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ABSTRACT 

Groundwater extraction has increased seven-fold worldwide in the last century leading 

to extensive overexploitation of aquifers. A loss of groundwater involves considerable 

changes in the function of ecosystems that were previously dependent upon it. 

However, the significance of these changes due to extraction-induced increases depth-

to-groundwater (DGW) is poorly understood in the mesic forests of Australia's East 

Coast, where water resources regulators require such information. 

The research presented in this thesis thus sought: (a) to investigate the initial changes 

in ecophysiological adaptations such stem diameter, leaf water relations, and foliar 13C 

to a short-term extraction-induced groundwater drawdown and (b) to identify any 

indication of stress in trees occupying the cone of depression in comparison with trees 

not affected by the groundwater drawdown. Three different bore-fields, located within 

the Hunter-Central Rivers area (New South Wales, Australia), were selected to 

conduct this research and where DGW fluctuates naturally from 0 m to 7 m. Twelve 

trees of two dominant species (Angophora costata and Eucalyptus signata) were 

studied at each site, radiating out from an extraction bore at near, intermediate, and 

distant locations (plots 1, 2, and 3). Once groundwater pumping began at one location 

(Tomago study site), DGW reached a depth of 9.88 m at the bore (outside the forest), 

4.20 m at plot 1, and 2.61 m at plot 3. During most of the study period in 2018, the 

total amounts of rainfall were 14.3% and 2.9% wetter than the long-term average 

rainfall of the same periods at Tomago and Nabiac, respectively. The warmest and 

coldest months were January and July with average temperatures of approximately 23 

ºC and 10 ºC at both study sites. 

Litterfall production ranged from 0.1 to 1.8 Mg ha-1 month-1. A significant increase in 

litterfall production in plot 1 relative to plot 3 occurred two months after extraction 

began. Similarly, there were larger increments of growth-induced irreversible 

expansion (GRO) in trees over deeper groundwater levels in plot 1 (4 – 6 mm / yr) 

than in trees over shallow groundwater in plot 3 (1.5 – 4 mm / yr). However, diurnal 

stem shrinkage (TWD) showed no significant differences across DGW levels, 

indicating a general absence of water stress. These results were only partially 

consistent with our initial hypothesis that as DGW increases, TWD and litterfall 
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production would increase, whereas GRO would experience lower increments 

compared to trees where DGW is shallower. 

Leaf water relations were least affected by an artificial drawdown of groundwater 

level. Leaf water relations were evaluated from measurements of diurnal gas exchange 

and water potential, including predawn (Ψpd) and midday (Ψmd) water potential. 

Contrary to my hypothesis, leaf gas exchange (net photosynthesis An, stomatal 

conductance gs, transpiration T, and intrinsic water-use efficiency WUEi) did not vary 

across the range of DGW. However, An and gs exhibited larger values during the last 

month of the study (November) than in previous months due to an increasing trend in 

T during the springtime and the large availability of soil water. Transpiration was 

limited by low atmospheric vapour pressure deficit (VPD) and not by gs during the 

study period.   

Similar, to leaf gas exchange results, Ψpd remained stable across DGW levels, 

reflecting that trees were generally well-watered. However, Ψmd declined (became 

more negative) once the phreatic level exceeded depths of 3 m DGW, suggesting that 

trees experienced more hydraulic tension when the water table was located in the lower 

portion of the root zone. The most negative water potential values were reached where 

the water table was 3.9 m DGW (-0.8 and -3 MPa for Ψpd, and Ψmd respectively). 

Values of leaf δ13C ranged from -27.4 ‰ to -30.2 ‰, as expected from previous 

studies. Unexpectedly, Δ13C values were lower in trees at plot 3 with a relatively 

shallow water table (i.e., had a higher WUE) compared to those at plot 1 with a deeper 

water table. WUEi values estimated from Δ13C showed a negative correlation with 

increasing DGW surprisingly indicating that RuBisCo discriminated less against the 

heavier isotope where DGW was deeper.  

Overall, the findings of this thesis highlight that vegetation responded positively to a 

DGW increase from 1 m to 4.2 m. This suggests that trees benefited from groundwater 

extraction and were well-watered across all levels of DGW. This can be explained as 

a lowered water table that still remains within the potential root zone opens up a 

temporary larger volume of soil water for the trees to access, suggesting that GW 

extraction is beneficial to trees by reducing waterlogging and anoxic conditions in soil 

and increasing the volume of soil with good aeration. Changes in DGW due to 
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groundwater extraction were immediate but short-lived, with DGW in plot 1 nearest 

the extraction bore declining relative to DGW in bores of the more distant plots for 

only the first week of extraction, despite the timing to coincide with regional drought 

leading to widespread bushfires. This research provides insight into the initial 

physiological responses of groundwater-dependent vegetation to short-term 

groundwater drawdown in a highly dynamic mesic ecosystem assisting pumping 

companies and state regulatory agencies to manage water resources under the rapidly 

changing conditions to which they are exposed in this region.
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