UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology School of Electrical and Data Engineering

AI-empowered Communications

Huynh Nguyen Van

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

under the supervision of

Dr. Diep N. Nguyen Dr. Hoang Dinh Prof. Eryk Dutkiewicz

Sydney, Australia

September 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, HUYNH NGUYEN VAN declare that this thesis, is submitted in fulfilment of the requirements for the award of DOCTOR OF PHILOSOPHY, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Student Name: Huynh Nguyen Van

Student Signature: Production Note: Signature removed prior to publication.

Date: December 13, 2021

ABSTRACT

AI-empowered Communications

by

Huynh Nguyen Van

Artificial Intelligence (AI) has been successfully applied to various areas and received great attention from both industry and academia. The recent advances in deep learning, convolutional neural networks, and reinforcement learning hold significant promise for solving intractable problems in future communication systems. This thesis aims to develop novel AI-based solutions to address different problems in communications, including resource allocation, security, and secure and effective computing.

Firstly, we propose an optimal and fast real-time resource slicing framework that maximizes the long-term profit of the network provider while considering the uncertainty of resource demand from tenants. To obtain the optimal resource allocation policy under the dynamics of slicing requests, e.g., uncertain service time and resource demands, we develop a deep reinforcement learning-based solution with an advanced deep learning architecture, called deep dueling. Extensive simulations show that the proposed solution yields up to 40% higher long-term average profit while being few thousand times faster, compared with state-of-the-art network slicing approaches.

Secondly, we introduce an optimal anti-jamming framework that allows wireless transceivers to effectively defeat jamming attacks. Specifically, while being attacked, wireless devices can either harvest energy from the jamming signals or backscatter the jamming signals to transmit data by using the ambient backscatter communication technique. Then, the deep dueling algorithm is adopted to learn about the jammer and obtain the optimal countermeasures thousand times faster than traditional reinforcement learning algorithms. Extensive simulations demonstrate that our solution can successfully defeat jamming attacks even with very high attack power levels/budgets. Interestingly, we show that by leveraging the jamming signals, the more frequently the jammer attacks the channel, the greater performance the system can achieve.

Finally, we propose a joint optimal coding and scheduling framework for secure and effective distributed learning (DL) over wireless edge networks. In particular, we use the coded computing technique to encode learning tasks by adding data/computing redundancy. As such, a learning task can be completed without waiting for straggling nodes. To account for the dynamics and uncertainty of wireless connections and edge nodes, several reinforcement learning algorithms are proposed to jointly obtain the optimal coding scheme and the best set of edge nodes for different learning tasks. Simulations show that the proposed framework reduces the average learning delay in wireless edge computing up to 66% compared with other DL approaches.

Acknowledgements

First and foremost, I would like to take this opportunity to express my deepest gratitude to my supervisors, Dr. Diep N. Nguyen, Dr. Hoang Dinh, and Prof. Eryk Dutkiewicz, for all the support, guidance, and encouragement. Without them, this dissertation would have been impossible. During my study, they not only guided me to pursue great and impactful research but also encouraged me to go beyond my boundary to do things that seem impossible. I am truly privileged and lucky to be supervised by them.

I would like to thank all my colleagues and friends at the University of Technology Sydney for their support, discussion, and friendship. They made my PhD life more colorful. My thanks also go to the SEDE admin team for handling all the paperwork and forms during my PhD study. I would like to thank the university and the Faculty of Engineering and Information Technology (FEIT) for giving me the International Research Scholarship and FEIT Scholarship. I also would like to thank Google for supporting my research through the Google PhD Fellowship program.

I would especially like to thank my dearest family for encouraging and supporting me. Their endless love gives me strength and power to overcome difficulties in my life. My final words of love and gratitude are dedicated to my beloved wife, Hong Ngoc, for her infinite love, sacrifice, and patience.

Contents

С	ertificate of Original Authorship	ii
A	bstract	iii
A	cknowledgments	v
Ta	able of Contents	vi
Li	ist of Publications	х
Li	ist of Figures	xv
A	bbreviation	xix
1 In	ntroduction and Literature Review	1
1.1	1 Motivations	1
1.5	2 Literature Review and Contributions	3
	1.2.1 Resource Allocation for Future Communication Systems	3
	1.2.2 Defeating Jamming Attacks in Wireless Communication	
	Systems	7
	1.2.3 Effective Distributed Computing	13
1.3	3 Thesis Organization	21
2 B	Background	23
2.3	1 Deep Learning	23
2.2	2 Reinforcement Learning	25
	2.2.1 Markov Decision Process	26
	2.2.2 Q-learning	26

	2.3	Deep R	Ceinforcement Learning	30
		2.3.1	Deep Q-learning	30
		2.3.2	Deep Dueling	38
		2.3.3	Complexity Analysis	41
3	Op	otimal	and Fast Real-time Resource Slicing with Deep	,
	Du	leling	Neural Networks	43
	3.1	System	Model	44
	3.2	Probler	m Formulation	47
		3.2.1	Decision Epoch	47
		3.2.2	State Space	48
		3.2.3	Action Space	48
		3.2.4	State Transition Probability	49
		3.2.5	Reward Function	52
	3.3	Perform	nance Evaluation	56
		3.3.1	Parameter Setting	56
		3.3.2	Simulation Results	57
	3.4	Conclus	sion	66
4	"J	am M	e If You Can": Defeating Jammers with Deep	,
	Du	leling	Neural Network Architecture and Ambient Bac	kscat-
	ter	ring A	ugmented Communications	68
	4.1	System	Model	69
		4.1.1	Smart Jammer with Self-Interference Suppression Capability .	70
		4.1.2	Ambient Backscattering-Augmented Communications	72
		4.1.3	System Operation	75

	4.2	Problem	m Formulation \ldots	. 78
		4.2.1	State Space	. 79
		4.2.2	Action Space	. 79
		4.2.3	Immediate Reward	. 80
		4.2.4	Optimization Formulation	. 81
	4.3	Perforr	nance Evaluation	. 82
		4.3.1	Parameter Setting	. 82
		4.3.2	Simulation Results	. 84
	4.4	Conclu	sion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 94
5	Io	int Co	ding and Scheduling Optimization for Distribu	itad
0				
	Le	arning	g over Wireless Edge Networks	96
	5.1	System	n Model	. 98
		5.1.1	Coded Computing for Distributed Learning over Wireless Edge Networks	. 100
		5.1.2	Communication and Computation Models	. 101
		5.1.3	Learning-Task Delay Minimization Problem	. 104
	5.2	Coded	Computing for Distributed Learning Formulation	. 107
		5.2.1	State Space	. 107
		5.2.2	Action Space	. 108
		5.2.3	Immediate Reward	. 109
		5.2.4	Long-Term Delay Minimization Formulation	. 110
	5.3	Perforr	nance Analysis and Simulation Results	. 111
		5.3.1	Parameter Setting	. 111
		5.3.2	Simulation Results	. 114

	5.4	Conclusion	123
6	Co	onclusions and Future Work	124
	6.1	Conclusion	124
	6.2	Future Works	126
A	Pr	oofs in Chapter 2	129
	A.1	The proof of Theorem 2.1	129
В	\mathbf{Pr}	oofs in Chapter 3	131
	B.1	The proof of Theorem 3.1	131
	B.2	The proof of Lemma 3.1	132
С	\Pr	oofs in Chapter 5	133
	C.1	The proof of Theorem 5.2	133
	Bi	bliography	134

List of Publications

Books

- B-1. D. T. Hoang, D. Niyato, D. I. Kim, N. V. Huynh, and S. Gong, Ambient Backscatter Communication Networks, Cambridge University Press, (Authored book) 2019. (Partly corresponding to Chapter 4))
- B-2. D. T. Hoang, N. V. Huynh, D. N. Nguyen, E. Hossain, and D. Niyato, Deep Reinforcement Learning for Wireless Communications and Networking: Theory, Applications and Implementation, Wiley, expected third quarter of 2022. (Corresponding to Chapter 2))

Patent

P-1. "Jamming Signal Resistant Method and System," D. T. Hoang, D. N. Nguyen,
N. V. Huynh, and E. Dutkiewicz, UTS Provisional Patent Filed, Feb. 2019. (Partly corresponding to Chapter 4))

Journal Papers

- J-1. N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "Optimal and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks," *IEEE Journal on Selected Areas in Communications*, vol. 37, no. 6, pp. 1455-1470, Jun. 2019. (Corresponding to Chapter 3))
- J-2. N. V. Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Jam Me If You Can: Defeating Jammer with Deep Dueling Neural Network Architecture and Ambient Backscattering Augmented Communications," *IEEE Journal on Selected Areas in Communications*, vol. 37, no. 11, pp. 2603-2620, Nov. 2019. (Corresponding to Chapter 4))

- J-3. N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "DeepFake: Deep Dueling-based Deception Strategy to Defeat Reactive Jammers," *IEEE Transactions on Wireless Communications*, Early Access, May 2021 (Partly corresponding to Chapter 4))
- J-4. N. V. Huynh, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, and M. Mueck, "Ambient Backscatter: A Novel Method to Defend Jamming Attacks for Wireless Networks," *IEEE Wireless Communications Letters*, vol. 9, no. 2, pp. 175-178, Feb. 2020. (*Partly corresponding to Chapter 4*))
- J-5. N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "Joint Coding and Scheduling Optimization for Distributed Learning over Wireless Edge Networks," *IEEE Journal on Selected Areas in Communications*, accepted, 2021. (Corresponding to Chapter 5))
- J-6. N. V. Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Optimal Beam Association for High Mobility mmWave Vehicular Networks: Lightweight Parallel Reinforcement Learning Approach," *IEEE Transactions on Communications*, Early Access, Jun. 2021.
- J-7. N. V. Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and P. Wang, "Optimal and Low-Complexity Dynamic Spectrum Access for RF-Powered Ambient Backscatter System with Online Reinforcement Learning," *IEEE Transactions on Communications*, vol. 67, no. 8, pp. 5736-5752, Aug. 2019. (Q1, IF = 5.646)
- J-8. N. V. Huynh, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, and S. Chatzinotas, "Defeating Super-Reactive Jammers With Deception Strategy: Modeling, Signal Detection, and Performance Analysis," *IEEE Transactions* on Wireless Communications, under major revision.

Conference Papers

C-1. N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "Real-Time

Network Slicing With Uncertain Demand: A Deep Learning Approach," *IEEE ICC*, Shanghai, China, 20-24 May 2019. (*Corresponding to Chapter 3*))

- C-2. N. V. Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Defeating Reactive Jammers with Deep Dueling-based Deception Mechanism," *IEEE ICC*, Montreal, Canada, 14-18 June 2021. (*Corresponding to Chapter 4*))
- C-3. N. V. Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, and M. Mueck, "Defeating Smart and Reactive Jammers with Unlimited Power," *IEEE WCNC*, Virtual Conference, 25-28 May 2020. (*Partly corresponding to Chapter 4*))
- C-4. N. V. Huynh, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, M. Mueck, and S. Srikanteswara, "Defeating Jamming Attacks with Ambient Backscatter Communications," *IEEE ICNC*, Big Island, Hawaii, USA, 17-20 Feb. 2020. (*Partly corresponding to Chapter 4*))
- C-5. N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "Dynamic optimal coding and scheduling for distributed learning over wireless edge networks," *IEEE GLOBECOM*, Madrid, Spain, Dec. 2021. (*Corresponding to Chapter 5*))
- C-6. N. V. Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Optimal Beam Association in mmWave Vehicular Networks with Parallel Reinforcement Learning," *IEEE GLOBECOM*, Taipei, Taiwan, 7 - 11 December, 2020.
- C-7. N. V. Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and P. Wang, "Reinforcement Learning Approach for RF-Powered Cognitive Radio Network with Ambient Backscatter," *IEEE GLOBECOM*, Abu Dhabi, UAE, 9-13 Dec. 2018.

Other Papers

O-1. C. T. Nguyen, N. V. Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang, D. N. Nguyen, Q. V. Pham, D. Niyato, E. Dutkiewicz, and W. J.Hwang, "Transfer Learning for Future Wireless Networks: A Comprehensive Survey," submitted to *Proceedings of the IEEE*, under review.

- O-2. N.-T. Nguyen, D. N. Nguyen, D. T. Hoang, N. V. Huynh, E. Dutkiewicz, N.-H. Nguyen, and Q.-T. Nguyen, "Time Scheduling and Energy Trading for Heterogeneous Wireless-Powered and Backscattering-based IoT Networks," *IEEE Transactions on Wireless Communications*, accepted 2021.
- O-3. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N.-T. Nguyen, T. V. Khoa, B. M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzinotas, and B. Ottersten, "A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing — Part I: Fundamentals and Enabling Technologies," *IEEE Access*, vol. 8, pp. 153479-153507, Aug. 2020.
- O-4. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N.-T. Nguyen, T. V. Khoa, B. M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzinotas, and B. Ottersten, "A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing — Part II: Emerging Technologies and Open Issues," *IEEE Access*, vol. 8, pp. 154209-154236, Aug. 2020.
- O-5. N. T. Nguyen, D. N. Nguyen, D. T. Hoang, N. V. Huynh, N. H. Nguyen, Q. T. Nguyen, and E. Dutkiewicz, "Energy Trading and Time Scheduling for Energy-Efficient Heterogeneous Low-Power IoT Networks," *IEEE GLOBE-COM*, Taipei, Taiwan, 7 - 11 December, 2020.
- O-6. N. T. Nguyen, N. V. Huynh, D. T. Hoang, D. N. Nguyen, N. H. Nguyen, Q. T. Nguyen, and E. Dutkiewicz, "Energy Management and Time Scheduling for Heterogeneous IoT Wireless-Powered Backscatter Networks," *IEEE ICC*, Shanghai, China, 20-24 May 2019.
- O-7. N. H. Chu, D. T. Hoang, D. N. Nguyen, N. V. Huynh, and E. Dutkiewicz, "Fast or Slow: An Autonomous Speed Control Approach for UAV-Assisted IoT Data Collection Networks," *IEEE WCNC*, Nanjing, China, 29 Mar - 1 Apr 2021.

O-8. T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "Offloading Energy Efficiency with Delay Constraint for Cooperative Mobile Edge Computing Networks," *IEEE GLOBECOM*, Abu Dhabi, UAE, 9-13 Dec. 2018.

List of Figures

2.1	Typical deep neural network architecture.	24
2.2	Reinforcement learning.	25
2.3	Q-learning model	27
2.4	Deep Q-learning model.	31
2.5	Flow chart of the deep Q-learning algorithm	34
2.6	Deep dueling neural network architecture	36
3.1	Network resource slicing system model	44
3.2	Uniformization technique.	50
3.3	The average reward when optimizing with one resource and three	
	resources.	58
3.4	The average reward of the system when the immediate reward of	
	class-3 is varied	59
3.5	The number of request running in the system of (a) greedy	
	algorithm, (b) Q-learning algorithm, and (c) deep dueling algorithm	
	when the immediate reward of class-3 is varied. \ldots	60
3.6	The average reward of the system when the immediate reward of	
	class-3 is varied.	61

3.7	The number of request running in the system of (a) Q-learning	
	algorithm (10^6 iterations), (b) Q-learning algorithm (10^7 iterations),	
	and (c) deep dueling algorithm $(20,000 \text{ iterations})$ when the	
	immediate reward of class-3 is varied. The dash lines are results of	
	the greedy algorithm	62
3.8	The probabilities of accepting a request from classes when the	
	maximum available resources of the system is (a) 4 times, (b) 10	
	times, and (c) 20 times of resources requested by a slice. \ldots .	64
3.9	The convergence of reinforcement learning algorithms when the	
	radio, computing, storage resources are 400 Mbps, 8 CPUs, and 4	
	GB, respectively with (a) 10^6 iteration and (b) 20,000 iterations	65
3.10	The convergence of reinforcement learning algorithms when (a) the	
	radio, computing, storage resources are 1 Gbps, 20 CPUs, and 10	
	GB, respectively and (b) the radio, computing, storage resources are	
	2 Gbps, 20 GB, and 40 CPUs, respectively	66
3.11	The performance of deep dueling algorithm with different learning	
	rates	67
4.1	System model	70
4.2	Function and circuit diagram of the proposed anti-jamming system $% \left({{{\left[{{{\left[{{{\left[{{{c_{1}}} \right]}}} \right]}_{max}}}}} \right)$.	72
4.3	Average throughputs of the proposed solution and the RA technique	
	vs. P_{avg}	84
4.4	(a) Average throughput (packets/time unit), (b) Packet loss	
	(packets/time unit), (c) Average number of packets in the data	
	queue, (d) PDR, (e) Delay (time/units) vs. η	86
4.5	(a) Average throughput (packets/time unit), (b) Packet loss	
	(packets/time unit), (c) Average number of packets in the data	
	queue, (d) PDR, (e) Delay (time/units) vs. P_{avg}	88

4.6	6 (a) Average throughput (packets/time unit), (b) Packet loss	
	(packets/time unit), (c) Average number of packets in the data	
	queue, (d) PDR, (e) Delay (time/units) vs. \hat{d}_t	89
4.7	(a) Average throughput (packets/time unit), (b) Packet loss	
	(packets/time unit), (c) Average number of packets in the data	
	queue, (d) PDR, (e) Delay (time/units) vs. λ	91
4.8	(a) Average throughput (packets/time unit), (b) Packet loss	
	(packets/time unit), (c) Average number of packets in the data	
	queue, (d) PDR, (e) Delay (time/units) vs. t_{th}	92
4.9	Convergence rates when (a) $D = E = 10$ and (b) $D = E = 20.$	93

5.1	System model for coded distributed learning over wireless edge
	network. Here, we illustrate the case when learning task $\mathcal{D}^{(2)}$ is
	processed with $(n = 4, k = 2)$ MDS code. The sub-learning tasks are
	sent to edge nodes $1, 2, 3$, and N to process. Then, when edge node
	2 is disconnected, and edge node N is straggling, the learning task
	$\mathcal{D}^{(2)}$ still can be completed by using computed results from edge
	nodes 1 and 3
5.2	Convergence rates of learning algorithms
5.3	(a) Average number of tasks waiting in the queue, (b) task dropping
	probability, and (c) average delay of learning tasks in the system vs.
	task arrival probability
5.4	(a) Average number of tasks waiting in the queue, (b) task dropping
	probability, and (c) average delay of learning tasks in the system vs.
	processing time
5.5	(a) Average number of tasks waiting in the queue, (b) task dropping
	probability, and (c) average delay of learning tasks in the system vs.
	disconnection probability of links

5.6	(a) Average number of tasks waiting in the queue, (b) task dropping
	probability, and (c) average delay of learning tasks in the system vs.
	the rate parameter λ (in the exponential distribution) of the
	stochastic computing time of edge nodes
5.7	(a) Average number of tasks waiting in the queue, (b) task dropping
	probability, and (c) average delay of learning tasks in the system vs.
	task size

Abbreviation

AI	Artificial Intelligence
\mathbf{DL}	Distributed learning
M2M	Machine-to-machine
\mathbf{QoS}	Quality of service
SINR	Signal-to-interference-plus-noise ratio
\mathbf{SDN}	Software-defined networking
NFV	Network functions virtualization
SMDP	Semi-Markov decision processes
FHSS	Frequency-hopping spread spectrum
DSSS	Direct sequence spread spectrum
RA	Rate adaptation
\mathbf{RF}	Radio frequency
MDP	Markov decision process
MDS	Maximum distance separable
ARC	Aligned repetition coding
AMC	Aligned minimum distance separable coding
MEC	Mobile edge server
RMO	Resource management and orchestration
URLLC	Ultra-reliable and low-latency communications
SiS	Self-interference suppression
BER	Bit error rate
PDR	Packet delivery ratio
ARP	Action-replay process