “Identifying different transportation

modes from trajectory data using tree-based ensemble classifiers,” ISPRS

International Journal of Geo-Information, vol. 6, no. 2, p. 57, 2017.

[74] M. Guo, S. Liang, L. Zhao, and P. Wang, “Transportation mode recognition

with deep forest based on GPS data,” IEEE Access, vol. 8, pp. 150 891–

150 901, 2020.

[75] R. C. Shah, C.-y. Wan, H. Lu, and L. Nachman, “Classifying the mode of

transportation on mobile phones using GIS information,” in Proceedings of

the 2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, Seattle, WA, USA, 2014, pp. 225–229.

[76] M. Simoncini, F. Sambo, L. Taccari, L. Bravi, S. Salti, and A. Lori, “Vehicle

classification from low frequency GPS data,” in 2016 IEEE 16th Interna-

tional Conference on Data Mining Workshops (ICDMW). IEEE, 2016, pp.

1159–1166.

[77] P. A. Gonzalez, J. S. Weinstein, S. J. Barbeau, M. A. Labrador, P. L. Win-

ters, N. L. Georggi, and R. Perez, “Automating mode detection for travel be-

haviour analysis by using global positioning systems-enabled mobile phones

and neural networks,” IET Intelligent Transport Systems, vol. 4, no. 1, pp.

37–49, 2010.

[78] H. Mäenpää, A. Lobov, and J. L. M. Lastra, “Travel mode estimation for

multi-modal journey planner,” Transportation Research Part C: Emerging

Technologies, vol. 82, pp. 273–289, 2017.

[79] A. Yazdizadeh, Z. Patterson, and B. Farooq, “Ensemble convolutional neural

networks for mode inference in smartphone travel survey,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2232–2239,

Bibliography 126

2019.

[80] X. Song, H. Kanasugi, and R. Shibasaki, “DeepTransport: Prediction and

simulation of human mobility and transportation mode at a citywide level,”

in International Joint Conference on Artificial Intelligence, vol. 16, New

York, NY, USA, 2016, pp. 2618–2624.

[81] D. J. Patterson, L. Liao, D. Fox, and H. Kautz, “Inferring high-level be-

havior from low-level sensors,” in International Conference on Ubiquitous

Computing. Seattle, WA, USA: Springer, 2003, pp. 73–89.

[82] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering

with local structure preservation,” in International Joint Conferences on

Artificial Intelligence, 2017, pp. 1753–1759.

[83] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional au-

toencoders,” in International Conference on Neural Information Processing,

Guangzhou, China, 2017, pp. 373–382.

[84] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-

friendly spaces: Simultaneous deep learning and clustering,” in Proceedings

of the 34th International Conference on Machine Learning, Sydney, Aus-

tralia, 2017, pp. 3861–3870.

[85] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep

learning for computer vision?” in Advances in Neural Information Processing

Systems, 2017, pp. 5574–5584.

[86] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Free-form image

inpainting with gated convolution,” in Proceedings of the IEEE International

Conference on Computer Vision, 2019, pp. 4471–4480.

127 Bibliography

[87] R. Gu, G. Wang, and J.-N. Hwang, “Exploring severe occlusion: Multi-

person 3D pose estimation with gated convolution,” arXiv preprint

arXiv:2011.00184, 2020.

[88] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv preprint

arXiv:1803.01271, 2018.

[89] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Im-

age inpainting for irregular holes using partial convolutions,” in Proceedings

of the European Conference on Computer Vision, 2018, pp. 85–100.

[90] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-

ization for generative adversarial networks,” in International Conference on

Learning Representations, 2018.

[91] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation

with conditional adversarial networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 1125–1134.

[92] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with

application of nested equations,” Survey review, vol. 23, no. 176, pp. 88–93,

1975.

[93] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

Salt Lake City, UT, USA, 2018, pp. 7132–7141.

[94] C. Markos, J. J. Q. Yu, and R. Y. D. Xu, “Capturing uncertainty in un-

supervised GPS trajectory segmentation using Bayesian deep learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1,

2021, pp. 390–398.

Bibliography 128

[95] Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik, “Uncertainty quantification

using Bayesian neural networks in classification: Application to biomedical

image segmentation,” Computational Statistics & Data Analysis, vol. 142, p.

106816, 2020.

[96] F. D. S. Ribeiro, F. Calivá, M. Swainson, K. Gudmundsson, G. Leontidis,

and S. Kollias, “Deep Bayesian self-training,” Neural Computing and Appli-

cations, pp. 1–17, 2019.

[97] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval

Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[98] C. Markos and J. J. Q. Yu, “Unsupervised deep learning for GPS-based

transportation mode identification,” in 2020 IEEE 23rd International Con-

ference on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp.

1–6.

[99] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based

data clustering,” in Iberoamerican Congress on Pattern Recognition, Havana,

Cuba, 2013, pp. 117–124.

	Title Page
	Certificate of Original Authorship
	Abstract
	Dedication
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Questions
	Contributions
	Thesis Outline

	Literature Review
	Trajectory Imputation
	Knowledge-Based Approaches
	Deep Learning Frameworks

	Transportation Mode Segmentation
	Heuristics-Based Approaches
	Change Point Detection Methods

	Semantic Image Segmentation
	From Image-Level Classifiers to Fully Convolutional Networks
	DeepLab Model and Variants
	Optimizing Computational Requirements

	Transportation Mode Identification
	Supervised Machine Learning Approaches
	Supervised Deep Learning Methods
	Semi-Supervised and Unsupervised Deep Learning Frameworks

	Deep Clustering
	Autoencoder-Based Approaches
	Traditional Clustering on Pretrained Network Outputs
	Generative Modelling
	Mutual Information Maximization

	Conclusions

	Uncertainty-Aware Generative Trajectory Imputation
	Preliminaries
	Incomplete GPS Trajectory Reconstruction via Motion Feature Imputation
	Predictive Uncertainty Quantification for Bayesian Neural Networks

	Proposed Framework
	Missingness-Gated Temporal Convolutions
	Bayesian Generator
	Window-level Discriminator

	Experiments
	Dataset and Simulation Setup
	Results

	Summary

	Supervised Trajectory Segmentation by Transportation Mode
	Problem Formulation
	Proposed Framework
	Data Preprocessing
	Trajectory Segmentation Model

	Experiments
	Dataset and Simulation Setup
	Results

	Summary

	Bayesian Unsupervised Trajectory Segmentation
	Bayesian Deep Learning
	Proposed Framework
	Bayesian Temporal Convolutional Network
	Segmentation Objective Function

	Experiments
	Dataset and Simulation Setup
	Results

	Summary

	Unsupervised Trajectory Transportation Mode Identification
	Problem Formulation
	Proposed Framework
	Convolutional Autoencoder
	Clustering Layer
	Composite Clustering Model
	Global Features

	Experiments
	Dataset and Simulation Setup
	Results

	Summary

	Conclusion and Future Work
	Bibliography

