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ABSTRACT

AI-empowered Communications

by

Huynh Nguyen Van

Artificial Intelligence (AI) has been successfully applied to various areas and re-

ceived great attention from both industry and academia. The recent advances in

deep learning, convolutional neural networks, and reinforcement learning hold sig-

nificant promise for solving intractable problems in future communication systems.

This thesis aims to develop novel AI-based solutions to address different problems

in communications, including resource allocation, security, and secure and effective

computing.

Firstly, we propose an optimal and fast real-time resource slicing framework that

maximizes the long-term profit of the network provider while considering the uncer-

tainty of resource demand from tenants. To obtain the optimal resource allocation

policy under the dynamics of slicing requests, e.g., uncertain service time and re-

source demands, we develop a deep reinforcement learning-based solution with an

advanced deep learning architecture, called deep dueling. Extensive simulations

show that the proposed solution yields up to 40% higher long-term average profit

while being few thousand times faster, compared with state-of-the-art network slic-

ing approaches.

Secondly, we introduce an optimal anti-jamming framework that allows wireless

transceivers to effectively defeat jamming attacks. Specifically, while being attacked,

wireless devices can either harvest energy from the jamming signals or backscatter

the jamming signals to transmit data by using the ambient backscatter communi-

cation technique. Then, the deep dueling algorithm is adopted to learn about the

jammer and obtain the optimal countermeasures thousand times faster than tradi-



tional reinforcement learning algorithms. Extensive simulations demonstrate that

our solution can successfully defeat jamming attacks even with very high attack

power levels/budgets. Interestingly, we show that by leveraging the jamming sig-

nals, the more frequently the jammer attacks the channel, the greater performance

the system can achieve.

Finally, we propose a joint optimal coding and scheduling framework for secure

and effective distributed learning (DL) over wireless edge networks. In particu-

lar, we use the coded computing technique to encode learning tasks by adding

data/computing redundancy. As such, a learning task can be completed without

waiting for straggling nodes. To account for the dynamics and uncertainty of wire-

less connections and edge nodes, several reinforcement learning algorithms are pro-

posed to jointly obtain the optimal coding scheme and the best set of edge nodes for

different learning tasks. Simulations show that the proposed framework reduces the

average learning delay in wireless edge computing up to 66% compared with other

DL approaches.
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