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ABSTRACT

AI-empowered Communications

by

Huynh Nguyen Van

Artificial Intelligence (AI) has been successfully applied to various areas and re-

ceived great attention from both industry and academia. The recent advances in

deep learning, convolutional neural networks, and reinforcement learning hold sig-

nificant promise for solving intractable problems in future communication systems.

This thesis aims to develop novel AI-based solutions to address different problems

in communications, including resource allocation, security, and secure and effective

computing.

Firstly, we propose an optimal and fast real-time resource slicing framework that

maximizes the long-term profit of the network provider while considering the uncer-

tainty of resource demand from tenants. To obtain the optimal resource allocation

policy under the dynamics of slicing requests, e.g., uncertain service time and re-

source demands, we develop a deep reinforcement learning-based solution with an

advanced deep learning architecture, called deep dueling. Extensive simulations

show that the proposed solution yields up to 40% higher long-term average profit

while being few thousand times faster, compared with state-of-the-art network slic-

ing approaches.

Secondly, we introduce an optimal anti-jamming framework that allows wireless

transceivers to effectively defeat jamming attacks. Specifically, while being attacked,

wireless devices can either harvest energy from the jamming signals or backscatter

the jamming signals to transmit data by using the ambient backscatter communi-

cation technique. Then, the deep dueling algorithm is adopted to learn about the

jammer and obtain the optimal countermeasures thousand times faster than tradi-



tional reinforcement learning algorithms. Extensive simulations demonstrate that

our solution can successfully defeat jamming attacks even with very high attack

power levels/budgets. Interestingly, we show that by leveraging the jamming sig-

nals, the more frequently the jammer attacks the channel, the greater performance

the system can achieve.

Finally, we propose a joint optimal coding and scheduling framework for secure

and effective distributed learning (DL) over wireless edge networks. In particu-

lar, we use the coded computing technique to encode learning tasks by adding

data/computing redundancy. As such, a learning task can be completed without

waiting for straggling nodes. To account for the dynamics and uncertainty of wire-

less connections and edge nodes, several reinforcement learning algorithms are pro-

posed to jointly obtain the optimal coding scheme and the best set of edge nodes for

different learning tasks. Simulations show that the proposed framework reduces the

average learning delay in wireless edge computing up to 66% compared with other

DL approaches.
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Chapter 1

Introduction and Literature Review

This chapter first provides the background on the development and current chal-

lenges of communication technologies. Then, the up-to-date solutions in addressing

these issues are comprehensively discussed. Finally, the main contributions as well

as the structure of this thesis are highlighted at the end of this chapter.

1.1 Motivations

Communication technologies have been explosively evolving over the past years

to support various aspects of our daily life, from healthcare, smart cities, logistics to

transportation. This has opened new frontiers for the future’s data-centric society.

However, these new applications generate untraditional workloads and require more

efficient and reliable infrastructure. The latest Cisco Visual Networking Index [2]

forecasts the number of networked devices will be 29.3 billion by 2023, of which 45%

will be mobile-connected. Machine-to-machine (M2M) is expected to be the fastest

growing mobile connection type as IoT applications continue to gain attraction in

consumer and business environments. However, legacy mobile networks are mostly

designed to provide services for mobile broadband users and are unable to meet

adjustable parameters like priority and quality of service (QoS) of emerging services

with different requirements. Consequently, service providers may find difficulties in

concurrently managing multiple interconnected resources and dynamically allocating

them to users in a real-time manner to maximize their long-term revenue.

In addition, connecting billions of wireless devices to the Internet faces unprece-
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dented security issues, especially for resource-constrained devices in IoT networks.

In particular, due to its broadcast nature, wireless communications are particu-

larly vulnerable to jamming attacks. By injecting interference to the wireless com-

munication channel (i.e., deliberate jamming), a jammer can degrade the effective

signal-to-interference-plus-noise ratio (SINR), thereby disrupting or even bringing

down legitimate communications links. The jamming attacks can be easily launched

by using commercial off-the-shelf products [3,4] and have a significant detriment to

wireless applications, especially for mission-critical systems (e.g., cyber-physical sys-

tems in traffic safety, industry automation or military missions). Therefore, there is

an urgent demand for effective countermeasures to prevent and mitigate the impacts

of jamming attacks in future wireless communication networks.

In future communication systems, computing and caching resources are expected

to be deployed at the network edge to support time-sensitive applications and reduce

energy consumption, resulting in a highly sophisticated network [5], [6]. In this case,

the network can be considered as a distributed environment in which edge nodes can

collect data and learn locally without sending them to the cloud. This approach can

significantly reduce the latency, communication costs, and preserve data privacy

compared to conventional centralized solutions. However, one major challenge in

this distributed paradigm is the straggling problems at both edge nodes and wireless

links that can significantly prolong the computation delay of the system.

Facing these new challenges and demands, conventional approaches expose sev-

eral limitations. First, with the massive number of users’ devices, the expansion

of network scale, and the diversity of services in the new era of communications,

the amount of data generated by applications, users, and networks is expected to

experience an explosive growth [2]. However, conventional solutions are infeasible to

process and/or utilize the data to learn useful information to improve the system per-

formance. Second, existing algorithms are not effective in dealing with the dynamic
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and uncertainty of the network environments, resulting in poor performance [1]. Fi-

nally, with conventional solutions, the complete information of the system is usually

required to effectively obtain solutions. Nevertheless, this information may not be

available in advance in practice, and thus limiting the applications of conventional

approaches.

To address the limitations of the current solutions, AI is a promising approach.

In particular, AI has been emerging as a disruptive technique and architectural

framework to intelligently solve complex and large-scale problems in many areas,

including search engines and speech recognition, medical diagnosis, and computer

vision. Thus, AI approaches can be adopted to manage the growing complexity

and scale of future communication networks. This thesis aims to develop AI-based

solutions to effectively and intelligently address the aforementioned issues in commu-

nications, including resource allocation, security, and effective and secure distributed

computing.

1.2 Literature Review and Contributions

This section first reviews the advantages and limitations of existing works in

addressing the aforementioned issues. Then, the main contributions of this thesis

are highlighted.

1.2.1 Resource Allocation for Future Communication Systems

1.2.1.1 Literature Review

In order to enhance operators’ products for vertical enterprises and provide ser-

vice customization for emerging massive connections, as well as to give more control

to enterprises and mobile virtual network operators, the concept of network slicing

has been recently introduced to allow the independent usage of a part of network

resources by a group of mobile terminals with special requirements. Network slicing
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was introduced by Next Generation Mobile Networks Alliance [7], and it has quickly

received paramount attention from both academia and industry. In general, network

slicing is a novel virtualization paradigm that enables multiple logical networks, i.e.,

slices, to be created according to specific technical or commercial demands and si-

multaneously run on top of the physical network infrastructure. The core idea of the

network slicing is using software-defined networking (SDN) and network functions

virtualization (NFV) technologies for virtualizing the physical infrastructure and

controlling network operations. In particular, SDN provides a separation between

the network control and data planes, improving the flexibility of network function

management and efficiency of data transfer. Meanwhile, NFV allows various net-

work functions to be virtualized, i.e., in virtual machines. As a result, the functions

can be moved to different locations, and the corresponding virtual machines can be

migrated to run on commoditized hardware dynamically depending on the demand

and requirements [8], [9].

A number of research works have been introduced recently to address the network

slicing resource allocation problem for the network provider [10]- [20]. In particular,

the authors in [10] and [11] developed a two-tier admission control and resource

allocation model to answer two fundamental questions, i.e., whether a slice request is

accepted and how much radio resource is allocated to the accepted slice. To address

this problem, the authors in [10] used an extensive searching method to achieve the

globally optimal resource allocation solution for the network provider. However,

this searching method cannot be applied to complex systems with a large number

of resources. To address this problem, a heuristic scheme with three main steps was

introduced in [11] to effectively allocate resources to the users. Yet this heuristic

scheme cannot guarantee to achieve the optimal solution for the network provider. In

addition, both network slicing resource allocation solutions proposed in [10] and [11]

are heuristic methods with only radio resource taken into consideration. Thus, these
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solutions may not be appropriate to implement in dynamic network slicing resource

allocation systems with a wide range of resource demands and services.

To deal with the dynamic of services, e.g., users’ resource demands and their

occupation time, the authors in [17] proposed a model to predict the future demand

of slices, thereby maximizing the system resource utilization for the provider. The

key idea of this approach is to use the Holt-Winters approach [21] to predict network

slices’ demands through tracking the traffic usage of users in the past. However, the

accuracy of this prediction depends largely on the heavy-tailed distribution functions

along with many control parameters such as scale factor, least-action trip planning,

and potential gain. Furthermore, this approach only considers the short-term reward

for the provider, and thus the long-term profit may not be able to obtain. Therefore,

the authors in [18], [19], and [20] proposed reinforcement learning algorithms to

address these problems. Among dynamic resource allocation methods, reinforcement

learning has been considering to be the most effective way to maximize the long-

term reward for dynamic systems as this method allows the network controller to

adjust its actions in a real-time manner to obtain the optimal policy through the

trial-and-error learning process [22]. However, this method often takes a long period

to converge to the optimal solution, especially for a large-scale system.

1.2.1.2 Contributions

In all aforementioned work, the authors considered optimizing only radio re-

sources, while other resources are completely ignored. However, as stated in [7,

23, 24], a typical network slice is composed of three main components, i.e., radio,

computing, and storage. Consequently, considering only radio resources when or-

chestrating slices may be not able to achieve the optimal solution. Therefore, in this

thesis, we introduce a Semi-Markov decision process (SMDP) framework [25] which

allows the network provider to effectively allocate all three resources, i.e., radio, com-
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puting, and storage, to the users in a real-time manner. However, when we jointly

consider combinatorial resources, i.e., radio, storage, and computing resources, to-

gether with the uncertainty of demands, the optimization problem becomes very

complex as we need to simultaneously deal with a very large state space with multi-

dimension and real-time dynamic decisions. Thus, we propose a novel network

slicing framework with an advanced deep learning architecture using two streams

of fully connected hidden layers, i.e., deep dueling neural network [26], combined

with Q-learning method to effectively address this problem. It is worth noting that

the VNF placement, routing, and connectivity resource allocation problems have

been well investigated in the literature. Hence, in this thesis, we focus on dealing

with the uncertainty, dynamics, and heterogeneity of slice requests. Specifically, the

properties of slice requests may not be available in advance to the service provider.

Moreover, different types of services have different resource requirements and these

requirements can also be changed over time. Finally, each slice request can require

different types of resources, e.g., radio, storage, and computing. Note that, our sys-

tem model can be straightforwardly extended to the case with diverse connectivity

among servers and data centers by accommodating additional states to the system

state space. Note that, our proposed framework can handle very well a large state

space (one of our key contributions in this thesis).

The main contributions are summarized as follows:

� We develop a dynamic network resource management model based on SMDP

framework which allows the network provider to jointly allocate computing,

storage, and radio resources to different slice requests in a real-time manner

and maximize the long-term reward under a number of available resources.

� To find the optimal policy under the uncertainty of slice service demands,

we deploy the Q-learning algorithm which can achieve the optimal solution
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through reinforcement learning processes. However, the Q-learning algorithm

may not be able to effectively achieve the optimal policy due to the curse-of-

dimensionality problem when we jointly optimize multiple resources concur-

rently. Thus, we develop a deep double Q-learning approach which utilizes

the advantage of a neural network to train the learning process of the Q-

learning algorithm, thereby attaining much better performance than that of

the Q-learning algorithm.

� To further enhance the performance of the system, we propose the novel net-

work slicing approach with the deep dueling neural network architecture [26],

which can outperform all other current reinforcement learning techniques in

managing network slicing. The key idea of the deep dueling is using two

streams of fully connected hidden layers to concurrently train the learning

process of the Q-learning algorithm, thereby improving the training process

and achieving an outstanding performance for the system.

� Finally, we perform extensive simulations with the aim of not only demonstrat-

ing the efficiency of proposed solutions in comparison with other conventional

methods but also providing insightful analytical results for the implementa-

tion of the system. Importantly, through simulation results, we demonstrate

that our proposed framework can improve the performance of the system up

to 40% compared with other current approaches.

1.2.2 Defeating Jamming Attacks in Wireless Communication Systems

1.2.2.1 Literature Review

Anti-jamming has a very rich literature, originating from the early days of wire-

less communications. With most conventional anti-jamming solutions like frequency

hopping or spread spectrum, legitimate transceivers often tend to “escape” or “hide”

themselves from jammers. As an example, frequency-hopping spread spectrum
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(FHSS) [27]- [34] allows a wireless device to quickly switch its operating frequency

to other frequency channels. As soon as the jammer attacks the channel, the device

will quickly change its operating frequency, thereby avoiding the jamming attack.

In [27], the authors proposed an integrated bit-level FHSS for low-power wireless

communication systems. The key idea of this approach is exploiting the frequency

agility of bulk acoustic wave resonators. In [28], the authors proposed a hybrid

approach using FHSS and direct sequence spread spectrum (DSSS) to cope with

fast-following jammers. Using a stochastic game framework, the authors of [30]

studied the strategic interaction between jammers and legitimate users. In particu-

lar, the jammer and the transmitter are considered as two players playing with each

other to obtain the optimal attack and defense strategies, respectively. Through

the minimax-Q learning algorithm, the transmitter can gradually obtain the opti-

mal defense policy, i.e., how to switch between different channels. The simulation

results demonstrated that the proposed framework can maximize the spectrum-

efficient throughput. Similarly, a game theory based anti-jamming framework for

frequency hopping wireless communications was considered in [31]. Nevertheless,

these game models require complete information of the jammer, which may not be

available in advance in practice. In [32] and [33], the authors adopted the Q-learning

and deep Q-learning algorithms that allow the transmitter to choose frequencies to

hop when the jammer attacks the channel. In [34], the authors proposed a mode-

frequency hopping scheme which jointly uses the mode hopping and the traditional

FH for anti-jamming in cognitive radio networks. However, the main limitation of

the FHSS technique is that it requires extra spectrum resources (for hopping to

evade the jammers). In addition, with powerful jammers which can attack multiple

channels simultaneously, FHSS may be less effective.

Besides the FHSS and DSSS techniques, the rate adaptation (RA) technique is

also widely adopted, e.g., [35]- [37]. The key idea of the RA technique is to proac-
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tively or adaptively account for jamming attacks by operating at a lower trans-

mission rate. In [35], the authors proposed an RA algorithm together with power

control to mitigate jamming. Specifically, the algorithm consists of two modules: (i)

a rate module for RA and (ii) a power control module for controlling the transmit

power at legitimate transmitters. The experimental results demonstrated that the

proposed algorithm can improve the network throughput by 150% under jamming

attacks. However, in [36], the authors revealed that the RA technique is not ef-

fective on a single channel. In [37], the authors investigated the performance of

several state-of-the-art RA algorithms under different scenarios. The experimental

results demonstrated that the existing RA algorithms are not effective to combat

smart jamming attacks. Similar to the RA method, legitimate transmitters can

also adapt (i.e., bump/push) their transmit power or beamforming vectors/matrices

(to improve the effective SINR) to overcome or mitigate the effect of excessive in-

terference. Nevertheless, this solution is either power-inefficient or not viable for

low-power or hardware-constrained devices (e.g., in IoT applications).

In [3], the authors proposed a joint RA and FHSS technique to mitigate attacks

from a reactive-sweep jammer. In particular, the jammer can sweep through a set

of channels and sense the activities of legitimate transmitters to attack. To combat

the jammer, the legitimate transmitters can either hop to a new channel and/or

adapt their transmission rates. The authors modeled the system as a zero-sum

Markov game and obtained the optimal policies for the transmitters by solving a

constrained Nash equilibrium problem. Similar to [30, 31], this work also assumed

complete information of the jammer in deriving the defense strategy. Another widely

adopted approach in the literature is to use the ultra-wideband communications to

hide the legitimate signals [38] under the noise.
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1.2.2.2 Contributions

It is worth noting that, to allow the transmitters to effectively escape or hide

from the jammer, most aforementioned solutions require additional resources (in

spectrum bandwidth, or transmit power, or hardware capability). This fact limits

the practical applications of these conventional methods, especially for low-power

and/or low-cost communications systems (e.g., in IoT). In this thesis, we present

a novel anti-jamming framework for these low-power and/or wireless-power com-

munications devices. Such a framework allows these wireless transceivers to not

only survive jamming attacks without requiring additional resources but also lever-

age the jamming signals to improve their transmission rate. To that end, we first

observe that most existing anti-jamming solutions are reactive ones that are con-

strained by the lack of timely knowledge of jamming attacks (especially from smart

jammers). Bringing together the latest advances in neural network architectures

and ambient backscattering communications, this work allows wireless nodes to

effectively “face” the jammer (instead of escaping) by first learning its jamming

strategy, then adapting the rate and transmitting information right on the jamming

signals (i.e., backscattering modulated information on the jamming signals). In our

design, transmitters are augmented with an ambient backscattering communication

circuit [39,40] and an energy harvester. When a jammer attacks the communication

channel, the transmitter can leverage the jamming signals to backscatter information

to the gateway or harvest energy from the jamming signal.

Our key idea is inspired by the latest advances in ambient backscatter communi-

cations and RF energy harvesting. An ambient backscatter communication-capable

transceiver can modulate/backscatter the RF ambient signals (e.g., FM, AM radio

signals) to transmit its own information. Interested readers of ambient backscatter

communications are referred to [39], [40] and therein references. Note that am-

bient backscatter communications, unlike bistatic backscattering communications,
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does not require a dedicated RF source. Specifically, in bistatic backscattering com-

munications, e.g., [41], [42], [43], [44], backscatter devices transmit information by

backscattering the RF signals generated by a dedicated RF source which is control-

lable. With the recent development of RF energy harvesting, the transmitter can

harvest energy from RF signals with a high efficiency. In particular, in [45], [46],

and [47], the authors proposed novel designs for the rectenna, i.e., rectifier and an-

tenna, and RF-DC converter to improve the amount of harvested RF energy from

RF energy sources. The experimental results demonstrated that with the proposed

rectenna, a tag can harvest RF energy and convert the harvested energy to DC

with 70% efficiency under a wide range of input power. In [48], low power circuit

designs for the voltage regulator and resistor to digital converter are also proposed.

Differently, in [49] and [50], the authors aimed to maximize the amount of harvested

energy by considering the joint information and energy cooperative problem with

channel constraints.

To deal with the uncertainty (or unknowns) of jamming attacks and ambient

RF signals, existing work often relies on reinforcement learning algorithms, e.g,. Q-

learning under the framework of a Markov decision process (MDP). However, the

Q-learning algorithm is notorious for its slow convergence to the optimal policy,

especially when the state and action spaces are large. This makes the Q-learning

algorithm pragmatically inapplicable. To overcome this problem, we design a novel

deep reinforcement learning algorithm using a new dueling neural network architec-

ture. The key idea of this algorithm is to separately estimate the advantage and

value functions of each state-action pair. In this way, the learning rate can be signif-

icantly improved, allowing the transmitter to effectively learn about the jammer and

attain the optimal countermeasures (e.g., adapt the transmission rate or backscatter

or harvest energy or stay idle) thousand times faster than that of the conventional

Q-learning algorithm. The transmitters not only successfully defeat jamming at-
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tacks, but also leverage jamming signals to significantly improve the performance

for the system. Specifically, extensive simulation results show that our design (using

ambient backscattering and the deep dueling neural network architecture) can im-

prove the average throughput (under smart and reactive jamming attacks) by up to

426% and reduce the packet loss by 24%. By augmenting the ambient backscatter-

ing capability on devices and using our algorithm, it is interesting to observe that

the (successful) transmission rate increases with the jamming power.

The major contributions can be summarized as follows.

� We propose a novel smart anti-jamming design using ambient backscatter,

energy harvesting, and rate adaption techniques to defeat smart and reactive

jammers. Based on this method, when a jammer attacks the channel, the

transmitter can leverage jamming signals to transmit information using the

ambient backscattering communication technique or harvest energy from the

jamming signals. Alternatively, the transmitter can also choose to adapt the

transmission rate to actively* transmit data.

� To lay a theoretical foundation for our design, we develop a dynamic approach

using the MDP framework and Q- and deep Q-learning algorithms to maxi-

mize the average long-term throughput for systems under the uncertainty of

jamming attacks and ambient RF signals. Unlike existing rate adaption meth-

ods that require the explicit or implicit knowledge of the interference/jamming

level, our reinforcement learning-based RA framework does not require such

information. It is also worth emphasizing that such an RA method is not

susceptible/subject to the imperfect estimation/observations of the jamming

signals (e.g., misdetection or false alarms).

*It refers to the conventional radio transmission that is different from the ambient backscattering

transmission.
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� To provide a practical solution for the theoretical Q-learning based approach

above, we design a deep dueling neural network architecture which allows the

system to quickly approach to the optimal defend policy. The key idea of

this approach is implementing two streams of fully-connected hidden layers to

separately and concurrently estimate the values of states and advantages of

actions. As a result, the proposed deep dueling algorithm converges thousands

times faster than Q-learning based algorithms.

� Finally, we perform extensive simulations with the aims of not only demon-

strating the efficiency of proposed solutions in comparison with other conven-

tional methods, but also providing insightful analytical results for the imple-

mentation of our framework.

1.2.3 Effective Distributed Computing

1.2.3.1 Literature Review

Recently, distributed computing has been introduced to offload complex com-

puting task to edge devices for processing. In particular, a highly-complex task can

be partitioned into multiple sub-tasks, and then these sub-tasks can be transmit-

ted to several edge nodes for executing. In this way, the computation load at the

centralized server can be offloaded to multiple edge nodes, and thus reducing the

computation delay. As a result, distributed computing over wireless edge networks

finds its applications in various emerging machine learning services that demand low

delays such as autonomous vehicle, augmented reality, and virtual reality [51].

Although distributed learning over wireless edge networks has many advantages

and applications in practice, it has been facing some technical challenges. First, it is

pointed out that the performance of a distributed system is greatly affected by the

straggling problem at the edge computing devices [52–54]. In particular, this strag-

gling problem can cause unpredictable computing latency due to several factors such
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as resource sharing, maintenance activities, power regulations, and hardware con-

figurations [52]. Consequently, the computing latency is usually determined by the

slowest computing edge node. In the worst case, if an edge node is highly-straggling,

the learning task will stay in the system for a long time. Consequently, the com-

puting latency of the whole system will be significantly increased. Second, the data

privacy protection of the conventional distributed learning is not guaranteed as the

edge nodes can derive information from the assigned sub-learning tasks. Moreover,

transmitting sub-learning tasks over wireless links may lead to another security con-

cern as an attacker can eavesdrop the transmitted data over the wireless links. These

security problems are very serious as private information such as finance data and

medical records can be leaked to the third party. Third, distributed learning over

wireless edge networks suffers from wireless link failures. Re-transmissions can be

performed for failed messages. However, this may significantly increase the training

time for the system.

To overcome the aforementioned challenges, the coded computing technique [52]

has been introduced recently as a highly-effective solution. Specifically, the principle

of the coded computing is utilizing advanced coding theoretic mechanisms to inject

and leverage data/computation redundancy in order to mitigate the effects of the

straggling problems as well as to protect the learning tasks’ privacy at the edge

nodes and over the wireless links [52, 54,55]. With the coded computing technique,

the computation latency is now determined by a group of the fastest edge computing

devices [52, 53]. In other words, the coded computing technique does not require

all assigned edge nodes to send back their computed results as in the traditional

distributed edge computing. Similarly, the effects of unstable wireless links can be

mitigated as the coded computing mechanism may ignore computed results from

edge nodes with unstable wireless links if it has received sufficient computed results

from other edge nodes with good wireless connections. Finally, the sub-learning
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tasks are encoded before sending to the assigned edge nodes, resulting in a high

data privacy protection.

Recently, several works in the literature have been proposed to improve the per-

formance of the coded computing mechanisms for distributed learning systems [52,

56–63]. In [52], the authors propose a new maximum distance separable (MDS)

code design for matrix multiplication which is the most common operation in ma-

chine learning algorithms. In particular, the MDS code aims to encode k learning

tasks into n coded learning tasks, where n ≥ k. These encoded tasks are then

distributed to n workers to execute. As soon as k workers complete their assigned

tasks and send the results to the master node, the master node can decode them

to obtain the expected results. In this way, the effect of straggling workers can be

significantly mitigated. The authors then demonstrate that with n homogeneous

workers, the MDS code can speed up the distributed matrix multiplication by a

factor of log n. The authors in [56] then extend the MDS code for large-scale matrix

multiplication. Specifically, the key idea is to partition a large-scale matrix into

sub-matrices. Then, the MDS code is applied for each sub-matrix. Although the

matrix multiplication delay is similar to that of the conventional MDS code [52],

thanks to shorter MDS codes, the proposed scheme can achieve a lower delay in

encoding and decoding compared to that of the conventional MDS code. Similarly,

the authors in [59] propose a gradient coding method based on the MDS code [52]

for the synchronous gradient descent method. By using this code, the server can

obtain the final gradient of any loss function even if a number of workers do not

return their gradient results. The experimental results then demonstrate that the

proposed gradient coding mechanism can significantly mitigate the straggling prob-

lems at workers compared to those of the uncoded schemes. Unlike [59], the authors

in [60] propose to encode the dataset with built-in data redundancy for linear regres-

sion tasks. At every training step, the missing results from straggling nodes can be
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compensated by using the structured computing redundancy added by the proposed

coding mechanism. Experiments then show that the proposed coding mechanism

can significantly reduce the system computing delay.

It is worth noting that aforementioned works and others in the literature mostly

focus on optimizing coding mechanisms only. However, their applications to wireless

edge computing are not straightforward due to the inherent uncertainty of wireless

channel quality. In particular, when the wireless link between the server and an edge

node is disconnected, transmitted data (i.e., sub-learning tasks sent from the server

and results sent from the edge node) need to be re-transmitted. This consequently

drags out the training time of the whole system. For that, the authors in [54] in-

troduce an effective coded computing framework for non-linear distributed machine

learning, namely CodedFedL, that adds structured coding redundancy to mitigate

straggling problems in both edge nodes and wireless links. Specifically, each edge

node privately generates a matrix from a probability distribution with mean 0 and

variance 1. This matrix is then applied on the weighted local dataset to compute a

local parity dataset. All local parity datasets of edge nodes are then combined at the

server to obtain a global parity dataset. Gradient over the global parity dataset will

be used to replace missing gradient updates from straggling edge nodes. The size

of the local parity datasets is the coding redundancy. The authors then formulate

an optimization problem to find the optimal amount of coding redundancy based

on the the conditions of edge nodes and wireless links. Numerical experiments then

show that CodedFedL can speed up the training time of federated learning by up to

15 times compared to those of other approaches. In [64], the authors propose two

coding schemes, namely Aligned Repetition Coding (ARC) and Aligned Minimum

Distance Separable Coding (AMC), to mitigate the effect of straggling communica-

tion links. In particular, several reliable helper nodes are deployed to help the server

in gradient aggregation operations. Under the ARC scheme, each node divides its
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gradient and sends to multiple helpers. In this way, gradient components from dif-

ferent nodes are aligned at the helpers, and thus mitigating the effect of straggling

problems on server-to-node links. Differently, the AMC scheme allows each node to

partition its gradient and encode with an MDS code and with the same generator

matrix for all nodes. In [65], the authors point out that not only wireless computing

nodes, but access points can also become stragglers, especially when the congestion

occurs. As such, the authors propose a hierarchical code that can jointly mitigate

the straggling problems at edge nodes and access points. Alternatively, the authors

in [66] consider the strangling problems in coded distributed computing caused by

link failures. In particular, the authors first model the link between the server and

nodes as packet erasure channels. Then an MDS code is designed based on the

packet erasure probability to reduce the system delay. Furthermore, the authors

in [67] propose a new method to convert encoded data in a resource-efficient man-

ner, namely convertible code. With this code, the authors can reduce the overhead

in erasure-coded storage systems.

In [68], the authors introduce an extension of the MDS code considering de-

lay/latency caused by unstable wireless links. In particular, the authors point out

that under dynamically changing edge environments, wireless edge nodes may not be

able to complete their computations within a given deadline. Thus, the authors pro-

pose a new coding mechanism that can incorporate partially-finished computations

from edge nodes into the computation recovery at the server. Similarly, the authors

in [69] aim to minimize the communication and computing delays by considering

both wireless and computing impairments. In particular, the number of edge nodes

for executing learning tasks is optimized based on the interference, imperfect channel

state information, and straggling processors. Nevertheless, all the aforementioned

solutions and others in the literature require complete environment information in

advance, which may not be practical to implement. In reality, environment related
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parameters like link failures and straggling are dynamic and uncertain, especially

wireless channel-dependent ones. They can randomly occur at both the edge nodes

and wireless links due to unpredictable factors such as maintenance activities, hard-

ware errors, random obstacles, and interference. Without considering these factors,

existing solutions may not be able to achieve a highly reliable, efficient and robust

performance for distributed learning over wireless edge networks. More importantly,

all the current works only optimize the number of edge nodes to execute learning

tasks (i.e., optimal values of (n, k) code) and overlook the fact that different edge

nodes may have different computing resources, wireless connections, and hardware

configurations. As such, selecting the best set of nodes, instead of the number of

nodes to execute learning tasks given the current status of the whole system is very

critical to further improve the performance of coded distributed learning in wireless

edge networks.

1.2.3.2 Contributions

Given the above, in this thesis, we will propose a jointly optimal coding and

scheduling framework for distributed learning over wireless edge networks. In par-

ticular, we consider a wireless edge network consisting of a mobile edge computing

(MEC) server connected to various edge nodes with different hardware configura-

tions via different wireless links. When a learning task arrives at the MEC server,

it will be encoded into sub-learning tasks by using an MDS-based code�. Then,

these sub-learning tasks are sent to a set of n selected edge nodes to execute. When

a predefined number of edge nodes (i.e., k where k ≤ n) complete their assigned

sub-learning tasks, their results can be aggregated to obtain the final result of the

�Note that our proposed solution can not only apply for the MDS code proposed in [52] but also

can apply for other codes. In particular, most of the coded computing techniques aim to optimize

the amount of coding redundancy, e.g., [54], which is similar to k in the MDS code. Therefore, our

proposed solution can be straightforwardly extended to other coding techniques.
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original learning task. However, finding an optimal MDS code (i.e., a pair of n and

k) and the best edge nodes (referred to as the optimal scheduling) for each learning

task under the dynamic of edge nodes (e.g., available or unavailable) and wireless

environment (e.g., good or bad channel condition) is a challenging problem. Solving

such a problem in practice is even more difficult as one also needs to account for

the uncertainty of wireless links and edge nodes. This is the unpredictable failures

or straggling links/devices. To the best of our knowledge, all current works cannot

effectively address all these problems.

To tackle the above problem, we first develop an MDP framework to capture

the aforementioned dynamics and uncertainty of the system such as diverse learning

tasks, computing resources, straggling issues at different edge nodes, and wireless

channel conditions �. To minimize the communication and computing delays, one

can rely on the Q-learning algorithm to obtain the optimal coding and edge node

scheduling policy. The key idea of this algorithm is learning through interactions

with the environment and gradually finds the optimal policy. Nevertheless, the

Q-learning algorithm usually takes a long time to converge to the optimal policy, es-

pecially for distributed learning systems which usually involve with high-dimensional

state and action spaces. Moreover, if the state space is continuous, the conventional

Q-learning algorithm may not be able to effectively address the dynamic optimiza-

tion problem. Therefore, we propose a highly-effective deep reinforcement learning

algorithm based on the idea of using the deep dueling neural network architec-

ture [26] to facilitate the learning process of the distributed learning system. In

particular, as the Q-function of each state-action pair is estimated by the deep du-

eling neural network instead of Q-table as in the conventional Q-learning algorithm,

our proposed algorithm can effectively handle the continuous state space. Moreover,

�The straggling issues at edge nodes and wireless links are provided in detail in (5.2) and (5.4)

in Chapter 5.
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different from conventional deep reinforcement learning approaches, this proposed

algorithm separately estimates the advantage and value functions for each state-

action pair with two streams of hidden layers in the deep dueling neural network

architecture [26]. These two functions are then combined at the output layer to de-

rive the optimal action, i.e., coding and scheduling policy. In this way, the learning

process is significantly improved and stable as the unnecessary relations between

the values of states and the advantages of corresponding actions are mitigated. For

example, selecting MDS codes with high values of n, i.e., processing learning tasks in

many edge nodes, only benefit when learning task sizes are large. Extensive simula-

tion results show that the proposed solution can jointly obtain the optimal code and

the best edge nodes to perform learning tasks given the uncertainty and dynamic of

wireless channels and straggling computing at edge nodes. Under the optimal policy,

the average latency for learning tasks can be reduced by 66% compared to those of

the conventional coded distributed learning methods. The major contributions are

highlighted as follows:

� Propose a highly effective distributed learning framework leveraging outstand-

ing advantages of coded computing as well as abundant computing resources

from multiple collaborative edge nodes to securely and effectively execute

learning tasks.

� Propose a jointly optimal coding and scheduling framework for distributed

learning over wireless edge networks. Under this framework, one can simul-

taneously select the optimal code as well as the optimal edge nodes for each

learning task given the uncertainty of the edge nodes and wireless links. To the

best of our knowledge, our thesis is the first work which can jointly optimize

both coding and edge node scheduling for coded computing.

� Develop a highly-effective deep reinforcement learning algorithm for coded
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computing over wireless edge networks by utilizing the advanced deep du-

eling neural network architecture [26] to address the slow-convergence and

non-discrete problems of conventional reinforcement learning algorithms (e.g.,

Q-learning and deep Q-learning algorithms). By separately estimating the ad-

vantage and value functions, unnecessary relations between the values of states

and the advantages of corresponding actions are mitigated, resulting in a high

learning rate. This feature is especially useful as the sever needs not only to

optimize the code, but also to select the best edge nodes to execute learning

tasks at the same time.

� Perform extensive simulations to show the efficiency of our proposed solu-

tion compared to those of the conventional approaches (e.g., [52]). Moreover,

we discuss and analyze various scenarios to provide insightful designs for dis-

tributed learning over wireless edge networks with the coded computing mech-

anism.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

� Chapter 2: This chapter provides the fundamental background of deep learn-

ing, reinforcement learning, and deep reinforcement learning. In particular,

Section 2.1 highlights the key information about Deep Learning as well as its

advantages. Section 2.2 provides the fundamentals of reinforcement learning,

including MDP, SMDP, and Q-learning. Finally, Section 2.3 introduces several

deep reinforcement learning algorithms that are used in this thesis, including

deep Q-learning, deep double Q-learning, and deep dueling algorithms.

� Chapter 3: This chapter presents our proposed resource allocation framework

for network slicing. Specifically, the network slicing system model is introduced
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in Section 3.1. Then, the system is formulated as an SMDP in Section 3.2.

Performance evaluation is provided in Section 3.3. Finally, conclusions are

highlighted in Section 3.4.

� Chapter 4: This chapter introduces our proposed anti-jamming framework

with the ambient backscatter communication technology and the deep dueling

algorithm. In particular, Section 4.1 discusses the anti-jamming system model

together with the ambient backscatter communications. Section 4.2 presents

the problem formulation, and Section 4.3 highlights the simulation results.

Conclusions are drawn in Section 4.4.

� Chapter 5: This chapter presents our proposed solution to jointly optimize

coding and scheduling for distributed learning over wireless edge networks.

Specifically, Section 5.1 discusses the system model. Section 5.2 introduces the

coded computing for distributed learning formulation. Performance analyses

and simulation results are then provided in Section 5.3. Finally, conclusions

are highlighted in Section 5.4.

� Chapter 6: This chapter outlines the conclusion and future research direction

of this thesis.
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Chapter 2

Background

This thesis aims to exploit the current advances in AI including deep learning, rein-

forcement learning, and deep reinforcement learning to address emerging problems in

future communication systems. In the following, the fundamentals of deep learning

and reinforcement learning are first provided. Then, deep reinforcement learning, a

combination of deep learning and reinforcement learning, is discussed in details.

2.1 Deep Learning

Deep learning is a subset of AI in which a model is used to find the important

features of data without requiring the data structure [70, 71]. The key idea that

makes deep learning a powerful tool in data science is its deep neural network ar-

chitecture. The term “deep” represents the number of layers in the deep neural

network architecture. The more layers are implemented, the deeper the network is.

Deep learning has been successfully applied in many AI applications in our daily

life, ranging from face and voice recognition, text translation to intelligent driver as-

sistance systems. Deep learning possesses many advantages compared to traditional

AI algorithms [72].

� No need for feature engineering: With the deep neural network, deep learning

can automatically generate new features from the training dataset without

human interventions. In this way, deep learning can handle complex tasks

with unknown data structures very well.

� Supports parallel and distributed algorithms: Deep learning can be imple-
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Figure 2.1 : Typical deep neural network architecture.

mented in parallel and distributed systems to accelerate the training process.

In particular, instead of training the dataset in a single computer, the model

can be trained across multiple computers/systems to leverage their computing

power simultaneously.

� Reusable: With deep learning, the trained model can be reused in other sys-

tems/problems effectively. By using well-trained models built by experts, one

can significantly reduce the training time as well as related costs. For exam-

ple, AlexNet can be reused in new recognition tasks with minimal configura-

tions [72].

The architecture of the deep neural network is inspired by biological nervous sys-

tems. A typical deep neural network consists of nonlinear processing layers including

an input layer, several hidden layers, and an output layer as shown in Fig. 2.1. These

layers are interconnected via nodes, or neurons. A hidden layer uses the outputs of

its previous layer as the input. Each neuron has an activation function to compute

the output given the weighted inputs, i.e., synapses, and bias [70]. Typically, during

the training, synapses are updated by calculating the gradient of the loss function.

It is worth mentioning that there are different types of deep neural networks such as
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convolutional neural networks and long short-term memory networks. However, this

thesis exploits the typical deep neural network discussed above due to its simplicity

and effectiveness in addressing problems in communications.

2.2 Reinforcement Learning

Reinforcement learning is also a type of AI algorithms that can learn by mak-

ing a sequence of decisions. In particular, reinforcement learning deploys an agent

to make actions and interacts with the environment. After making an action, the

agent observes the immediate reward and next state of the environment as illus-

trated in Fig. 2.2. These observations are then learned by the agent to obtain the

optimal policy. By doing this, reinforcement learning can deal with the dynamic

and uncertainty of the environment, especially in communication systems that con-

sist of a huge number of devices with different configurations and behaviors. In

reinforcement learning, the system is first formulated by using the MDP. Then, the

Q-learning algorithm is usually used to help the agent learn and obtain the optimal

policy.
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2.2.1 Markov Decision Process

MDP is a mathematical framework for decision making under the dynamic and

uncertainty of the system. MDP is commonly adopted to formulate optimization

problems in dynamic programming and reinforcement learning. In particular, an

MDP is defined by a tuple < S,A, p, r > where S ≜ {s} is the state space, A ≜ {a}

is the action space, p is the transition probability that the system moves from state

s to state s′ after action a is performed, and r is the immediate reward of the system

after performing action a. We denote π∗ as the optimal policy that maximizes the

average long-term throughput for the system. Specifically, the optimal policy is a

mapping from a state to an action taken by the agent (i.e., decision maker). The

main goal of the MDP is to obtain the optimal policy π∗ to maximize the expected

total reward denoted by
∑∞

t=0 γ
trt(st, at), where γ ∈ [0, 1] is the discount factor and

at = π∗(st).

Besides MDP, SMDP is also widely adopted in the literature for real-time pro-

cesses. An SMDP is defined by a tuple < ti,S,A,L, r > where ti is a decision epoch

and L captures the state transition probabilities and the state sojourn time. Unlike

discrete MDP where decisions are made in every time slot, in an SMDP, we only

need to make decisions when an event occurs. This makes the SMDP framework

more effective to capture real-time systems in practice.

2.2.2 Q-learning

To obtain the optimal policy π∗, the Q-learning algorithm [73] is the most ef-

fective and well-known method in the literature. In particular, as illustrated in

Fig. 2.3, the Q-learning algorithm implements a Q-table to store state-action pair

values. Given a current state, the algorithm will select an action based on its current

strategy. After performing the selected action, the Q-learning algorithm observes

the immediate reward and next state, and updates the Q-values based on the Q-
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Figure 2.3 : Q-learning model.

value function. In this way, the Q-learning algorithm can learn from its decisions,

and it was proved that the Q-learning algorithm will converge to the optimal policy

after a finite number of iterations [73].

In an MDP, we aim to find the optimal policy π∗ : S → A, i.e., a mapping from

states to their corresponding actions, to maximize the average long-term reward.

Let’s denote Vπ(s) : S → R as the expected value function obtained by policy π

from a state s ∈ S, that can be defined as follows:

Vπ(s) = Eπ

[ ∞∑
t=0

γtrt(st, at)|s0 = s
]

= Eπ

[
rt(st, at) + γVπ(st+1)|s0 = s

]
,

(2.1)

where 0 ≤ γ ≤ 1 is the discount factor which represents the importance of long-term

reward [73]. Specifically, if γ is close to 0, the algorithm is likely to select actions to

maximize its short-term reward. In contrast, when γ is close to 1, the algorithm will

make actions such that its long-term reward is maximized. rt(st, at) is the immediate

reward achieved after performing action at at state st.

To find the optimal policy π∗, at each state, an optimal action has to be found
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through the following optimal value function.

V∗(s) = max
a

{
Eπ[rt(st, at) + γVπ(st+1)]

}
, ∀s ∈ S. (2.2)

For all state-action pairs, the optimal Q-functions are denoted by:

Q∗(s, a) ≜ rt(st, at) + γEπ[Vπ(st+1)], ∀s ∈ S. (2.3)

Then, the optimal value function V∗(s) can be written as V∗(s) = maxa{Q∗(s, a)}.

By making samples iteratively, the problem is reduced to determining the optimal

value of Q-function, i.e., Q∗(s, a), for all state-action pairs. In particular, the Q-

function is updated according to (2.4).

Qt+1(st, at) = Qt(st, at) + τt

[
rt(st, at)+

γmax
at+1

Qt(st+1, at+1)−Qt(st, at)
]
.

(2.4)

In particular, (2.4) is used to find the temporal difference between the predicted

Q-value, i.e., rt(st, at)+γmaxat+1 Qt(st+1, at+1) and its current value, i.e., Qt(st, at).

The learning rate τt determines the impact of new information to the existing value.

During the learning process, the learning rate can be adjusted dynamically, or it

can be chosen to be a constant. However, to guarantee the convergence for the Q-

learning algorithm, the learning rate τt is deterministic, nonnegative, and satisfies

the following conditions [73]:

τt ∈ [0, 1),
∞∑
t=1

τt =∞, and
∞∑
t=1

(τt)
2 <∞. (2.5)

The details of the Q-learning algorithm are provided in Algorithm 2.1. Specifi-

cally, from the current state st, the algorithm will choose an action at and observe

results after performing this action. In practice, to select action at, ϵ-greedy algo-

rithm [22] is often adopted. In particular, this technique chooses a random action

with probability ϵ, and selects an action that maximizes the Q(s, as) with proba-

bility 1− ϵ. After performing the chosen action, the Q-learning algorithm observes
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Algorithm 2.1 Q-learning Algorithm

1: Inputs: For each state-action pair (s, a), initialize the table entry Q(s, a) ar-

bitrarily, e.g., to zero. Observe the current state s, initialize a value for the

learning rate τ and the discount factor γ.

2: for t=1 to T do

3: From the current state-action pair (st, at), execute action at and obtain the

immediate reward rt

4: and new state st+1. Select an action at+1 based on the state st+1 and then

update the table entry

5: for Q(st, at) as follows:

Qt+1(st, at) = Qt(st, at) + τt

[
rt(st, at)+

γmax
at+1

Qt(st+1, at+1)−Qt(st, at)
]
.

(2.6)

6: Replace st ← st+1.

7: end for

8: Outputs: π∗(s) = argmaxaQ∗(s, a).
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the next state and reward, and then updates the table entry for Q(st, at) based on

Eq. (2.4). When all Q-values converge or a certain number of iterations is reached,

the learning process will be terminated. The Q-learning algorithm yields the optimal

policy indicating an action to be taken at each state such that Q∗(s, a) is maximized

for all states in the state space, i.e., π∗(s) = argmaxaQ∗(s, a). Under the conditions

of τt stated in Eq. (2.5), in Theorem 2.1, we show that the Q-learning algorithm will

converge to the optimum action-values with probability one.

Theorem 2.1. Under the conditions of τt in Eq. (2.5), the Q-learning algorithm

converges to the optimum action-values with probability one.

The proof of Theorem 2.1 is provided in Appendix A.1. It is worth noting that

the Q-learning algorithm can converge to the optimal policy in a reasonable time

when the state space and the action space are small. Nonetheless, for a complicated

system with thousands of state-action pairs, the convergence rate of the Q-learning

algorithm is usually slow. That makes the Q-learning algorithm practically inap-

plicable [91]. Thus, in the following, we introduce deep Q-learning, deep double

Q-learning, and deep dueling algorithms to quickly obtain the optimal policy thou-

sand times faster than the Q-learning algorithm.

2.3 Deep Reinforcement Learning

2.3.1 Deep Q-learning

In this section, we introduce the deep Q-learning algorithm [92] to cope with the

low-convergence problem of the Q-learning algorithm introduced in Section 2.2.2.

Intuitively, the deep Q-learning algorithm was introduced by Google DeepMind in

2015 [92] to teach machines to play games without human intervention. The deep

Q-learning algorithm implements a deep neural network instead of the Q-table to

find the approximated values of Q∗(s, a) as illustrated in Fig. 2.4.
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Figure 2.4 : Deep Q-learning model.

According to [92], the performance of reinforcement learning approaches might

not be stable or even diverges when using a nonlinear function approximator. The

reason is that with a small change of Q-values, the data distribution and correlations

between the Q-values and the target values, i.e., r+ γmaxaQ(s, a), are varied, and

thus the policy is greatly affected. To address this issue, we use three mechanisms,

i.e., experience replay, target Q-network, and feature set.

� Experience replay mechanism: The algorithm implements a replay memory

D, i.e., memory pool, to store transitions (st, at, rt, st+1) instead of running

on state-action pairs as they occur during experience. Random samples from

the memory pool are then fed to the deep neural network for training. In this

way, the algorithm can efficiently learn from previous experiences many times

and remove the correlations between observations [92].

� Target Q-network: Obviously, the Q-values will be changed during the train-

ing process. As a result, the value estimations can be out of control if a

constantly shifting set of values is used to update the Q-network resulting
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in the destabilization of the algorithm. To overcome this issue, the deep Q-

learning algorithm implements a target Q-network to frequently but slowly

update to the primary Q-network. As such, the correlations between the tar-

get and estimated Q-values are significantly eliminated, thereby stabilizing the

algorithm.

� Feature set: We determine features of the deep neural network as all the

aspects of the system state. These features are then fed to the deep neural

network to approximate Q-values for each state-action pair. Doing so, all

aspects of each state are trained resulting in a high convergence rate.

Algorithm 2.2 Deep Q-learning Algorithm

1: Initialize replay memory D to capacity D.

2: Initialize the Q-network Q with random weights θ.

3: Initialize the target Q-network Q̂ with weight θ− = θ.

4: for episode=1 to I do

5: With probability ϵ select a random action at, otherwise select at =

argmaxQ∗(st, at; θ)

6: Perform action at and observe reward rt and next state st+1

7: Store transition (st, at, rt, st+1) in the replay memory D

8: Sample random mini-batch of transitions (sj, aj, rj, sj+1) from D

9: yj = rj + γmaxaj+1
Q̂(sj+1, aj+1; θ

−)

10: Perform a gradient descent step on (yj − Q(sj, aj; θ))2 with respect to the

network parameter θ.

11: Every C steps reset Q̂ = Q

12: end for

Algorithm 2.2 provides the details of the deep Q-learning algorithm. In par-

ticular, as shown in Fig. 2.5, the training phase consists of multiple episodes. In
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each episode, given the current state, the algorithm chooses an action based on the

epsilon greedy algorithm. The algorithm will start with a fairly randomized policy

and later slowly move to a deterministic policy. In other words, at the first episode,

ϵ is set at a large value, e.g., 0.9, and gradually decayed to a small value, e.g., 0.1.

After that, the algorithm performs the selected action and observes results from

taking this action, i.e., next state and reward. This transition is then stored in the

replay memory for training process at later episodes.

In the learning process, random samples of transitions from the replay memory

will be fed into the neural network. The algorithm then updates the neural network

by minimizing the following lost function.

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q̂(s′, a′; θ−i )−Q(s, a; θi)

)2]
, (2.7)

where γ is the discount factor, θi are the parameters of the Q-networks at episode

i and θ−i are the parameters of the target network, i.e., Q̂. Differentiating the loss

function in (2.7) with respect to the parameters of the neural networks, we have the

following gradient:

∇θiL(θi) = E(s,a,r,s′)

[(
r + γmax

a′
Q̂(s′, a′; θ−i )−Q(s, a; θi)∇θiQ(s, a; θi)

)]
. (2.8)

To minimize the loss function in (2.7), one can use the Stochastic Gradient De-

scent algorithm [74], which is a very important algorithm to power nearly all of

deep learning algorithms, to calculate the gradient in (2.8). In general, the cost

function used by a machine learning algorithm is decayed by a sum over training

examples of some per-example loss function. For instance, the negative conditional

log-likelihood of the training data can be expressed as:

J(θ) = E(s,a,r,s′)∼U(D)L
(
(s, a, r, s′), θ

)
=

1

D

D∑
i=1

L
(
(s, a, r, s′)(i), θ

)
, (2.9)

where D is the size of the memory pool. For this additive cost function, the gradient
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descent requires computing as follows:

∇θJ(θ) =
1

D

D∑
i=1

∇θL
(
(s, a, r, s′)(i), θ

)
. (2.10)

The computational cost for the operation in Eq. (2.10) is O(D). Thus, as the size

D of the replay memory is increased, the time to take a single gradient step becomes

prohibitively long. As a result, in this work, we adopt the stochastic gradient descent

technique. The key idea of using stochastic gradient descent is that the gradient is

an expectation. Clearly, the expectation can be approximately estimated by using

a small set of samples. In particular, we can uniformly sample a mini-batch of

experiences from the replay memory D at each step of the algorithm. In general,

the mini-batch size can be set to be relatively small number of experiences, e.g.,

from one to a few hundred. As such, the training time is significantly fast. The

estimate of the gradient under the stochastic gradient descent is then formulated as

follows:

g =
1

N
∇θ

N∑
i=1

L
(
(s, a, r, s′)(i), θ

)
, (2.11)

where N is the mini-batch size. The stochastic gradient descent algorithm then

follows the estimated gradient downhill as in Eq. (2.12).

θ ← θ − νg, (2.12)

where ν is the learning rate of the algorithm. After every C steps, the algorithm

updates the target network parameters θ−i with the Q-network parameters θi. The

target network parameters remain unchanged between individual updates. Fig. 2.5

shows the flowchart of the deep Q-learning algorithm.

To further improve the learning rate of the deep Q-learning algorithm, the deep

double Q-learning algorithm is proposed recently [75]. The key idea of the deep

double Q-learning algorithm is to select an action by using the primary network. It

then uses the target network to compute the target Q-value for the action, instead
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Figure 2.6 : Deep dueling neural network architecture.

of taking the maximum value of all Q-values as in the deep Q-learning algorithm.

In this way, the algorithm can be stabilized. The loss function of the deep double

Q-learning algorithm is then expressed as follows:

Li(θi) = E(s,as,r,s′)∼U(D)

[(
r + γQ(s′, argmax

as′
Q̂(s′, as′ ; θ); θ−))

−Q(s, as; θi)
)2]

,

(2.13)

The details of the deep double Q-learning algorithm is provided in Algorithm 2.3. It

is worth mentioning that, in our algorithms, one gradient descent step is performed

to reduce the computational complexity. In the simulations, we prove that when

performing one gradient step at a time only, our proposed algorithms still can achieve

the optimal solution quickly. Clearly, our proposed algorithm can perform multiple

gradient descent steps by modifying the optimizer operation. Nevertheless, doing

this results in high computational complexity for the system.
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Algorithm 2.3 Deep Double Q-learning Algorithm

1: Initialize replay memory to capacity D.

2: Initialize the Q-network Q with random weights θ.

3: Initialize the target Q-network Q̂ with weight θ− = θ.

4: for episode=1 to T do

5: With probability ϵ select a random action ast , otherwise select ast =

argmaxQ∗(st, ast ; θ)

6: Perform action ast and observe reward rt and next state st+1

7: Store transition (st, ast , rt, st+1) in the replay memory

8: Sample random minibatch of transitions (sj, asj , rj, sj+1) from the replay

memory

9: yj = rj + γQ(sj+1, argmaxasj+1
Q̂(sj+1, asj+1

; θ); θ−)

10: Perform a gradient descent step on (yj − Q(sj, asj ; θ))2 with respect to the

network parameter θ.

11: Every C steps reset Q̂ = Q

12: end for
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2.3.2 Deep Dueling

According to [26], the convergence rate of the deep Q-learning algorithm is still

limited due to the overestimation of optimizers, especially in systems with large

action and state spaces as considered in this work. Therefore, we propose the deep

dueling algorithm [26], which was also originally developed by Google DeepMind

in 2016, to further improve the system’s convergence speed. The key idea making

the deep dueling superior to conventional approaches is its novel neural network

architecture. Clearly, in many states, it is unnecessary to estimate the value of cor-

responding actions as the choice of these actions has no repercussion on what hap-

pens [26]. Hence, instead of estimating the action-value function, i.e., Q-function,

the algorithm divides the deep neural network into two sequences, i.e., streams, of

fully connected layers to separately estimate the values of states and advantages

of actions*. The values and advantages are then combined at the output layer as

shown in Fig. 2.6. In this way, the deep dueling algorithm can achieve more robust

estimates of state value, and thus significantly improving its convergence rate as

well as stability. It is worth noting that the flowchart of the deep dueling algorithm

is the same as in the deep Q-learning. The main difference between the deep duel-

ing algorithm and other conventional deep reinforcement learning algorithms is the

deep dueling neural network. In the following, we present details of separating the

Q-value into the value and the advantage functions.

Recall that given a stochastic policy π, the values of state-action pair (s, a) and

state s are as follows:

Qπ(s, a) = E
[
rt|st = s, at = a, π

]
,

Vπ(s) = Ea∼π(s)

[
Qπ(s, a)

]
.

(2.14)

*The value function represents how good it is for the system to be in a given state. The

advantage function is used to measure the importance of a certain action compared with others [26].
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The advantage function of actions can be expressed as:

Gπ(s, a) = Qπ(s, a)− Vπ(s). (2.15)

Specifically, the value function V corresponds to how good it is to be in a particular

state s [26]. The state-action pair, i.e., Q-function, calculates the value of performing

action a in state s. The advantage function decouples the state value from the Q-

function to measure the importance of each action.

To estimate values of V and G functions, we use a dueling neural network in which

one stream of fully-connected layers outputs a scalar V(s; β) and the other stream

estimates an |A|-dimensional vector G(s, a;α), where α and β are the parameters of

fully-connected layers. These two sequences are then combined at the output layer

to obtain the Q-function by Eq. (2.16).

Q(s, a;α, β) = V(s; β) + G(s, a;α). (2.16)

Note that Eq. (2.16) applies to all (s, a) instances. Thus, to express equation (2.16)

in a matrix form, one needs to replicate the scalar, V(s; β), |A| times. Importantly,

Q(s, a;α, β) is a parameterized estimate of the true Q-function, and given Q, we

cannot obtain V and G uniquely. In other words, adding a constant to V(s; β) and

subtracting the same constant from G(s, a;α) result in the same Q-value. Therefore,

Eq. (2.16) is unidentifiable resulting in poor performance. To address this problem,

the combining module of the network is implemented the following mapping:

Q(s, a;α, β) = V(s; β) +
(
G(s, a;α)−max

a∈A
G(s, a;α)

)
. (2.17)

In this way, the advantage function estimator has a zero advantage when choosing

an action. Intuitively, given a∗ = argmaxa∈AQ(s, a;α, β) = argmaxa∈A G(s, a;α),

we have Q(s, a∗;α, β) = V(s; β). Therefore, we can convert (2.17) into a simple form

by replacing the max operator with an average as follows:

Q(s, a;α, β) = V(s; β) +
(
G(s, a;α)− 1

|A|
∑
a

G(s, a;α)
)
. (2.18)
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Note that subtracting the mean in Eq. (2.18) solves the unidentifiable problem.

However, it does not change the relative rank of the advantage function values, and

hence the Q values for actions at each state.

Algorithm 2.4 Deep Dueling Algorithm

1: Initialize replay memory D to capacity D.

2: Initialize the primary network Q including two fully-connected layers with ran-

dom weights α and β.

3: Initialize the target network Q̂ as a copy of the primary Q-network with weights

α− = α and β− = β.

4: for episode=1 to I do

5: Base on the ϵ-greedy algorithm, with probability ϵ select a random action at

at state st. Otherwise,

6: select at = argmaxQ∗(st, at;α, β)

7: Perform action at and observe reward rt and next state st+1

8: Store transition (st, at, rt, st+1) in the replay memory

9: Sample random mini-batch of transitions (sj, aj, rj, sj+1) from the replay

memory

10: Combine the value function and advantage functions as follows:

Q(sj, aj;α, β) = V(sj; β)+
(
G(sj, aj;α)

− 1

|A|
∑
aj

G(sj, aj;α)
)
.

(2.19)

11: yj = rj + γmaxaj+1
Q̂(sj+1, aj+1;α

−, β−)

12: Perform a gradient descent step on (yj −Q(sj, aj;α, β))2

13: Every C steps reset Q̂ = Q

14: end for

Based on Eq. (2.18) and the advantages of the deep reinforcement learning, we
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propose the deep dueling algorithm as shown in Algorithm 2.4. It is worth noting

that Eq. (2.18) is viewed and implemented as a part of the network and not as a

separated algorithmic step [26]. In addition, V(s; β) and G(s, a;α) are estimated au-

tomatically without any extra supervision or modifications in the algorithm. Similar

to deep Q-learning and deep double Q-learning algorithms, by performing gradient

descent steps, the weights of the deep dueling neural network will be gradually up-

dated to optimal values. However, analyzing the weights of deep neural networks is

not the main aim of this thesis. Instead, we focus on evaluating the performance

of AI-based solutions in addressing problems in future communication systems. It

is worth noting that deep reinforcement learning runs in an online manner without

requiring the environment parameters in advance. As such, there is no need for

a dataset for training. Deep reinforcement learning learns the optimal policy by

interacting with the environment and observing the next state of the system as well

as the immediate reward. This information is stored in the memory pool and will

be learned multiple times by the deep neural networks.

2.3.3 Complexity Analysis

In this thesis, we implement all the deep reinforcement learning algorithms above

to evaluate the system performance. The deep dueling neural network consists of

an input layer L0, a hidden layer L1, and two streams to estimate the value and

the advantage function. The value stream consists of layer Lvalue which is used

to estimate the value function. The advantage stream consists of layer Ladvantage

which is used to estimate the advantage function. Let |Li| denote the size (i.e.,

the number of neurons) of layer Li. We then can formulate the complexity of the

deep dueling neural network as |L0||L1| + |L1||Lvalue| + |L1||Ladvantage|. At each

training step, a number of training samples, i.e., transitions, are randomly taken

from the memory pool and fed to the deep dueling neural network for training.
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Thus, the total complexity of the training process is O
(
INb

(
|L0||L1|+ |L1||Lvalue|+

|L1||Ladvantage|
))

, where Nb is the size of the training batch and I is the total number

of training iterations. In this thesis, the size of L0 is the number of state features in

the state space. |Lvalue| = 1 as this layer is used to estimate the value of the current

state only. The size of Ladvantage is the number of actions in the action space. For the

deep Q-learning and deep double Q-learning, we deploy two fully connected hidden

layers L1 and L2. As such, the complexity of these algorithm can be formulated as

O
(
INb

(
|L0||L1|+ |L1||L2|

))
.

Clearly, our deep neural network architectures are simple with few hidden lay-

ers. In the simulations, we show that with only 16 (for the security and distributed

learning problems) and 64 neurons (for the network slicing problem) in the hidden

layers, our proposed deep reinforcement learning algorithms can effectively obtain

the optimal policy for the system. It is worth noting that with the advanced deep

dueling neural network architecture, the proposed deep dueling algorithm can con-

verge to the optimal policy much faster than the Q-learning, deep Q-learning, and

deep double Q-learning algorithms.
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Chapter 3

Optimal and Fast Real-time Resource Slicing with

Deep Dueling Neural Networks

In this chapter, we develop an optimal and fast real-time resource slicing framework

that maximizes the long-term return of the network provider while taking into ac-

count the uncertainty of resource demand from tenants. Specifically, we first propose

a novel system model which enables the network provider to effectively slice various

types of resources to different classes of users under separate virtual slices. We then

capture the real-time arrival of slice requests by a SMDP. To obtain the optimal

resource allocation policy under the dynamics of slicing requests, e.g., uncertain

service time and resource demands, a Q-learning algorithm is often adopted in the

literature. However, such an algorithm is notorious for its slow convergence, espe-

cially for problems with large state/action spaces. This makes Q-learning practically

inapplicable to our case in which multiple resources are simultaneously optimized.

To tackle it, we propose a novel network slicing approach with an advanced deep

learning architecture, called deep dueling that attains the optimal average reward

much faster than the conventional Q-learning algorithm. This property is espe-

cially desirable to cope with real-time resource requests and the dynamic demands

of users. Extensive simulations show that the proposed framework yields up to 40%

higher long-term average return while being few thousand times faster, compared

with state-of-the-art network slicing approaches.

The rest of this chapter is organized as follows. Section 3.1 and Section 3.2

describe the system model and the problem formulation, respectively. Evaluation

results are then discussed in Section 3.3. Finally, conclusions and future works are
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Figure 3.1 : Network resource slicing system model.

given in Section 3.4.

3.1 System Model

In Fig. 3.1, we consider a general network slicing model with three major par-

ties [17], [18], [24]:

Network provider: is the owner of the network infrastructure who provides

resource slices including radio, computing, and storage, to the tenants.

Tenants: request and lease resource slices to meet service demands of their

subscribers.

End users: run their applications on the slices of the above subscribed tenants.

We consider three tenants corresponding to three popular classes of services, i.e.,

utilities, automotive, and manufacturing, as shown in Fig. 3.1 . Each class of service

possesses some specific features regarding its functional, behavioral perspective, and

It is worth noting that these services are just three examples considered in this thesis. The

proposed model is applicable to any general service that can be represented by a specific resource

requirement and service requirement.



3.1 System Model 45

requirements. For example, a vehicle may need an ultra-reliable slice for telemetry

assisted driving [23]. For slices requested from industry, security, resilience, and

reliability of services are of higher priority [76], [77]. Thus, when a tenant sends

a network slice request to the network provider, the tenant will specify resources

requested and additional service requirements, e.g., security and reliability (defined

in the slice blueprint). As a result, tenants may pay different prices for their requests,

depending on their service demands. Upon receiving a slice request, the service

management component (in Fig. 3.1) analyzes the requirements and makes a decision

to accept or reject the request based on its optimal policy.

The service management block consists of two components: (i) the optimal pol-

icy and (ii) the algorithm. When a slice request arrives at the system, the optimal

policy component will make a decision, i.e., accept or reject, based on the (current)

optimal policy obtained by the algorithm component. As the decision can be made

immediately, the decision latency is virtually zero. For the algorithm component,

the optimal policy is calculated and updated periodically. It is worth noting that

our algorithm observes the results after performing the decision, and uses the obser-

vations together with the characteristics of slice requests for its training process. By

doing so, our algorithm can learn from previous experience and is able to deal with

the uncertainty of slice requests. If the request is accepted, the service management

will transfer the slice request to the resource management and orchestration (RMO)

block to allocate resources. Once a slice request is accepted, the network provider

will receive an immediate reward (the amount of money) paid by the tenant for

granted resources and services.

In practice, the network provider may possess multiple data centers for network

slicing services. Each data center contains a set of servers with diverse resources,

e.g., computing and storage, which are used to support VNFs services. Servers

in the data center are connected together, and the data centers are connected via



3.1 System Model 46

backhaul links. Then, the network slicing and resource allocation processes to each

slice are taken place as follows.

� A slice request is associated with the network slice blueprint (i.e., a tem-

plate) that describes the structure, configuration, and workflow for instan-

tiating and controlling the network slice instance for the service during its

life cycle [24], [78]- [80]. The service/slice instance includes a set of network

functions and resources to meet the end-to-end service requirements.

� When a slice request arrives at the system, the orchestrator will interpret the

blueprint [78]- [80]. In particular, all information of the infrastructure such as

(i) NFV services provided by servers, (ii) resources availability at servers, and

(iii) the connectivities among servers are checked.

� Based on the aforementioned information, the orchestrator will find the opti-

mal servers and links to place VNFs to meet the required end-to-end services

of the slice (i.e., VNF placement procedure).

� During the life cycle of the slice, the orchestrator can change the allocated

computing and storage resources by using the scaling-in and scaling-out mech-

anisms. In addition, the connectivity among VNFs and their locations can be

changed when there is no sufficient resources or the behavior of the slice is

changed, e.g., update, migrate, or terminate the network slice.

Note that the VNF placement, routing, and connectivity resource allocation

problems have been well investigated in the literature, e.g., [81]- [86]. For example,

in [86], the AAP algorithm is introduced to admit and route connection requests by

finding possible paths satisfying cost criteria. Instead of focusing on VNF placement,

routing, and connectivity resource allocation problems, in this work, we mainly focus

on dealing with the uncertainty, dynamics, and heterogeneity of slice requests. Thus,
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we consider a simplified yet practical model and propose the novel framework using

the deep dueling neural network architecture [26] to address the aforementioned

problems, which are the main aims and key contributions of this work. Specifically,

we assume that there are C classes of slices, denoted by C = {1, . . . , c, . . . , C}. Each

slice from class c requires rrec , ωre
c , and δrec units of radio, computing, and storage

resources, respectively. If a slice request from class c is accepted, the provider

will receive an immediate reward rc. The maximum radio, computing, and storage

resources of the network provider are denoted by Θ, Ω, and ∆ units, respectively.

Let nc denote the number of slices from class c being simultaneously run/served

in the system. At any time, the following resource constraints guarantee that the

allocated resources do not exceed the available resources of the infrastructure:

Θ ≥
C∑
c=1

rrec nc, Ω ≥
C∑
c=1

ωre
c nc, and ∆ ≥

C∑
c=1

δrec nc. (3.1)

3.2 Problem Formulation

To maximize the long-term return for the provider while accounting for the real-

time arrivals of slice requests, we recruit the SMDP [25]. An SMDP is defined by a

tuple < ti,S,A,L, r > where ti is an decision epoch, S is the system’s state space,

A is the action space, L captures the state transition probabilities and the state

sojourn time, and r is the reward function. Unlike discrete MDPs where decisions

are made in every time slots, in an SMDP, we only need to make decisions when an

event occurs. This makes the SMDP framework more effective to capture real-time

network slicing systems.

3.2.1 Decision Epoch

Under our network slicing system model, the provider needs to make a decision

upon receiving requests from tenants. Thus, the decision epoch can be defined as

the inter-arrival time between two successive slice requests.
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3.2.2 State Space

The system state s of the SMDP at the current decision epoch captures the

number of slices nc from a given class c (∀c ∈ C) being simultaneously run/served

in the system. Formally, we define s as an 1× C vector:

s ≜ [n1, . . . , nc, . . . nC ]. (3.2)

Given the network provider’s resource constraints in (3.1), the state space S of all

possible states s is defined as:

S ≜

{
s = [n1, . . . , nc, . . . nC ] : Θ ≥

C∑
c=1

rrec nc;

Ω ≥
C∑
c=1

ωre
c nc; ∆ ≥

C∑
c=1

δrec nc

}
.

(3.3)

At the current system state s, we define the event vector e ≜ [e1, . . . , ec, . . . , eC ]

with ec ∈ {1,−1, 0}, ∀c ∈ C. ec equals to “1” if a new slice request from class c

arrives, ec equals to “−1” if a slice’s resources are being released (also referred to as

a slice completion/departing) to the system’s resource, and ec equals “0” otherwise

(i.e., no slice request arrives nor completes/departs from the system). The set E of

all the possible events is then defined as follows:

E ≜
{
e : ec ∈ {−1, 0, 1};

C∑
c=1

|ec| ≤ 1
}
, (3.4)

where the trivial event e∗ ≜ (0, . . . , 0) ∈ E means no request arrival or comple-

tion/departing from all C classes.

3.2.3 Action Space

At state s, if a slice request arrives (i.e., there exists c ∈ C such that ec = 1), the

network provider can choose either to accept or reject this request to maximize its

long-term return. Let as denote the action to be taken at state s where as = 1 if an



3.2 Problem Formulation 49

arrival slice is accepted and as = 0 otherwise. The state-dependent action space As

can be defined by:

As ≜ {as} = {0, 1}. (3.5)

3.2.4 State Transition Probability

As aforementioned, in this work, we propose reinforcement learning approaches

which can obtain the optimal policy for the network provider without requiring in-

formation from the environment (to cope with the uncertain demands and dynamics

of slice requests). However, to lay a theoretical foundation and to evaluate the per-

formance of our proposed solutions, we first assume that the arrival process of slice

requests from class c follows the Poisson distribution with mean rate λc and its

network resource occupation time follows the exponential distribution with mean

1/µc. The assumptions allow us to analyze the dynamics of the SMDP, which is

characterized by the state transition probabilities of the underlying Markov chain.

In particular, our SMDP model consists of a renewal process and a continuous-time

Markov chain {X(t : t ≥ 0)} in which the sojourn time in a state is a continuous

random variable. We then can adopt the uniformization technique [87] to determine

the probabilities for events and derive the transition probabilities L. As shown

in Fig. 3.2, the uniformization technique transforms the original continuous-time

Markov chain {X(t) : t ≥ 0} into an equivalent stochastic process {X(t), t ≥ 0} in

which the transition epochs are generated by a Poisson process {N(t) : t ≥ 0} at

a uniform rate and the state transitions are governed by the discrete-time Markov

chain {Xn} [88], [89]. The details of the uniformization technique are as the follow-

ing.

Our Markov chain {X(t)} can be considered as a time-homogeneous Markov

chain. Suppose that {X(t)} is in state s at the current time t. If the system leaves

state s, it transfers to state s′ (̸= s) with probability ps,s′(t). The probability that
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the process will leave state s in the next ∆t to state s′ is expressed as follows:

P{X(t+∆t) = s′|X(t) = s}

=




zs∆t× ps,s′(t) + o(∆t), s′ �= s,

1− zs∆t+ o(∆t), s′ = s,

(3.6)

as ∆t → 0 and zs is the occurrence rate of the next event expressed as follows:

zs =
C∑
c=1

(λc + ncµc). (3.7)

In the uniformization technique, we consider that the occurrence rate zs of the states

are identical, i.e., zs = z for all s. Thus, the transition epochs can be generated by a

Poisson process with rate z. To formulate the uniformization technique, we choose

a number z with

z = max
s∈S

zs. (3.8)

Now, we define a discrete-time Markov chain {Xn} whose one-step transition

probabilities ps,s′(t) are given by:

ps,s′(t) =




(zs/z)ps,s′(t), s′ �= s,

1− zs/z, otherwise,
(3.9)

for all s ∈ S. Let {N(t), t ≥ 0} be a Poisson process with rate z such that the

process is independent of the discrete-time Markov chain {Xn}. We then define the
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continuous-time stochastic process {X(t), t ≥ 0} as follows:

X(t) = XN(t), t ≥ 0. (3.10)

Equation (3.10) represents that the process {X(t)} makes state transitions at epochs

generated by a Poisson process with rate z and the state transitions are governed by

the discrete-time Markov chain {Xn} with one-step transition probabilities ps,s′(t)

in (3.9). When the Markov chain {Xn} is in state s, the system leaves to next

state with probability zs/z and is a self-transition with probability 1− zs/z. In fact,

the transitions out of state s are delayed by a time factor of z/zs, while a factor

of zs/z corresponds to the time until a state transition from state s. In addition,

in our system model there is no terminal state, i.e., the discrete-time Markov chain

describing the state transitions in the transformed process has to allow for self-

transitions leaving the state of the process unchanged. Therefore, the continuous

{X(t)} is probabilistically identical to the original continuous-time Markov chain

{X(t)}. This statement can be expressed as the following equation:

P{X(t+∆t) = s′|X(t) = s} = z∆t× ps,s′ + o(∆t)

= zs∆t× ps,s′ + o(∆t)

= qs,s′∆t+ o(∆t)

= P{X(t+∆t) = s′|X(t) = s} for ∆t→ 0, ∀s, s′ ∈ S

and s ̸= s′,

(3.11)

where qs,s′ is the infinitesimal transition rate of the continuous-time Markov chain

{X(t)} and is expressed as follows:

qs,s′ = zsps,s′ , ∀s, s′ ∈ S and s′ ̸= s. (3.12)

Clearly, in our system, the occurrence rate of the next event zs =
∑C

c=1(λc+ncµc) are

positive and bounded in s ∈ S. Thus, it is proved that the infinitesimal transition

rates determine a unique continuous-time Markov chain {X(t)} [88]. We then make

a necessary corollary as follows:
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Corollary 3.1. The probabilities ps,s′(t) are given by:

ps,s′(t) =
∞∑
n=0

e−zt zt
n

n!
p
(n)
s,s′ , ∀s, s

′ ∈ S and t ≥ 0, (3.13)

where the probabilities p
(n)
s,s′ can be recursively computed from

p
(n)
s,s′ =

∑
k∈S

p
(n−1)
s,k pk,s′ , n = 1, 2, . . . (3.14)

starting with p
(0)
s,s = 1 and p0s,s′ = 0 ∀s′ ̸= s .

In the next theorem, we prove that two processes {X(t)} and {X(t)} are prob-

abilistically equivalent.

Theorem 3.1. {X(t)} and {X(t)} are probabilistically equivalent as

ps,s′(t) = P{X(t) = s′|X(0) = s}, ∀s, s′ ∈ S and t ≤ 0. (3.15)

The proof of Theorem 3.1 is given in Appendix B.1. ■

From (3.13) and (3.14), the computational complexity of the uniformization

method is derived as O(vt|S|2), where |S| is the number of states of the system.

Based on z and zs, we can determine the probabilities for events as follows. The

probability for an arrival slice from class c occurring in the next event e equals

λc/z. The probability for a departure slice from class c occurring in the next event

e equals ncµc/z, and the probability for a trivial event occurring in the next event

e is 1− zs/z. Hence, we can derive the transition probability L.

3.2.5 Reward Function

The immediate reward after action as is executed at state s ∈ S is defined as

follows:

r(s, as) =

 rc, if ec = 1, as = 1, and s′ ∈ S,

0, otherwise.
(3.16)



3.2 Problem Formulation 53

At state s, if an arrival slice is accepted, i.e., as = 1, the system will move to next

state s′ and the network provider receives a reward of rc. In contrast, the immediate

reward is equal to 0 if an arrival slice is rejected or there is no slice request arriving

at the system. It is worth mentioning that the value of rc represents the amount of

money paid by the tenant based on resources and additional services required.

As our system’s statistical properties are time-invariant, i.e., stationary, the de-

cision policy π of the SMDP model, which is a pure strategy, i.e., accept or reject

an arrival request, can be defined as a time-invariant mapping from the state space

to the action space: S → As. Thus, the long-term average reward starting from a

state s can be formulated as follows:

Rπ(s) = lim
K→∞

E{
∑K

k=0 r(sk, π(sk))|s0 = s}
E{
∑K

k=0 τk|s0 = s}
, ∀s ∈ S, (3.17)

where τk is the time interval between the k-th and (k+1)-th decision epoch, r is the

immediate reward of the system, and π(s) is the action corresponding to the policy

π at state s.

In the following theorem, we will prove that the limit in Equation (3.17) exists.

Theorem 3.2. Given the state space S is countable and there is a finite number of

decision epochs within a certain considered finite time, we have:

Rπ(s) = lim
K→∞

E{
∑K

k=0 r(sk, π(sk))|s0 = s}
E{
∑K

k=0 τk|s0 = s}

=
Lπr(s, π(s))

Lπy(s, π(s))
, ∀s ∈ S,

(3.18)

where y(s, π(s)) is the expected time interval between adjacent decision epochs when

action π(s) is taken under state s, and

Lπ = lim
K→∞

1

K

K−1∑
k=0

Lk
π, (3.19)

where Lk
π and Lπ are the transition probability matrix and the limiting matrix of the

embedded Markov chain for policy π, respectively.
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Proof. We first have the following lemma.

Lemma 3.1. Given the the transition probability matrix Lπ, the limiting matrix Lπ

exists.

The proof of Lemma 3.1 is given in Appendix B.2.

Since Lπ is the transition probability matrix, Lπ exists as stated in Lemma 3.1.

As the total of probabilities that the system transform from state s to other states

is equal to 1, we have: ∑
s′∈S

Lπ(s
′|s) = 1. (3.20)

From (3.20), we derive Ln
π and Lπ as follows:

Lπr(s, π(s)) = lim
K→∞

1

K + 1
E{

K∑
k=0

r(sk, π(sk))}, ∀s ∈ S,

Lπy(s, π(s)) = lim
N→∞

1

N + 1
E{

N∑
n=0

τn}, ∀s ∈ S.

(3.21)

Therefore, (3.18) is obtained by taking ratios of these two quantities. Note that the

limit of the ratios equals to the ratio of the limits, and that, when taking the limit of

the ratios, the factor 1
K+1

can be removed from the numerator and denominator.

Note that in our SMDP model, the embedded Markov chain is unichain including

a single recurrent class and a set of transient states for all pure policies π [25]. Hence,

the average reward Rπ(s) is independent to the initial state, i.e., Rπ(s) = Rπ, ∀s ∈

S. The average reward maximization problem is then written as:

max
π

Rπ =
Lπr(s, π(s))

Lπy(s, π(s))
(3.22)

s.t.
∑
s′∈S

Lπ(s
′|s) = 1, ∀s ∈ S.

Our objective is to find the optimal admission policy that maximizes the average

reward of the network provider, i.e.,

π∗ = argmax
π
Rπ. (3.23)
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As aforementioned, the network resources may come from multiple data cen-

ters with diverse connectivity among servers and data centers. In such a case, the

above formulation can be straightforwardly extended by accommodating additional

states to the system state space. Specifically, one can define the system state space

that includes (i) services of requests together with their corresponding resources and

order, i.e., the network slice blueprint, (ii) available resources and services at the

servers, and (iii) connectivity among servers and data centers. This means that we

just need to increase the state space, compared with the current state space (with

three types of resources, as an example) in the current formulation, to capture ad-

ditional resources and options. Then, the proposed admission/rejection framework

can be implemented at the orchestrator to allocate the available resources to re-

quested slices. Specifically, based on this state space, when a slice request arrives,

the orchestrator is able to check whether to allocate an optimal possible link to the

request (using existing network slicing mechanisms) and then makes a decision to

accept or reject the request. In addition, after making a decision to allocate the re-

sources for a slice request (i.e., after the initial deployment of VNFs), if the running

slice requires to add more resources or remove some resources (i.e., scaling out or

scaling in, respectively), we can consider some new events (i.e., requests to add or

remove resources from running slices) to the system state space. Again, this implies

that we only need to add more states to the system state space of the current model.

Note that, the action space will be kept the same, i.e., only two actions (accept or

reject), and we just need to set new rewards for accepting/rejecting requests from

running slices in the problem formulation.

Note that the problem (3.22) requires environment information, i.e., arrival and

completion rates of slice requests, to construct the transition probability matrix

L. Nevertheless, due to the uncertain demands and the dynamics of slice requests

from tenants, these environment parameters may not be available and can be time-
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varying. To cope with the demand uncertainty, we consider deep double Q-learning

and deep dueling algorithms proposed in Section 2.3 to find the optimal admission

policy at the RMO to maximize the long-term average reward.

3.3 Performance Evaluation

3.3.1 Parameter Setting

We perform the simulations using TensorFlow [93] to evaluate the performance

of the proposed solutions under different parameter settings. We consider three com-

mon classes of slices, i.e., utilities (class-1), automotive (class-2), and manufacturing

(class-3). Unless otherwise stated, the arrival rates λc of requests from class-1, class-

2, and class-3 are set at 12 requests/hour, 8 requests/hour, and 10 requests/hour,

respectively. The completion rates µc of requests from class-1, class-2, and class-3

are set at 3 requests/hour. The immediate reward rc for each accepted request from

class-1, class-2, and class-3 are 1, 2, and 4, respectively. These parameters will be

varied later to evaluate the impacts of the immediate reward on the decisions of the

RMO. Each slice request requires 1 GB of storage resources, 2 CPUs for computing,

and 100 Mbps of radio resources [94]. Importantly, the architecture of the deep

neural network requires thoughtful design as it greatly affects the performance of

the algorithm. Intuitively, increasing the number of hidden layers will increase the

complexity of the algorithm. However, when the number of hidden layers is very

small, the algorithm may not converge to the optimal policy. Similarly, when the

size of hidden layers and mini-batch size are large, the algorithm will need more time

to estimate the Q-function. In our experiment, we choose these parameters based

on common settings in the literature [26,92]. In particular, for the deep Q-learning

and deep double Q-learning algorithms, two fully-connected hidden layers are imple-

mented together with input and output layers. For the deep dueling algorithm, the

neural network is divided into two streams [26]. Each stream connects to a shared
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hidden layer as shown in Fig. 2.6. The size of the hidden layers is 64. The mini-batch

size is set at 64. Both the Q-learning algorithm and the deep reinforcement learning

algorithms use ϵ-greedy algorithm with the initial value of ϵ is 1, and its final value

is 0.1 [73, 95]. The maximum size of the experience replay buffer is 10,000, and the

target Q-network is updated every 1,000 iterations [92], [74].

3.3.2 Simulation Results

3.3.2.1 Performance Evaluation

Comparison to Existing Network Slicing Solutions As mentioned, most

existing works, e.g., [10, 11, 17–19] optimized slicing for only the radio resource. In

practice, besides the radio resource, both computing and storage resource should

also be accounted for while orchestrating slices. This makes existing solutions sub-

optimal. In this section, we set the maximum radio resources at 500 Mbps. Each

request requires 50 Mbps for radio access, 2 CPUs for computing, and 2 GB of

storage resources. The computing and storage resources are then varied from 1

CPU to 9 CPUs and 1 GB to 9 GB, respectively. Fig. 3.3 shows the average reward

of the system obtained by the Q-learning algorithm for the case with three resources

are taken into account (as in our considered system model) and for the case with

only radio resource as considered in [10, 11, 17–19]. As can be observed, when the

computing and storage resources increase, the average reward is increased as more

slice requests are accepted. However, the average reward of our approach (taking

all radio, computing, and storage resources into account) is significantly higher than

those of other solutions in the literature, especially when the amount of computing

and storage resources are small. This is due to the fact that slices not only request

radio resources to ensure the bandwidth for connections but also computing and

storage resources to fulfill the requirements of different services.
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Figure 3.3 : The average reward when optimizing with one resource and three

resources.

Average Reward and Network Performance Next, we compare the perfor-

mance of the proposed solution, i.e., deep dueling algorithm, with other methods,

i.e., Q-learning [18] and greedy algorithms [19], [96], in terms of average reward

and the number of requests running in the system. For a small-size system (the

maximum radio, computing, and storage resources are set at 400 Mbps, 8 CPUs,

and 4 GB, respectively), Fig. 3.4 shows the average reward of the system obtained

by three algorithms while varying the reward of slices from class-3 from 1 to 6. As

can be seen, with the increasing of the reward of slices from class-3, the average

reward of the system is increased. However, the average reward obtained by the

reinforcement learning algorithms, i.e., deep dueling and Q-learning, is significantly

higher than that of the greedy algorithm. This is due to the fact that the proposed

reinforcement learning approaches reserve resources for coming requests that may

have high rewards, while the greedy algorithm accepts slices based on the available

resource of the system as shown in Fig. 3.5. It is worth noting that the achieved

reward of the Q-learning algorithm is not as good as the reward obtained by the
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deep dueling algorithm even with small-size scenarios. This is because that the Q-

learning algorithm has a slow convergence rate due to the curse-of-dimensionality

problem. This observation is more pronounced when we later increase the size of

the system.
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Figure 3.4 : The average reward of the system when the immediate reward of class-3

is varied.

As observed in Fig. 3.5, the number of requests running in the systems under

the greedy algorithm remains the same when the immediate reward of slices from

class-3 is varied. The reason is that the greedy algorithm does not consider the

immediate reward of slice requests into account. In other words, upon receiving a

slice request, the greedy algorithm will accept this request if the available resources

of the infrastructure satisfy the slice service demands. In contrast, for the reinforce-

ment learning algorithms, the immediate reward is also an essential factor to make

optimal decisions. In particular, when the immediate reward of slice requests from

class-3 increases, the algorithms are likely to reject the slice requests from classes

which have lower immediate rewards, i.e., slice requests from class-1. For example,

when the immediate reward of slice request from class-3 is 6, the number of requests

from class-1, whose immediate reward is 1, approaches 0.
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Figure 3.5 : The number of request running in the system of (a) greedy algorithm, (b)

Q-learning algorithm, and (c) deep dueling algorithm when the immediate reward

of class-3 is varied.

To observe the performance of the proposed solutions when the state space of the

system is large, we increase the radio, computing, and storage resources to 2 Gbps,

40 CPUs, and 20 GB, respectively. The arrival rate of requests from class-1 is 48 re-

quests/hour, from class-2 is 32 requests/hour, and from class-3 is 40 requests/hour.

The completion rates from all classes are set at 2 requests/hour. Fig. 3.6 shows that

the average reward obtained by the deep dueling algorithm is much higher than

those of the greedy and Q-learning algorithms. This is because of the slow conver-

gence of the Q-learning algorithm to optimality. Specifically, with 106 iterations,

the performance of the Q-learning algorithm is just the same as that of the greedy
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algorithm. The performance of the Q-learning algorithm is improved with 107 it-

erations, but it is still way inferior to that of the deep dueling algorithm. For this

large system scenario with over 74,000 state-action pairs, on a laptop with Intel Core

i7-7600U and 16GB RAM, the deep dueling algorithm takes only about 2 hours to

finish 15,000 iterations and obtain the optimal policy. This is a very practical num-

ber compared with the Q-learning algorithm that cannot obtain the optimal policy

within 107 iterations (more than 15 hours). In practice, with specialized hardware

and much more powerful computing resource (compared with our laptop) at the net-

work provider (e.g., GPU cards from NVIDIA), the deep dueling algorithm should

take much shorter time than 2 hours to finish 15,000 iterations [97]. These results

confirm that the Q-learning algorithm, despite its optimality, requires a much longer

time to converge, compared with the deep dueling algorithm.
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Figure 3.6 : The average reward of the system when the immediate reward of class-3

is varied.

Similar to the case in Fig. 3.5, as shown in Fig. 3.7, the deep dueling and Q-

learning algorithms reserve resources for slices from classes which have high imme-

diate rewards. However, the deep dueling algorithm achieves better performance

compared to the Q-learning algorithm. For example, when the immediate reward
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of slices from class-3 is 6, the number of requests running in the systems is about

16 requests and 11 requests for the deep dueling and the Q-learning algorithms,

respectively.
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Figure 3.7 : The number of request running in the system of (a) Q-learning algorithm

(106 iterations), (b) Q-learning algorithm (107 iterations), and (c) deep dueling

algorithm (20,000 iterations) when the immediate reward of class-3 is varied. The

dash lines are results of the greedy algorithm.

In summary, in all the cases, the deep dueling algorithm always achieves the best

performance in terms of the average reward and network performance.

Optimal Policy In Fig. 3.8, we examine the optimal policy of the deep dueling

and Q-learning algorithms. Specifically, we set the maximum resources of the system
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at 4 times, 10 times, and 20 times of resources requested by a slice and evaluate the

policy of the algorithms with different available resources in the system as shown

in Fig. 3.8(a), Fig. 3.8(b), and Fig. 3.8(c), respectively. Note that the lines Q-

learning{1,2,3} and Deep Dueling{1,2,3} represent the probabilities of accepting

requests from class-{1,2,3} by using the Q-learning and deep dueling algorithms,

respectively. Clearly, in three cases, the deep dueling always obtains the best policy.

In particular, it will reject almost all requests from class-1 (lowest immediate reward)

when there are few available resources in the system. When the available resources

in the system increase, the probability of accepting a request from class-1 is also

increased. Note that, when the maximum system resource capacity is large, i.e.,

20 times of resources requested by a slice, the performance of the Q-learning is

fluctuated as it cannot converge to the optimal policy event with 107 iterations.

3.3.2.2 Convergence of Deep Reinforcement Learning Approaches

Next, we show the learning process and the convergence of the deep reinforcement

learning approaches, i.e., deep Q-learning, deep double Q-learning, and deep dueling,

in different scenarios. As shown in Fig. 3.9(a), when the maximum radio, computing,

storage resources are 400 Mbps, 8 CPUs, and 4 GB, respectively, the convergence

rates of the three deep Q-learning algorithms are considerably higher than that

of the Q-learning algorithm. Specifically, while the deep reinforcement learning

approaches converge to the optimal value within 10,000 iterations, the Q-learning

need more than 106 iterations to obtain the optimal policy. This is stemmed from

the fact that in the system under consideration, the state space is dimensional and

the system dynamically changes over time. In Fig. 3.9(b), we show the convergence

of the Q-learning and deep dueling algorithms in the first 20,000 iterations to clearly

verify this observation. On the contrary, by implementing the neural network with

fully-connected layers, the deep reinforcement algorithms can efficiently reduce the
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Figure 3.8 : The probabilities of accepting a request from classes when the maximum

available resources of the system is (a) 4 times, (b) 10 times, and (c) 20 times of

resources requested by a slice.

curse of dimensionality, thereby improving the convergence rate.

We continue to increase the radio, storage, computing resources to 1 Gbps, 10

GB, and 20 CPUs, respectively. The arrival rates of classes are increased by 4

times, i.e., λ1 = 48, λ2 = 32, and λ3 = 40 requests/hour, while the completion

rates are equal to 2 requests/hour for all classes. As shown in Fig. 3.10(a), the

performance of the deep reinforcement algorithms is significantly higher than that

of the Q-learning algorithm. It is important to note that as the state space now

is more complicated than in the previous case, the deep dueling algorithm obtains

the optimal policy within 15,000 iterations, while the other two deep reinforcement
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Figure 3.9 : The convergence of reinforcement learning algorithms when the radio,

computing, storage resources are 400 Mbps, 8 CPUs, and 4 GB, respectively with

(a) 106 iteration and (b) 20,000 iterations.

learning approaches require more time to converge to the optimal policy. We keep

increasing the radio, storage, computing resources to 2 Gbps, 20 GB, and 40 CPUs,

respectively and observe the convergence rate of the deep reinforcement algorithms

as shown in Fig. 3.10(b). Clearly, as now the system is very complicated, the deep

dueling can achieve the optimal policy within 20,000 iterations while the deep Q-

learning and deep double Q-learning algorithms cannot converge to the optimal

policy after 100,000 iterations. This is due to the fact that by decoupling the neural

network into two streams, the deep dueling algorithm can significantly reduce the

overestimation of the optimizer, i.e., stochastic gradient descent.

Next, we show the effects of the learning rate on the performance of the deep

dueling algorithm. The learning rate is the most critical hyper-parameters to tune

for training deep neural networks. If the learning rate is too slow, the training

process is more reliable but requires a long time to converge to the optimal policy.

In contrast, if the learning rate is too high, the algorithm may not converge to

the optimal policy or even diverge. This is stemmed from the fact that the deep
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Figure 3.10 : The convergence of reinforcement learning algorithms when (a) the

radio, computing, storage resources are 1 Gbps, 20 CPUs, and 10 GB, respectively

and (b) the radio, computing, storage resources are 2 Gbps, 20 GB, and 40 CPUs,

respectively.

dueling algorithm uses the gradient descent method. If the learning rate is too

large, gradient descent may overshoot the optimal point, and thus resulting in poor

performance. This observation is proved by simulation results as shown in Fig. 3.11.

Specifically, with the learning rate of 0.01, the deep dueling algorithm achieves the

best performance in terms of the average reward and the convergence rate compared

to other learning rates.

3.4 Conclusion

In this chapter, we have developed an optimal and fast network resource man-

agement framework which allows the network provider to jointly allocate multiple

combinatorial resources (i.e., computing, storage, and radio) to different slice re-

quests in a real-time manner. To deal with the dynamic and uncertainty of slice

requests, we have adopted the SMDP. Then, the reinforcement learning algorithms,

i.e., Q-learning, deep Q-learning, deep double Q-learning, and deep dueling, have
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Figure 3.11 : The performance of deep dueling algorithm with different learning

rates.

been employed to maximize the long-term average reward for the network provider.

The key idea of the deep dueling is using two streams of fully connected hidden lay-

ers to concurrently train the value and advantage functions, thereby improving the

training process and achieving the outstanding performance for the system. Exten-

sive simulations have shown that the proposed framework using deep dueling can

yield up to 40% higher long-term average reward with few thousand times faster

compared with those of other network slicing approaches. Future works comprise

considering the connectivity resources and the existence of multiple data centers

in complex network slicing models by accommodating more states to the system

state space. The performance of the proposed solution will be evaluated in terms

of complexity and scalability. Moreover, the convergence rate and stability of the

deep dueling algorithm will be improved by using the state-of-the-art deep neural

networks.
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Chapter 4

“Jam Me If You Can”: Defeating Jammers with

Deep Dueling Neural Network Architecture and

Ambient Backscattering Augmented

Communications

With conventional anti-jamming solutions like frequency hopping or spread spec-

trum, legitimate transceivers often tend to “escape” or “hide” themselves from jam-

mers. These anti-jamming approaches are constrained by the lack of timely knowl-

edge of jamming attacks (especially from smart jammers). Bringing together the

latest advances in neural network architectures and ambient backscattering commu-

nications, this thesis allows wireless nodes to effectively “face” the jammer (instead

of escaping) by first learning its jamming strategy, then adapting the rate or trans-

mitting information right on the jamming signals (i.e., backscattering modulated

information on the jamming signals). Specifically, to deal with unknown jamming

attacks (e.g., jamming strategies, jamming power levels, and jamming capability),

existing work often relies on reinforcement learning algorithms, e.g., Q-learning.

However, the Q-learning algorithm is notorious for its slow convergence to the opti-

mal policy, especially when the system state and action spaces are large. This makes

the Q-learning algorithm pragmatically inapplicable. To overcome this problem, we

design a novel deep reinforcement learning algorithm using the recent dueling neural

network architecture. Our proposed algorithm allows the transmitter to effectively

learn about the jammer and attain the optimal countermeasures (e.g., adapt the

transmission rate or backscatter or harvest energy or stay idle) thousand times

faster than that of the conventional Q-learning algorithm. Through extensive simu-
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lation results, we show that our design (using ambient backscattering and the deep

dueling neural network architecture) can improve the average throughput by up to

426% and reduce the packet loss by 24%. By augmenting the ambient backscatter-

ing capability on devices and using our algorithm, it is interesting to observe that

the (successful) transmission rate increases with the jamming power. Our proposed

solution can find its applications in both civil (e.g., ultra-reliable and low-latency

communications or URLLC) and military scenarios (to combat both inadvertent

and deliberate jamming).

The rest of this chapter is organized as follows. Section 4.1 and Section 4.2

describe the system model and the problem formulation, respectively. After that,

the evaluation results are discussed in Section 4.3. Finally, conclusions are drawn in

Section 4.4.

4.1 System Model

We consider a wireless system consisting of a gateway and a transmitter as

illustrated in Fig. 4.1. The transmitter is equipped with a data buffer to store data

before transmitting to the gateway. In addition, we assume that the transmitter

is equipped with an energy harvesting circuit and an energy storage. The energy

harvesting circuit is used to harvest energy from surrounding signals, and then the

harvested energy will be stored in the energy storage for future use. We consider

an ambient RF source, e.g., an FM radio tower, that is located near the system,

and thus the transmitter can harvest energy from the RF energy source when the

source is active, i.e., broadcasts signals. Then, the transmitter can use the harvested

energy to transmit data to the gateway when the RF energy source becomes idle.

This transmission scheme is also known as the harvest-then-transmit protocol that

is well known in the literature [40].

Note that although we consider a single transmitter in this work, the proposed
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Figure 4.1 : System model

model and analysis can be extended to the case with multiple transmitters. In

such a case, one can adopt popular scheduling mechanisms to avoid the collision

between transmitters. Another approach is that transmitters backscatter data at

different rates [39], [40]. In this way, the gateway can decode the information in the

backscattered signals by leveraging the difference in communication rates.

4.1.1 Smart Jammer with Self-Interference Suppression Capability

We consider a smart jammer with self-interference suppression (SiS) capability.

With the latest advances in SiS [30], the jammer can “listen” to the channel while

jamming. That allows the jammer to instantaneously discern its jamming outcome

and optimize its jamming strategy to maximize the disruption of the victims. The

Note that our system model can be extended straightforwardly to the case with multiple

jammers who perform attacks to the channel cooperatively, i.e., only one jammer attacks the

channel at a time.
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SINR at the gateway is formally calculated as follows [3], [36]:

θ =
PR

ϕP J + ρ2
, (4.1)

where PR is the received power from the transmitter at the gateway, P J is the

jamming power transmitted by the jammer, ρ2 is the variance of additive white

Gaussian noise, and ϕP J expresses the jamming power received at the gateway in

which 0 ≤ ϕ ≤ 1 is an attenuation factor. Note that we consider the case in which

the transmitter operates as a secondary user that shares the spectrum with the

ambient RF source and only actively transmits data when the ambient RF source

is inactive. As such, Eq. (4.1) above does not need to account for the ambient RF

signals. Our work can be extended to the case in which both the transmitter and

the ambient RF source operate on (different) licensed frequencies.

In practice, the jammer can adjust its pulse duty cycle factor to achieve the max-

imum degradation on the target channel while maintaining a time-average power

constraint Pavg. Note that the average power Pavg should be less than the peak jam-

ming power Pmax, i.e., Pavg ≤ Pmax [36]. Specifically, let PJ = {P J
0 , . . . , P

J
n , . . . , P

J
N}

denote the vector of discrete jamming power levels. In each time slot, the jammer

can select any transmit power level P J
n as long as its average power constraint is

satisfied. If we denote x ≜ {x0, . . . , xn, . . . , xN} as a probability vector, then the

strategy space of the jammer, denoted by Js, can be defined as follows:

Js ≜
{
(x0, . . . , xn, . . . , xN),

N∑
n=0

xn = 1,

xn ∈ [0, 1], ∀n ∈ {0, . . . , N},xP⊤
J ≤ Pavg

}
.

(4.2)

To find the defense policy in the worst case, as mentioned above, we consider a

smart jammer that would know the information of the transmitter, e.g., how many

packets the transmitter can transmit/backscatter and how many packets it can bring

down if the jamming is successful (thanks to the SiS capability). In such a case, based
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on this information and its given average power constraint Pavg, the jammer will

find an optimal strategy to attack the channel in order to maximize the disruption.

In particular, we assume that the jammer receives a reward wJ
n if it attacks the

channel with power level P J
n . w

J
n can be referred as the number of packets that have

been completely corrupted (i.e., not being successfully received/decoded, hence not

ACKed by the receiver) if the jamming power is P J
n . Let wJ = {wJ

0, . . . , w
J
n, . . . , w

J
N}

denote the reward vector of the jammer. Thus, the objective function of the jammer

can be defined as follows:

max
x

xw⊤
J ,

s.t.


∑N

n=0 xn = 1,

xn ∈ [0, 1], ∀n ∈ {0, . . . , N},

xP⊤
J ≤ Pavg.

(4.3)

4.1.2 Ambient Backscattering-Augmented Communications

To defeat the above smart jamming attack, we propose a novel communications

scheme, namely “ambient backscatter-augmented communications”. Our high-level

circuit architecture is shown in Fig. 4.2.
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Figure 4.2 : Function and circuit diagram of the proposed anti-jamming system
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In Fig. 4.2(a), we show the proposed circuit diagram that allows the transmit-

ter to be able to harvest energy, perform active RF transmission, and backscat-

ter information. The circuit design for the integration of energy harvesting and

backscattering communication has also been considered in several research works in

the literature such as [39] and [98]. The architecture of the transmitter consists of

an antenna, a controller, an energy harvester, an RF transmitter for active trans-

missions, an energy storage, a data buffer, and a load modulator together with a

backscatter decoder for ambient backscatter communications. The controller takes

responsibilities to make decisions, e.g., stay idle, transmit data, backscatter data,

and harvest energy, for the transmitter. When the ambient RF source is active

and/or the jammer attacks the channel, if the transmitter chooses to harvest en-

ergy, it will use the energy harvester to harvest energy from the ambient signals

or the jamming signals. The harvested energy is then stored in the energy storage

and used when the transmitter decides to actively transmit data to the gateway. In

contrast, if the transmitter chooses to backscatter to immediately transmit data to

the gateway, the transmitter will modulate and reflect the ambient RF signals or

the jamming signals by using the load modulator [39]. In particular, the load mod-

ulator consists of an RF switch, e.g., ADG902, directly connected to the antenna.

The input of the load modulator is a stream of one and zero bits which is generated

by the controller depending on the application. When the input bit is zero, the

load modulator switches to load Z1, and thus the transmitter is in the non-reflecting

state. Otherwise, when the input bit is one, the load modulator turns to load Z2,

and thus the transmitter is in the reflecting state. By doing so, the transmitter

can backscatter its data to the gateway. It is worth noting that while operating in

the backscatter mode, the transmitter still can harvest energy (in the non-reflecting

state), but the amount of the harvested energy is relatively small and only suitable

for operations in the backscatter mode [39], [40].
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To allow the gateway to decode backscattered signals, the transmitter backscat-

ters information at a lower rate than the ambient signals, i.e., jamming signals and

ambient signals. For completeness, we formally describe the principle as follows.

We assume that we have a digital receiver that samples the received signals at the

Nyquist-information rate, e.g., using ADC [39]. The received signals at the gateway

is sampled to y[n] as:

y[n] = x[n] + ζB[n]x[n] + l[n], (4.4)

where x[n]s are the samples of the ambient signals (i.e., the jamming signals, the

ambient RF signals, or both of them) received at the gateway, l[n] is the noise,

ζ is the complex attenuation of the backscattered signals, and B[n]s are the bits

transmitted by the transmitter (through the load modulator). If the transmitter

sends information at a fraction of the rate, say 1
N
, then B[Ni + j] are all equal

for j = 1 to N [39]. Then, the gateway averages powers of N received samples as

follows:

1

N

N∑
i=1

|y[n]|2 = 1

N

N∑
i=1

|x[n] + ζBx[n] + w[n]|2, (4.5)

where B takes a value of ‘0’ or ‘1’ depending on the non-reflecting and reflecting

states, respectively. As x[n] is uncorrelated with the noise w[n], (4.5) can be ex-

pressed as follows:

1

N

N∑
i=1

|y[n]|2 = |1 + ζB|2

N

N∑
i=1

|x[n]|2 + 1

N

N∑
i=1

w[n]2. (4.6)

Denote P = 1
N

∑N
i=1 |x[n]|

2 as the average power of the received jamming signals (or

ambient signals). Ignoring the noise, the average power at the receiver is |1 + ζ|2P

and P when the backscatter transmitter is at the reflecting (B = 1) state and

the non-reflecting (B = 0) state, respectively. Based on the differences between

|1 + ζ|2P and P , the backscatter receiver can decode the data from the backscattered

signals with a conventional digital receiver [39].
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However, the ADC consumes a significantly amount of power to sample the re-

ceived signals. For a low-power design, in Fig. 4.2(b), we describe a circuit diagram

using only analog components to decode the backscattered signals. In particular,

the gateway is equipped with an antenna to receive information (either active trans-

mission or backscatter information) from the transmitter. Based on the received

signals, the gateway will decide to use a suitable mode to decode information from

the transmitter. In particular, the active RF decoder is used to decode active trans-

mission signals from the transmitter. If the transmitter transmits data by using

the backscatter mode, the gateway will use the backscatter decoder to extract the

information from the backscattered signals. Specifically, at the backscatter decoder,

the backscattered signals are first smoothed by the envelope-averaging circuit. Af-

ter that, the compute-threshold circuit produces an output voltage between low and

high levels of the smoothed signals. Then, the comparator compares the signals

with a predefined threshold to derive output bits zero and one properly. The more

detailed information about hardware designs as well as decoding algorithms at the

receiver can be found in [39].

4.1.3 System Operation

We denote the probability of the ambient RF source being idle in each time slot

by η. Due to the constraints on average power Pavg and maximum transmit power

Pmax, the jammer may attack the channel with different power levels at different

times. When the jammer attacks the channel and the ambient RF source is idle,

the transmitter can choose one of the following actions (i) go to sleep mode, i.e.,

stay idle, (ii) harvest energy from the jamming signals, (iii) backscatter informa-

tion based on the jamming signals, or (iv) adapt its transmission rate by using rate

adaption (RA) techniques [3, 36]. Depending on the transmit power level P J
n of the

jammer, the transmitter can harvest eJn units of energy and backscatter maximum d̂Jn
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packets through the jamming signals. In practice, the more power the jammer uses

to attack the channel, the more energy the transmitter can successfully harvest from

the jamming signals �. In addition, through many real experiments and analysis on

backscatter communication systems in the literature [39, 41, 98], it can be observed

that the more power the jammer uses to attack the channel, the more energy per

information bit the transmitter can backscatter to the gateway, and thus the less

Bit Error Rate (BER) of backscatter communication is. This also implies that more

packets the transmitter can successfully transmit to the gateway by backscatter-

ing the jamming signals when the jammer uses higher power levels to attack. We

denote e = {eJ0, . . . , eJn, . . . , eJN} as the amount of energy that the transmitter can

successfully harvest from the jamming signals when the jammer attacks the chan-

nel with power level PJ = {P J
0 , . . . , P

J
n , . . . , P

J
N}, respectively. Similarly we denote

d̂ = {d̂J0, . . . , d̂Jn, . . . , d̂JN} as the number of packets that the transmitter can success-

fully transmit to the gateway when the jammer attacks the channel with power level

PJ = {P J
0 , . . . , P

J
n , . . . , P

J
N}, respectively.

In practice, when the jammer attacks the channel and the ambient RF source

does not transmit data, the transmitter still can transmit its data by reducing its

data rate. Specifically, based on jamming power P J
n , the transmitter can actively

transmit data at maximum rate rm. We then denote r = {r1, . . . , rm, . . . , rM} as the

set of available transmission rates that the transmitter can choose to transmit data

when the jammer attacks the channel. At each rate rm, the transmitter can transmit

maximum d̂rm packets. Note that, for m = 1, . . . ,M , when γm−1 ≤ θ < γm with γm is

the value of SINR, the gateway can only decode packets sent at rates r0, r1, . . . , rm−1,

and the packets sent at rate rm or higher will be completely lost [3]. To detect the

states of the ambient RF source and the jammer, several detection techniques can

�Based on the Friis equation [99], we also can obverse the proportional relationship between the

amount of harvested energy and the transmission power of an energy source, i.e., the jammer.
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be adopted, e.g., energy detection [100], [101]. Note that there are miss detection

and false alarm probabilities when detecting the states of channels. However, our

proposed algorithm can learn these probabilities and dynamically adjust its optimal

policy.

In this work, we define the packet delivery ratio (PDR) as the ratio of packets

that are successfully delivered to the gateway over the total number of packets

arriving at the system. The arrival data process follows the Poisson distribution

with mean rate λ. The maximum data queue size and energy storage capacity are

denoted by D and E, respectively. If a packet arrives at the system when the data

queue is full, it will be dropped. To consider a low-latency system, if a packet stays

in the queue longer than a latency threshold, i.e., tth, it will be discarded.

If at least one of the sources (i.e., either the ambient RF source, or the jammer,

or both of them) is active, the transmitter can choose to backscatter data or harvest

energy. The transmitter then observes the results of the taken action, i.e., the

total number of packets backscattered or the total amount of harvested energy, and

update the learning function. Based on the states of the ambient RF source and the

jammer, the operations of our system can be expressed as follows:

� When the ambient RF source is idle and the jammer does not attack the chan-

nel : the transmitter can (i) transmit maximum d̂t packets if it has enough

energy (each packet requires et units of energy to be successfully transmitted)

or (ii) stay idle.

� When the ambient RF source is idle and the jammer attacks the channel with

power level P J
n : the transmitter can (i) use the RA technique to transmit

maximum d̂rm packets if it has enough energy, (ii) backscatter maximum d̂Jn

packets, (iii) harvest eJn units of energy, or (iv) stay idle.

� When the ambient RF source is active and the jammer does not attack the
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channel : the transmitter can choose to (i) backscatter maximum d̂b packets,

(ii) harvest eh units of energy, or (iii) stay idle.

� When the ambient RF source is active and the jammer attacks the channel with

the power level P J
n : the transmitter can choose to (i) backscatter dsum packets

with dmin ≤ dsum ≤ dmax where dmin = min(d̂b, d̂
J
n) and dmax = d̂b + d̂Jn

�, (ii)

harvest esum units of energy with emin ≤ esum ≤ emax where emin = max(eh, e
J
n)

and emax = eh + eJn [102]§, or (iii) stay idle.

In this work, time is slotted. In each time slot, given a particular channel condi-

tion and states of the ambient RF source and the jammer, the amount of harvested

energy and the number of backscattered/transmitted packets, i.e., d̂t, d̂
r
m, d̂

J
n, e

J
n,

d̂b, eh, dsum, esum, can be observed after interacting with the environment. Our pro-

posed deep dueling algorithm does not require this explicit information in advance.

Instead, the algorithm learns these values and converges to the optimal policy for

the transmitter.

4.2 Problem Formulation

To deal with the uncertainty of jamming attacks and ambient RF signals, we

adopt the MDP framework to formulate the optimization problem of the system.

This framework allows the transmitter to dynamically make optimal actions based

�The backscatter rate when both sources are active, dsum, should be in between the minimum

of the backscatter rates of individual sources and the summation of them. In general, we assume

that dsum is unknown and captured by a random variable with a given distribution in the above

range.

§The harvested energy when both sources are active, esum, should be in between the maximum

of the energy harvested from each individual source and the summation of them. In general, we

assume that esum is unknown and captured by a random variable with a given distribution in the

above range.
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on its observations to maximize its average long-term reward. The MDP is defined

by a tuple < S,A, r > where S is the state space, A is the action space, and r is

the immediate reward of the system.

4.2.1 State Space

We define the state space of the system as follows:

S ≜
{
(c, j, d, e) :c ∈ {0, 1}; j ∈ {0, 1};

d ∈ {0, . . . , D}; e ∈ {0, . . . , E}
}
,

(4.7)

where c represents the state of the ambient RF channel, i.e., c = 1 when the ambient

RF channel is busy and c = 0 otherwise. j represents the state of the jammer, i.e.,

j = 1 when the jammer is active and j = 0 otherwise. d and e represent the number

of packets in the data queue and the energy units in the energy storage of the

transmitter, respectively. D and E are the maximum data queue size and energy

storage capacity, respectively. The system state is then defined as a composite

variable s = (c, j, d, e) ∈ S. Note that the transmitter can always obtain the system

state. In particular, the states of the data queue and energy queue are always

available to the transmitter. Moreover, the transmitter can detect the activity of the

jammer and the ambient RF source by determining their signals strengths through

common signal detection techniques, e.g., energy detection.

4.2.2 Action Space

The transmitter can perform one of the (M + 4) actions, i.e., stay idle, actively

transmit data, harvest energy, backscatter data, or actively transmit data when then

channel is attacked with one of M transmission rates by using the RA technique.

Then, the action space of the transmitter can be defined by A ≜ {a : a ∈ {1, . . . ,M+
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4}}, where

a =



1, the transmitter stays idle,

2, the transmitter transmits data,

3, the transmitter harvests energy,

4, the transmitter backscatters data,

4 +m, the transmitter adapts its transmission

to rate rm with m ∈ {1, . . . ,M}.

(4.8)

4.2.3 Immediate Reward

We define the reward for the system as the number of packets that are successfully

transmitted to the gateway. Thus, the immediate reward of the system after the

transmitter makes an action at at state st can be defined as follows:

rt(st, at) =



dt, if c = 0, j = 0, d > 0, e ≥ et,

and a = 2,

db, if c = 1, j = 0, d > 0, and a = 4,

dJn, if j = 1, c = 0, d > 0, and a = 4,

dsum, if j = 1, c = 1, d > 0, and a = 4

drm, if c = 0, j = 1, d > 0, e > 0,

and a = 4 +m,

0, otherwise.

(4.9)

In the above, when the ambient RF source is idle, the jammer does not attack

the channel, and the number of data and energy units are sufficient for active trans-

mission, the transmitter can actively transmit 0 < dt ≤ d̂t packets to the gateway

(i.e, at = 2). When the ambient RF source is active, the jammer is idle, and the

transmitter has data to transmit, it can choose to backscatter 0 < db ≤ d̂b pack-

ets(i.e., at = 4). Similarly, when the jammer attacks the channel, the RF source is

idle, and the transmitter has data to transmit, if it chooses to backscatter, it can
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transmit maximum 0 < dJn ≤ d̂Jn packets(i.e., at = 4). If the ambient RF source is

idle, the jammer attacks the channel, and the transmitter has enough energy and

data in the queues, it can choose to adapt its rate (i.e., at = 4+m;m ∈ {1, . . . ,M})

and actively transmit 0 < drm ≤ d̂rm packets to the gateway. If both the jammer and

the RF source are active, and the transmitter has data to transmit, if it chooses to

backscatter data, it can transmit dmin ≤ dsum ≤ dmax to the gateway [102]. Finally,

the immediate reward is equal to 0 if the transmitter cannot successfully transmit

any packet to the gateway.

Note that after performing an action, the transmitter will observe the results

from the environment including reward, i.e., number of packets that are successfully

transmitted based on ACK messages sent from the gateway. In other words, dt, db,

dJn, dsum, and drm are the actually received packet at the gateway, i.e., successfully-

ACKed packets. For that, the reward function captures the overall path between

the source and the tag-receiver, e.g., fading, end-to-end SNR, BER, or the packet

error rate.

4.2.4 Optimization Formulation

We formulate an optimization problem to obtain the optimal policy, denoted by

π∗, that maximizes the average long-term throughput for the system. Specifically,

the optimal policy is a mapping from a state to an action taken by the transmitter.

In other words, given the current system state, i.e., data queue, energy level, jammer,

and channel states, the policy determines an optimal action to maximize the average

long-term reward for the system. The optimization problem is then expressed as

follows:

max
π

R(π) = lim
T→∞

1

T

T∑
t=1

E (rt(st, π(st))) , (4.10)

whereR(π) is the average reward of the transmitter under the policy π and rt(st, π(st))

is the immediate reward under policy π at time step t. Clearly, the state space S



4.3 Performance Evaluation 82

contains only one communicating class, i.e., from a given state the process can go

to any other states after a finite number of steps. In other words, the MDP with

states in S is irreducible. Thus, for every π, the average throughput R(π) is well

defined and does not depend on the initial state [103]. To obtain the optimal defense

policy for the transmitter, we use the deep Q-learning and deep dueling algorithms

proposed in Section 2.3.

4.3 Performance Evaluation

4.3.1 Parameter Setting

In our system, the data queue of the transmitter can store up to 20 packets. The

energy storage capacity is set to be 20 units. When the ambient RF source/channel

is active, the transmitter can either harvest two units of energy or backscatter one

packet to the gateway. When the channel is idle and the jammer does not attack the

channel, if the transmitter performs active transmission, it can successfully transmit

4 packets. Each transmitted packet requires one unit of energy. The jammer has

four transmit power levels, i.e., PJ = {0W, 7W, 15W, 21W}, with Pmax= 21W [106].

As explained in Section 4.1, as the jamming power increases, the transmitter can

successfully harvest more energy or transmit more packets by backscattering jam-

ming signals, and thus we set e = {0, 2, 3, 4} and d̂ = {0, 1, 2, 3}. In addition, when

the jammer attacks the channel and the rate adaption technique is implemented,

the transmitter can transmit drm ={2, 1, 0} packets when the jammer attacks un-

der power levels P J
n={7W, 15W, 21W}, respectively. In the case both the jammer

and the ambient RF source are active, the total number of backscattered packets

dsum and the total amount of harvested energy esum follow the Poisson distribution

with the means of (dmin + dmax)/2 and (emin + emax)/2, respectively. The latency

threshold tth is set at 3 time units. Unless otherwise stated, the idle channel prob-

ability is 0.5 and Pavg = 7W. Note that the reinforcement learning algorithms, i.e.,
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Q-learning, deep Q-learning, and deep dueling, do not require the information about

the jammer, e.g., jamming strategy, and the channel activity, i.e., the idle channel

probability, in advance. Instead, these information is learned through the real-time

learning process.

The architecture of the deep neural network significantly affects the performance

of the deep reinforcement learning algorithms, and thus it requires a thoughtful

design. In particular, the complexity of the algorithms increases when the number

of hidden layers increases. Nevertheless, if the number of hidden layers is small, the

algorithm requires a long time to converge to the optimal policy. Similarly, if the

size of hidden layers, i.e., numbers of neurons, and the mini-batch size N are large,

the algorithm will need more time to estimate the Q-function. For deep Q-learning

algorithms, we adopt parameters based on the common settings for designing neural

networks [26,92]. Specifically, for the deep Q-learning algorithm, two fully-connected

hidden layers are implemented together with input and output layers. For the deep

dueling algorithm, the neural network is divided into two streams. Each stream

connects to a shared hidden layer as shown in Fig. 2.6. The size of the hidden layers

is 16. The mini-batch size is set at 16. The maximum size of the experience replay

buffer is 10,000, and the target Q-network is updated every 1,000 iterations [74,92].

All learning algorithms use the ϵ-greedy scheme with the initial value of ϵ set at 1

and its final value set at 0.1 [73].

To evaluate the proposed solutions, we compare their performance with two

other schemes, i.e., HTT and WTJ. For the HTT scheme, the transmitter only im-

plements the harvest-then-transmit protocol without considering ambient backscat-

ter communication technology. This scheme is to evaluate the impact of ambient

backscatter communications to the system performance. For the WTJ, the trans-

mitter can implement both harvest-then-transmit protocol and ambient backscatter

communication technology only for the ambient RF signals. This scheme evaluates
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Figure 4.3 : Average throughputs of the proposed solution and the RA technique

vs. Pavg.

the system performance without leveraging the jamming signals. It is important to

note that the optimal policies of both HTT and WTJ are also obtained by the deep

dueling algorithm, i.e., Algorithm 2.4, presented in Section 2.3.

4.3.2 Simulation Results

Compare with Non-machine Learning Rate Adaptation Technique First,

we compare our proposed solution with a non-machine learning technique, i.e., RA.

With the RA technique, the transmitter has a fixed defend policy as follows: (i)

when the jammer attacks the channel, the transmitter adapts its rate based on the

power level of the jammer and (ii) otherwise, the transmitter harvests energy from

the ambient RF signals. As shown in Fig. 4.3, the average throughput achieved by

our proposed solution is much higher than that of the RA technique. The reason

is that with the RA technique, the transmitter transmits data at a low rate when

the jammer attacks the channel with high power levels. Moreover, as stated in [36],

with the RA technique, the jammer can force the transmitter to always operate at

the lowest rate by merely randomizing its power levels, provided that the average
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jamming power is above a given threshold. When Pavg increases, i.e., the jammer

has more opportunities to attack the channel with high power levels, the throughput

achieved by the RA technique is significantly decreased. Our proposed solution,

in contrast, can allow the transmitter to much more effectively adapt its defense

strategy based on the environment condition and the attack strategy of the jammer.

This is possible by implicitly learning the strategy of the jammer as well as unknown

parameters that are often assumed to be available in the literature (e.g., the power

constraint of the jammer and the jamming strategy). Additionally, with the ambient

backscatter capability, the transmitter can always transmit its data to the gateway

by leveraging the strong jamming signals.

Performance Evaluation Next, we perform simulations to evaluate and compare

the performance of the proposed solution with those of the HTT and WTJ schemes

in terms of average throughput, packet loss, delay, and PDR. For the HTT and WTJ

schemes, we adopt the deep dueling algorithm (with 4×104 iterations) to obtain the

optimal policy for the transmitter. For the proposed solutions, we recruit both the

deep dueling (with 4×104 iterations) and Q-learning algorithms (with 106 iterations).

In Fig. 4.4, we vary the idle channel probability of the ambient RF source η and

observe the performance of the system. Clearly, the throughput of the WTJ policy

decreases when η increases as shown in Fig. 4.4(a). This is stemmed from the fact

that when the ambient RF source is likely to be idle, the WTJ has less opportunities

to harvest energy and backscatter data from the ambient signals. This also leads

to the increase of packet loss and number of packets in the data queue as shown in

Fig. 4.4(b) and Fig. 4.4(c), respectively. In contrast, as the idle channel probability

increases, the average throughputs obtained by the HTT policy and the proposed

solution increase, and their packet loss and number of packets in the data queue

will be reduced. The reason is that the transmitter has more opportunities to
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Figure 4.4 : (a) Average throughput (packets/time unit), (b) Packet loss (pack-

ets/time unit), (c) Average number of packets in the data queue, (d) PDR, (e)

Delay (time/units) vs. η.
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harvest energy from the jamming signals and use the harvested energy to actively

transmit data when the channel is idle. Additionally, the proposed solution can

also backscatter data through both the jamming and ambient signals, thereby its

throughput is considerably higher than that of the HTT scheme. In Fig. 4.4(d),

we observe the PDR of the system. Clearly, the proposed solution achieves the

best PDR compared to the other schemes. It is worth noting that, the Q-learning

algorithm cannot obtain the optimal policy in the first 106 iterations, thereby the

performance derived by the Q-learning algorithm is much lower than that of the

deep dueling algorithm.

In Fig. 4.5, we vary Pavg to evaluate the average throughput, packet loss, number

of packets in the data queue, and PDR of the system. Obviously, when Pavg increases

from 1W to 3W, the throughput of the HTT and WTJ policies increases. The reason

is that the transmitter has more chances to harvest energy from the strong jamming

signals and uses the harvested energy to transmit data when the jammer and the

ambient RF source are idle. However, when Pavg is large (e.g., higher than 3W), i.e.,

the jammer is more likely to attack the channel, the throughput of these policies

decreases as the transmitter has less chance to actively transmit data to the gateway.

In contrast, the throughput achieved by the proposed solution increases. The reason

is that the proposed solution allows the transmitter to switch to the backscatter

mode when the jammer is likely to attack the channel. Consequently, the proposed

solutions achieve the best performance in terms of packet loss, number of packets

in the queue, PDR, and delay as shown in Fig. 4.5(b), Fig. 4.5(c), Fig. 4.5(d), and

Fig. 4.5(e), respectively. Again, the performance of the Q-learning algorithm is not

as good as the deep dueling algorithm due to the slow-convergence problem.

Next, we vary the maximum number of packets d̂t that the transmitter can

actively transmit to the gateway and evaluate the performance of the proposed

solution as shown in Fig. 4.6. As shown in Fig. 4.6(a), as d̂t increases, the throughput
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Figure 4.5 : (a) Average throughput (packets/time unit), (b) Packet loss (pack-

ets/time unit), (c) Average number of packets in the data queue, (d) PDR, (e)

Delay (time/units) vs. Pavg.
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Figure 4.6 : (a) Average throughput (packets/time unit), (b) Packet loss (pack-

ets/time unit), (c) Average number of packets in the data queue, (d) PDR, (e)

Delay (time/units) vs. d̂t.
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of WTJ scheme also increases and remains the same when d̂t ≥ 6. This is due to the

fact that the transmitter does not leverage the strong jamming signals (except when

both the source are active), and thus the amount of harvested energy is limited. In

contrary, the HTT policy allows the transmitter to harvest energy from both the

ambient and jamming signals. As a result, its throughput increases and is higher

than that of the WTJ policy. Importantly, by balancing the time for backscattering

data and harvesting energy, the throughput achieved by the proposed solution is

significantly higher than that of the HTT and WTJ schemes. This also leads to

the reductions of the packet loss and number of packets waiting in the data queue

as shown in Fig. 4.6(b) and Fig. 4.6(c), respectively. In Fig. 4.6, we observe the

PDR of obtained by the three schemes. Clearly, the proposed solution continues to

achieve the best PDR compared to other schemes.

In Fig. 4.7, we vary the packet arrival rate λ to evaluate the performance of the

proposed solution. Clearly, when λ increases to 2 packets/time slot, the through-

puts of all three schemes are increased as the transmitter can transmit more pack-

ets. However, when λ > 2 packets/time slot, the throughputs remain the same as

the transmitter obtains the optimal policy. Note that with energy harvesting and

backscattering capabilities, the proposed solution can achieve the highest through-

put among three schemes. As the transmitter cannot transmit all the arrival packets,

the packet loss and the number of packets waiting in the data queue increase when

λ increases as shown in Fig. 4.7(b) and Fig. 4.7(c), respectively. With the total

number of arrival packets increases, the PDRs of all the three schemes are reduced

as shown in Fig. 4.7(d). It is worth noting that in all the cases the performance of

the Q-learning algorithm is not as high as the deep dueling algorithm as it can not

converge to the optimal policy within 106 iterations.

Finally, we vary the latency threshold and investigate the performance of the

proposed solution as shown in Fig. 4.8. Obviously, when the latency threshold



4.3 Performance Evaluation 91

1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1

1.2

1.4

1.6
Av

er
ag

e 
th

ro
ug

hp
ut

 (p
ac

ke
ts

/ti
m

e 
un

it)

HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(a)

1 2 3 4 5 6 7 8 9
0

2

4

6

8

Pa
ck

et
 lo

ss
 (p

ac
ke

ts
/ti

m
e 

un
it) HTT w. deep dueling

WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(b)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

N
o.

 p
ac

ke
ts

 in
 th

e 
qu

eu
e

HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(c)

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
PD

R
HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(d)

1 2 3 4 5 6 7 8 9
0.5

1

1.5

2

2.5

3

D
el

ay
 (t

im
e 

un
its

)

HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(e)

Figure 4.7 : (a) Average throughput (packets/time unit), (b) Packet loss (pack-

ets/time unit), (c) Average number of packets in the data queue, (d) PDR, (e)

Delay (time/units) vs. λ.
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Figure 4.8 : (a) Average throughput (packets/time unit), (b) Packet loss (pack-

ets/time unit), (c) Average number of packets in the data queue, (d) PDR, (e)

Delay (time/units) vs. tth.
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Figure 4.9 : Convergence rates when (a) D = E = 10 and (b) D = E = 20.

increases from 1 to 4 time units, the throughputs and the PDRs obtained by all

the schemes increase as shown in Fig. 4.8(a) and Fig. 4.8(d), respectively, and the

packet losses decreases as shown in Fig. 4.8(b). This is stemmed from the fact

that with a very short period of latency, more packets will be discarded from the

data queue resulting in lower throughputs. When the latency threshold is large,

the throughputs remain the same as the deep dueling algorithm obtains the optimal

solution to effectively utilize the ambient signals as well as the jamming signals.

As the latency threshold increases, the arrival packets have more time to stay in

the data queue. As such, the number of packets in the data queue increases as

shown in Fig. 4.8(c). Note that the deep dueling algorithm always achieves the best

performance in all the cases. In contrast, the Q-learning algorithm cannot achieve

the optimal policy for the transmitter due to the slow-convergence problem.

Convergence of Deep Reinforcement Learning Approaches We first show

the learning process and the convergence of the proposed deep reinforcement learning

algorithms, i.e., deep Q-learning and deep dueling, in several scenarios. As shown in

Fig. 4.9(a) and Fig. 4.9(b), when the maximum sizes of data and energy queues are
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set at 10 and 20, respectively, after 106 iteration, the average throughput obtained by

the Q-learning algorithm is much lower than those of the deep reinforcement learning

algorithms, especially in the first 105 iterations. This implies that as the system state

space increases, the Q-learning algorithm requires more time to be converged, and

thus given a fixed short time period, the system performance obtained by the Q-

learning algorithm cannot achieve the results as great as those of deep reinforcement

algorithms (i.e., deep Q-learning and deep dueling algorithms). Note that in Fig. 4.9,

the performance obtained by deep Q-learning algorithm is as close as that of the deep

dueling algorithm, however the average throughput obtained by the deep Q-learning

algorithm is very fluctuated compared with that of the deep dueling algorithm.

This implies that the deep Q-learning algorithm requires more time to be converged

compared with that of the deep dueling algorithm.

4.4 Conclusion

In this chapter, we have developed an optimal anti-jamming framework which

allows the wireless transceivers to effectively defeat jamming attacks. In particular,

with the ambient backscatter capability, while being attacked, the device can either

adapt its transmission rate or backscatter its data to the gateway through the jam-

ming signals or harvest energy from the jamming signals to support its operations.

To effectively learn about the jamming attacks as well as the channel activities, we

have proposed an optimal anti-jamming strategy based on MDP to obtain the opti-

mal defend policy for the transmitter. Then, the reinforcement learning algorithms,

i.e., Q-learning, deep Q-learning, and deep dueling, have been developed to max-

imize the long-term average throughput and minimize the packet loss. Extensive

simulations have demonstrated that by using two streams of fully-connected hidden

layers, the proposed framework using the deep dueling algorithm can improve the

average throughput up to 426% and reduce the packet loss by 24%. Importantly,



4.4 Conclusion 95

with ambient backscatter and energy harvesting technology, jamming signals can be

leveraged by the transmitter as the ambient RF signals, thereby effectively eliminat-

ing jamming attacks. To the best of our knowledge, this is the first anti-jamming

solution that allows wireless transceivers to not only survive jamming attacks with-

out requiring additional resources but also leverage the jamming signals to improve

their transmission rate. The proposed ambient backscattering augmented communi-

cations framework can be applicable to both civil (e.g., ultra-reliable and low-latency

communications or URLLC) and military scenarios (to combat both inadvertent and

deliberate jamming).
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Chapter 5

Joint Coding and Scheduling Optimization for

Distributed Learning over Wireless Edge

Networks

Unlike theoretical analysis of distributed learning (DL) in the literature, DL over

wireless edge networks faces the inherent dynamics/uncertainty of wireless con-

nections and edge nodes, making DL less efficient or even inapplicable under the

highly dynamic wireless edge networks (e.g., using mmW interfaces). This the-

sis addresses these problems by leveraging recent advances in coded computing

and the deep dueling neural network architecture. By introducing coded struc-

tures/redundancy, a distributed learning task can be completed without waiting

for straggling nodes. Unlike conventional coded computing that only optimizes the

code structure, coded distributed learning over the wireless edge also requires to

optimize the selection/scheduling of wireless edge nodes with heterogeneous con-

nections, computing capability, and straggling effects. However, even neglecting the

aforementioned dynamics/uncertainty, the resulting joint optimization of coding and

scheduling to minimize the distributed learning time turns out to be NP-hard. To

tackle this and to account for the dynamics and uncertainty of wireless connections

and edge nodes, we reformulate the problem as an MDP and then design a novel

deep reinforcement learning algorithm that employs the deep dueling neural network

architecture to find the jointly optimal coding scheme and the best set of edge nodes

for different learning tasks without explicit information about the wireless environ-

ment and edge nodes’ straggling parameters. Simulations show that the proposed

framework reduces the average learning delay in wireless edge computing up to 66%
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Figure 5.1 : System model for coded distributed learning over wireless edge network.

Here, we illustrate the case when learning task D(2) is processed with (n = 4, k = 2)

MDS code. The sub-learning tasks are sent to edge nodes 1, 2, 3, and N to process.

Then, when edge node 2 is disconnected, and edge node N is straggling, the learning

task D(2) still can be completed by using computed results from edge nodes 1 and

3.

compared with other DL approaches. The jointly optimal framework in this work is

also applicable to any distributed learning scheme with heterogeneous and uncertain

computing nodes.

The rest of this chapter is organized as follows. Section 5.1 presents the system

model and the computing and communication models. The MDP framework and the

problem formulation are provided in Section 5.2. Simulation results are discussed

in Section 5.3. Finally, conclusions are highlighted in Section 5.4.
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5.1 System Model

We consider a distributed edge learning system that consists of a mobile edge

computing (MEC) server and a set ofN edge nodes denoted by E = {E1, . . . , Ej, . . . , EN}.

The edge nodes communicate with the MEC server through wireless links as illus-

trated in Fig. 4.1. Let Cj denote the wireless link that connects the MEC server and

edge node Ej. Practically, different links may be allocated on different channels, and

thus their properties, e.g., fading conditions, interference, and disconnection prob-

ability, may be different. In this work, we deploy a task queue at the MEC server

to maximize the utilization of the system. In particular, a new learning task can

be stored in the queue when the system is busy. This learning task will be served

as soon as there are enough resources available at the edge nodes. Note that, our

learning task queue has a limited capacity of M . If the queue is full, the task waiting

the longest in the queue will be dropped, and thus the user (owning this task) can

resend the learning task or a new task to the system to process. In this way, we

can not only take the advantage of employing the task queue but also can enhance

information freshness for the learning tasks. We assume that time is slotted. In

each time slot, a learning task arrives at the system with probability µ. Note that,

our proposed solution still can work well with other packet arrival processes as they

will be learned by the proposed algorithm and are not required to be available in

advance. Different learning tasks, e.g., matrix multiplication, data shuffling, or gra-

dient descent for linear regression problems [52], may have different data sizes. We

denote f(D(t)) as the data size of learning task D(t).

In our system, learning tasks in the queue are served in a first-come-first-served

manner. At each time slot, if the computing resources at the edge nodes are available,

the MEC server will look at the queue and consider to serve a learning task which

comes the earliest in the queue but not yet served by any edge nodes (e.g., D(2)
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as illustrated in Fig. 4.1). By using the optimal (n, k) MDS code and the optimal

set of edge nodes obtained by our proposed algorithm, this learning task is then

encoded into n sub-learning tasks, and these sub-learning tasks are offloaded to

edge nodes in the optimal set to execute. These devices then serve the assigned

sub-learning tasks and return the results to the MEC server. Note that the edge

nodes have dissimilar configurations and communication links that greatly affect the

performance of distributed learning over wireless edge networks. Choosing the best

set of edge nodes for each learning task at different times can have critical impact on

the system’s performance (e.g., the number of tasks waiting in the queue, the average

task dropping probability, and the average delay of learning tasks in the system).

For example, with the same (n, k) MDS code, different sets of n edge nodes may

require different computation times for a given task. In particular, selecting an edge

node with high processing power and an unstable wireless connection may be worse

than selecting an edge node with average processing power and a stable wireless

connection. As shown in our simulations, by obtaining the optimal scheduling policy,

our proposed solution achieves better performance compared to other approaches.

In this work, the learning task still remains in the queue until the MEC server

receives k results returned from the edge nodes and successfully decodes them. For

example, as illustrated in Fig. 4.1, with (n = 4, k = 2) MDS code, the MEC server

does not need to wait for results from edge node 2 and edge node N , which are

delayed by the straggling problems. Instead, the MEC server can decode the final

result by using computed results returned from edge node 1 and edge node 3 which

have better wireless connections and computing power. In contrast, conventional

distributed learning models need to wait for computed results from all the assigned

edge nodes to obtain the final result, and thus dramatically increasing the computing

delay of the whole system. For the ease of notation, we assume that when an edge

node receives a sub-learning task, it will use its all computing resource to execute
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this task. This is also stemmed from the fact that edge nodes (e.g., IoT gateways)

are usually equipped with limited resources, and thus they may not be able to

serve multiple learning tasks simultaneously. In addition, if an edge node has to

process multiple sub-learning tasks at the same time, the straggling problem may

be more serious as its computing resources have to share to execute multiple tasks

simultaneously. We denote ej as the state of edge node Ej. Specifically, ej = 0 if

the edge node is currently busy, i.e., serving one sub-learning task. ej = 1 if the

edge node is available, i.e., there is no learning task executing at the edge node.

Then, the set of available edge nodes can be denoted as Eav
def
= {Ej : ∀Ej ∈ E and

ej = 1}. It is worth noting that our proposed solution can be extended to the case if

one edge node can handle multiple tasks at the same time by implementing multiple

virtual machines (VMs). Then, each VM can be reserved to execute one learning

task. Thus, the MEC just needs to take the available VMs of each edge node into

account when it assigns learning tasks to them.

5.1.1 Coded Computing for Distributed Learning over Wireless Edge

Networks

The key idea of coded computing techniques is to leverage coding theoretic mech-

anisms to add structured computing redundancy into learning tasks to mitigate the

effects of straggling edge nodes and wireless communication links [54]. One of the

most effective coding techniques used in coded computing is the maximum distance

separable (MDS) code [52]. The fundamentals of the MDS code are illustrated in

Fig. 4.1. In particular, with the (n, k) MDS code (1 ≤ k ≤ n), a learning task D(t)

can be first divided into k equal-sized sub-learning tasks {D(t)
1 ,D(t)

2 , . . . ,D(t)
k }. Then,

these sub-learning tasks are encoded by the (n, k) MDS code. After encoding, we

get n encoded sub-learning tasks {D
′(t)
1 ,D

′(t)
2 , . . . ,D

′(t)
n }. These sub-learning tasks

are then sent to n edge nodes to execute. Upon receiving any k results from any k
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edge nodes, the MEC server can decode them to obtain the result. When a learning

task is completed, it will be removed from the task queue. After that, the MEC

server will inform edge nodes that are still working on the remaining sub-learning

tasks to stop performing these sub-learning tasks and make them free.

It is worth noting that choosing the values of n and k to maximize the system

performance in terms of serving time, delay, and task drop probability is very chal-

lenging under the dynamics and uncertainty of the wireless environment as well as

straggling problems at the edge computing devices. Currently, an optimal MDS

code setting (with optimal values of n and k) can be determined based on static

optimization methods, e.g., [54, 56, 59, 107]. However, these methods require prior

information about the straggling parameters at edge nodes and wireless links. In

practice, these parameters usually are not available in advance. Thus, they are

not applicable to wireless edge computing as they do not account for the inherent

dynamics of wireless channels and edge nodes, leading to uncertainty of straggling

problems. Moreover, it is even more challenging when choosing the best edge nodes

to execute different learning tasks. To the best of our knowledge, all current existing

works cannot address all these problems. Thus, in this work, we propose an intelli-

gent approach which allows the MEC server to dynamically select the optimal MDS

code together with the best edge nodes based on the current status of the whole

system. Note that this approach can not only select the optimal values of n and k,

but also find the best edge nodes to serve each learning task.

5.1.2 Communication and Computation Models

Recall that with (n, k) MDS code, learning task D(t) is first divided into k equal-

sized sub-learning tasks {D(t)
1 ,D(t)

2 , . . . ,D(t)
k }. These sub-learning tasks are then

encoded into n encoded sub-learning tasks {D
′(t)
1 ,D

′(t)
2 , . . . ,D

′(t)
n }. The encoded sub-

learning tasks are finally sent to n edge nodes for processing. In this section, we
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formulate the serving time for encoded sub-learning task D
′(t)
i (1 ≤ i ≤ n) at a given

edge node Ej ∈ E. For the ease of notation, we denote T
(t,i)
serve as the total serving

time of sub-learning task D
′(t)
i . Thus, T

(t,i)
serve can be written as:

T (t,i)
serve = T (t,i)

se + T (t,i)
cmp + T (t,i)

es , (5.1)

where T
(t,i)
se and T

(t,i)
es are the communication time for sending D

′(t)
i from the MEC

server to edge node Ej and the time for sending back its computed result from

edge node Ej to the MEC server through wireless link Cj, respectively. Note that

both the uplink (from edge node Ej to the MEC server) and the downlink (from

MEC server to edge node Ej) can share the same channel as the MEC server and

edge node Ej do not need to transmit data at the same time. T
(t,i)
cmp is the time

that edge node Ej requires to complete the sub-learning task. With the high-speed

backhaul connections from the edge node to the server (e.g., via mmWave), a sub-

learning task or its result can be transmitted over the wireless link within one time

slot. To capture the dynamics of the wireless link Cj from the edge node Ej to

the server, e.g., due to fading or moving obstacles and/or interfere with surround-

ing RF signals, let’s define pj as the disconnection probability of the wireless link

from the MEC server to edge node Ej over a given time slot. We then denote

p = {p1, . . . , pj, . . . , pN} as the set of disconnection probabilities corresponding to

wireless channels {C1, . . . , Cj, . . . , CN}. Using a disconnection probability to capture

the quality of a wireless link is widely used in many wireless systems in the literature

to evaluate their performance [109,110]. In particular, if the wireless channel is likely

to be unstable (due to fading, noise, or interference from surrounding devices), the

disconnection probability of this link will be high. Moreover, it is worth noting that,

the disconnection probability is not the input of our proposed algorithm. Instead,

our algorithm can learn the disconnection probabilities of wireless links through in-

teracting with the environment. As such, our proposed solution does not require

this information in advance.
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In the case wireless link Cj is disconnected, the MEC server or edge node Ej needs

to resend its data in the next time slot. As such, the communication delay increases,

especially when the disconnection probability is high. We thus can formulate T
(t,i)
se

and T
(t,i)
es as follows:

T (t,i)
se = T (t,i)

es = Hjξ, (5.2)

where ξ is the duration of a time slot and Hj is the number of time slots needed to

successfully transmit data on wireless channel Cj. Hj is i.i.d based on the Geometric

distribution with the successful probability psuccess = 1− pj as follows [54]:

Pr(Hj = x) = px−1
j (1− pj), x = 1, 2, 3, . . . (5.3)

According to the Geometric distribution, a higher value of pj, i.e., disconnection

probability, results in a higher value of Hj. Thus, in many scenarios, the delay

caused by unstable connections is even more serious than that of straggling devices,

especially when the link disconnection probability is very high [111]. To deal with

this issue, in the sequel, we propose an effective learning solution that can learn the

disconnection probabilities to avoid bad connections when serving learning tasks

(e.g., assigning tasks to edge nodes with more favorable connections). Hence, the

straggling effects caused by unstable links can be significantly mitigated.

The computing time T
(t,i)
cmp of sub-learning task D

′(t)
i (1 ≤ i ≤ n) at edge node

Ej is the sum of the stochastic time for random memory access during read/write

cycles and the deterministic time for processing data [52, 54, 112]. Thus, T
(t,i)
cmp can

be written as follows:

T (t,i)
cmp = f(λj)︸ ︷︷ ︸

stochastic time

+ ηj|D
′(t)
i |︸ ︷︷ ︸

deterministic time

, (5.4)

where f(λj) is a random variable denoting the stochastic component of the com-

puting time caused by the straggling problem at edge node Ej. f(λj) follows an

exponential distribution with rate λj [54, 112], i.e., pf(λj)(x) = λje
−λjx, x ≥ 0. ηj
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is the deterministic time for edge node Ej to process one data point (e.g., one

row in the matrix). |D
′(t)
i | is the data size of sub-learning task D

′(t)
i . We denote

λ = {λ1, . . . , λj, . . . , λN} as the set of rate parameters determining the stochastic

time at edge nodes. Specifically, 1
λj

is the average stochastic time that can be consid-

ered as the straggling parameter of edge node Ej. The straggling parameter depends

on many factors such as shared resources, maintenance activities, power limitation,

and random memory access [57, 68]. With high straggling parameters, edge nodes

need more time for processing learning tasks. Therefore, avoiding straggling edge

nodes is crucial in distributed learning as they can significantly slow down the learn-

ing process. In practice, the straggling problems at edge nodes may occur randomly

and cannot be effectively predicted. To tackle this problem, our framework below

aims to learn the straggling parameters of edge nodes to find the best edge nodes

for each learning task, and thus remarkably mitigating the impacts of straggling

devices.

5.1.3 Learning-Task Delay Minimization Problem

From (5.1), (5.2), and (5.4), the total serving time of a sub-learning task D
′(t)
i

can be expressed as:

T (t,i)
serve =

(
2Hjξ+f(λj) + ηj|D

′(t)
i |
)
ci,j,

∀i ∈ {1, . . . , n}, ∀j ∈ {1, 2, . . . , N},
(5.5)

where ci,j is a scheduling binary decision. ci,j = 1 if sub-learning task D
′(t)
i is served

by edge node Ej, and ci,j = 0, otherwise. Note that each sub-learning task is only

severed by one edge node, and thus
∑N

j=1 ci,j = 1, ∀i ∈ {1, . . . , n}. With the (n, k)

MDS code, the MEC server only needs k results from any k (out of n) edge nodes

to successfully decode the result for learning task D(t). Thus, the total serving time

for a learning task D(t) is the serving time of the k-th completed sub-learning task,
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which can be expressed as follows:

T (t)
serve = min

k−th

({
T (t,i)
serve : ∀i ∈ {1, 2, . . . , n}

})
, (5.6)

where min
k−th

(.) returns the k-th minimum value of a set. For example, min
3−th

(
{1, 5, 10, 4, 6}

)
=

5. We then can formulate the serving time minimization problem as follows:

min
n,k,{ci,j}

T (t)
serve, (5.7)

s.t. 1 ≤ k ≤ n, ∀n ∈ {1, 2, . . . , |Eav|},

ci,j ∈ {0, 1}, ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , N},
N∑
j=1

ci,j = 1, ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , N},

ci,j = 0, if ej = 0, ∀j ∈ {1, . . . , N}.

In Theorem 5.1, we show that the delay minimization problem in (5.7) is an NP-hard

problem.

Theorem 5.1. The joint coding and scheduling optimization problem (5.7) is NP-

hard.

Proof. It can be observed that the optimization problem in (5.7) is a form of the

Knapsack problem [113]. In particular, (5.7) aims to find the optimal MDS code

(i.e., optimal values of n and k) and the optimal scheduling policy (i.e., the best

set of {ci,j}) to minimize the serving time for each learning task. It is worth noting

that the problem in (5.7) is much more complicated than the Knapsack problem as

the serving time of each edge node is a stochastic value and changes over time as

shown in (5.5). As a result, solving (5.7) is more difficult than solving the Knapsack

problem. As shown in [113], the Knapsack problem is an NP-hard problem. As

such, the optimization problem in (5.7) is also an NP-hard problem.

It is worth noting that if the environment parameters can be correctly estimated,

we can design a more appropriate baseline method to compare with our proposed



5.1 System Model 106

approach. However, as shown in Theorem 5.1, even if these parameters are known

and fixed, the delay minimization problem is NP-hard, hence usually intractable to

be solved. Moreover, it is worth mentioning that under our system model, these

parameters are not fixed due to the dynamics and uncertainty of wireless links

as well as communications/computing resources at edge nodes. In practice, it is

not trivial to estimate these parameters [114–116]. Even if we could do so, these

parameters can change over time due to the straggling problems at the edge nodes

(caused by random hardware error, maintenance activities, and power outage) and

wireless links (caused by fading, noise, and interference from nearby devices). In

such cases, the server needs to reestimate and obtain the optimal codes together with

best nodes. This process, as aforementioned, can be costly in time, communications

overhead, and computing resources. Moreover, this work aims to minimizing the

average delay for all learning tasks, which is much more challenging than that for

a single learning task as in (5.7). This is stemmed from the fact that learning

tasks are sharing the same computing resources from edge nodes, and thus the

optimal coding and scheduling for a learning task will have significant impacts on all

next arrival learning tasks. Consequently, all current static optimization techniques

(even for suboptimal solutions) in existing works in the literature [52–54] may not

be effective in dealing with these practical issues. To tackle this and to account

for the dynamics and uncertainty of wireless connections and edge nodes, in the

following, we reformulate the problem as a Markov decision process and then design

a novel deep reinforcement learning algorithm that employs the deep dueling neural

network architecture to find the jointly optimal coding and scheduling policy for

different learning tasks without explicit information about the wireless environment

and edge nodes’ straggling parameters.
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5.2 Coded Computing for Distributed Learning Formulation

We first adopt the Markov decision process (MDP) framework to formulate the

system delay minimization problem for distributed learning over wireless edge net-

works. Generally, the MDP is defined by a tuple < S,A, r > where S is the state

space, A is the action space, and r is the immediate reward function of the sys-

tem. With the MDP framework, the MEC server can dynamically make optimal

actions, i.e., select optimal MDS codes as well as the best edge nodes for serving

sub-learning tasks, based on its current states, e.g., task queue and available edge

nodes’ resources, to maximize its long-term average reward. Thus, this framework

can significantly reduce the average delay of learning tasks.

5.2.1 State Space

As stated above, a learning task stored in the learning task queue will be served

in a first-come-first-served manner. In particular, the MEC first selects n available

edge nodes and chooses (n, k) MDS code to encode the learning task. After that,

the encoded sub-learning tasks are transmitted to a set of optimal edge nodes. The

learning task will not be removed from the queue until the server receives any k

results from the edge nodes. As such, the queue size, the available edge nodes,

and the size of the considered learning task are important factors that should be

captured by the system state s. We then define the state space S of the system as

follows:

S ≜
{
(m, f,{e1, . . . , ej, . . . , eN}) : m ∈ {0, . . . ,M};

f ≥ 0; ej ∈ {0, 1}, ∀j ∈ {1, . . . , N}
}
,

(5.8)

where m represents the number of learning tasks currently waiting in the queue, f is

the size of the current considered learning task. Note that the current task size equals

0 only when: (i) the task queue is empty or (ii) all current tasks in the queue are

being served and there is no new task arriving. The system state is then defined as a



5.2 Coded Computing for Distributed Learning Formulation 108

composite variable s = (m, f, {e1, . . . , ej, . . . , eN}) ∈ S. Note that the environment

parameters such as straggling parameters of edge nodes and wireless links as well as

the channel quality cannot obtain in advance as discussed in the previous sections.

Thus, our system state space does not take these parameters into account. Instead,

these parameters are implicitly captured in the immediate function defined below

and then learned by our proposed learning algorithm to simultaneously obtain the

optimal coding and scheduling policy.

5.2.2 Action Space

As mentioned, most of existing works only focus on optimizing the optimal code,

i.e., the optimal values of n and k [52]. Nevertheless, the straggling problems at

wireless links and edge nodes are randomly and unpredictable. Consequently, opti-

mizing only the values of n and k often leads to sub-optimal solutions in terms of

the average delay. To tackle this issue, this work aims to find not only the optimal

code but also the best set of edge nodes for each learning task. As such, we define

an action a as the combination of of n, k, and the set of edge nodes to serve the

current learning task. Denote Eav as the set of all available edge nodes (Eav ⊆ E),

we have the action space of the system as follows:

A ≜ {a} = {(0, 0, ∅),(n, k,Eb)}, ∀n ∈ {1, . . . , |Eav|},

∀k ∈ {1, . . . , n}, ∀Eb ∈
(
Eav

n

)
,

(5.9)

where Eb is the set of n-best edge nodes to serve the current learning task. |Eav|

is the total number of available edge nodes.
(
Eav

n

)
is the combination operation

that returns all size-n subsets of Eav. For example, if Eav = {E1, E2, E3} and

n = 2, we have
(
Eav

2

)
=
{
{E1, E2}, {E1, E3}, {E2, E3}

}
. From this set, the MEC

server can select any size-2 subset of edge nodes to serve the learning task, i.e.,

Eb = {E1, E2}, Eb = {E1, E3} or Eb = {E2, E3}. In general, a = (n, k,Eb) if the

MEC server chooses (n, k) MDS code to encode the learning task and the edge nodes
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in set Eb to execute the encoded sub-learning tasks. a = (0, 0, ∅) if the MEC server

chooses to stay idle, i.e., not select any code nor edge nodes to execute the task.

5.2.3 Immediate Reward

In this work, we aim to minimize the average long-term delay of learning tasks.

In general, the delay of a learning task is determined as the time it stays in the

system, including the waiting/queuing time and the serving time. However, in our

system, a learning task will remain in the queue until the MEC server successfully

decodes the results sent back from the assigned edge nodes. Therefore, the average

delay of a learning task can be calculated from the time it arrives at the system

until the MEC server successfully decodes its result. It is worth noting that at time

slot t when the MEC server performs action at to serve a learning task at state st, it

may not know exactly when the learning task is completed. This is stemmed from

the fact that the time to complete this task is determined by the communication

time and the computing time as expressed in (2) and (4), respectively. However,

the communication time and the computing time are not deterministic due to the

random straggling problems in both the edge nodes and wireless links. As a result,

to determine the immediate reward when an action is made, we can observe the

number of learning tasks in the queue. The reason is that we can implicitly capture

the delay of all learning tasks through the length/size of the task queue according

to the Little theorem. Thus, we define an immediate reward function for action at

at state st using the instantaneous size of the queue as follows:

rt(st, at) = −m, (5.10)

where m ∈ {0, . . . ,M} is the number of learning tasks waiting in the queue after

performing action at at state st. By maximizing the immediate reward function, we

can minimize the number of learning tasks in the queue, and thus minimizing the

average latency of the whole system.
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5.2.4 Long-Term Delay Minimization Formulation

This work aims to obtain the optimal coding and scheduling policy which is a

mapping from a given state s to an optimal action to maximize the average long-

term reward of the system. In other words, we aim to minimize the average number

of learning tasks waiting in the queue. Thus, the optimal coding and scheduling

policy can be denoted by π∗ : S → A, which is then expressed as follows:

max
π

R(π) = lim
T→∞

1

T

T∑
t=1

E (rt(st, π(st))) , (5.11)

where rt(st, π(st)) is the immediate reward under policy π at time step t and R(π)

is the average long-term reward of the system under policy π. To guarantee that

the optimal coding and scheduling policy exists and can be obtained, we prove that

the average reward R(π) is well defined and does not depend on the initial state as

stated in Theorem 5.2.

Theorem 5.2. The average reward does not depend on the initial state and is well

defined.

The proof of Theorem 5.2 is provided in Appendix C.1. To obtain the optimal

coding and scheduling policy, we use the deep Q-learning and deep dueling algo-

rithms proposed in Section 2.3. It is worth mentioning that our proposed joint

coding and scheduling solution does not require any feedback from edge devices. In

particular, the system state space consists of the size of the current learning task,

the number of learning tasks waiting in the queue, and the states of edge devices.

The MEC server always has the information about its queue as well as any learning

task arrived at the system. The states of edge devices can be determined by the

MEC server as soon as a learning task is successfully served, i.e., all assigned edge

nodes become available. Note that, if a straggling node still serves this learning

task, it will automatically terminate its computation for this learning task and serve
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the new learning task sent from the MEC server. As a result, the proposed solution

does not add any communication overhead to the system.

5.3 Performance Analysis and Simulation Results

5.3.1 Parameter Setting

In this work, we consider that the task queue at the MEC server can store up

to 10 learning tasks. There are five edge nodes in the system to serve learning

tasks. Unless otherwise stated, the task arrival probability is set at 0.7. The time

for serving one data point is set at 5 milliseconds for all edge nodes [112]. The size

(i.e., number of data points) of each learning task is randomly taken from the set

of {100, 200, 300}. We set p = {0.1, 0.5, 0.2, 0.3, 0.9} and λ = {0.1, 1, 0.5, 0.2, 2}.

All the above parameters are then varied in the next section to evaluate the perfor-

mance of our proposed algorithm in various scenarios. It is worth noting that our

proposed deep dueling algorithm does not require to know these parameters in ad-

vance. Instead, it can interact with the environment, observe results, and then learn

these parameters to obtain the optimal coding and scheduling policy in a real-time

manner.

The architecture of the deep neural network plays an important role in the learn-

ing process, and thus it needs to be carefully designed [74]. In particular, with more

hidden layers, the algorithm can learn the problem better. However, the complexity

of the algorithm will increase, resulting in a long training period. Moreover, a high

number of hidden layers does not always guarantee a good learning performance due

to the overestimation problems of optimizers. Similarly, the number of neurons in

each layer as well as the mini-batch size are also required a thoughtful design. For

the deep Q-learning, we deploy two fully-connected hidden layers connected to the

input layer and the output layer. For the deep dueling algorithm, the neural network

consists of two streams to separately estimate the value function and the advantage
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function. These two streams are connected to a shared hidden layer (after the input

layer) as illustrated in Fig. 2.6. The sizes of all the hidden layers are set at 16. The

mini-batch size is set at 16. The maximum size of the experience replay buffer is

10, 000. The target Q-network is updated after every 1, 000 learning steps. We use

the ϵ-greedy scheme with the initial value of ϵ is 1, and its final value is 0.01. The

decay factor is set at 0.9999. The learning rate and the discount factor of the deep

dueling and the deep Q-learning algorithms are set at 0.0001 and 0.99, respectively.

For the Q-learning, the learning rate and the discount factor are set at 0.1 and 0.9,

respectively.

To evaluate the proposed solution, we compare its performance with three other

approaches: (i) Greedy, (ii) OneNode, and (iii) StaticOptimalCode.

� Greedy: For this policy, the MEC server selects all available edge nodes Eav

to serve a learning task. The task is then coded with (n = |Eav|, k = |Eav|)

MDS code and equally distributed to all the available edge nodes. The MEC

server then requires results from all the assigned edge nodes to successfully

decode the final result. This policy is used to evaluate the straggling impact

of edge nodes and wireless links.

� OneNode: In this policy, the MEC server randomly selects one available edge

node to serve a learning task. This policy is used to evaluate the typical

uncoded and non-distributed learning approaches.

� StaticOptimalCode: This policy is based on the optimal MDS code proposed

in [52]. In particular, given Eav edge nodes, the optimal value of k is derived

as follows:

k† =

[
1 +

1

W−1(−e−λ̂−1)

]
|Eav|, (5.12)

where W−1(.) is the lower branch of Lambert W function and λ̂ presents the

average straggling parameter of all edge nodes. By using this equation, the
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MEC server can select (n = |Eav|, k = k†) MDS code for each learning task.

It is worth noting that in [52], the authors consider that all edge nodes are

identical, i.e., all edge nodes have the same straggling parameter. Moreover,

the authors obtain the optimal value of k in the case all edge nodes are used to

process a learning task. However, in our work, we consider that all edge nodes

are heterogeneous with different straggling parameters. As a result, in (5.12),

we define λ̂ as the average of the straggling parameters of all edge nodes. The

StaticOptimalCode policy is used to show the performance of a static optimal

code that does not consider the heterogeneity of both edge nodes and wireless

links, e.g., in channel/backhaul link quality to/from the MEC server, straggling

effects and computing capabilities of edge nodes. Moreover, this policy cannot

deal with the dynamics and uncertainty of the environment, resulting in poor

performance in our considered system as shown in Section 5.3.2.

We also obtain the policy of the proposed solution by running the conventional

Q-learning algorithm [73] to compare the effectiveness of the proposed deep dueling

algorithm. In this work, we aim to obtain the joint optimal coding and scheduling

policy to minimize the average delay for the whole system. Thus, the performance

metrics for evaluating the proposed approach are the average number of learning

tasks in the queue per time slot, the average task dropping probability, and the

average delay in the system of a learning task. The average task dropping probability

corresponds to the average number of dropped learning tasks in each time slot when

the task queue is full. The average delay of a learning task in the system is calculated

from the time a learning task arrives at the system until the task leaves the system

(i.e., the MEC server finishes serving the task). The metrics can reveal different

aspects of the system which are very useful to help the service provider control

Quality-of-Service to the users.
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Figure 5.2 : Convergence rates of learning algorithms.

5.3.2 Simulation Results

5.3.2.1 Convergence of Learning Algorithms

In Fig. 5.2, we show the learning processes of the Q-learning, deep Q-learning,

and deep dueling algorithms. As can be observed, the convergence rate of the

Q-learning algorithm is much slower than those of the deep Q-learning and deep

dueling algorithms. This is stemmed from the fact that the Q-learning algorithm

has a very slow-convergence due to the curse-of-dimensionality problem, especially

in complicated systems as considered in our work. By using the novel deep dueling

neural network architecture, our deep dueling algorithm achieves the best conver-

gence rate. In particular, the deep dueling algorithm can converge to the optimal

coding and scheduling policy within 10, 000 iterations, while the deep Q-learning

algorithm needs more than 15, 000 iterations to converge to the optimal coding and

scheduling policy. In the next section, all results of the deep dueling algorithm are

obtained at 4× 104 iterations, while those of the Q-learning algorithm are obtained

at 106 iterations. Note that the Q-learning algorithm is used as a benchmark to

demonstrate the effectiveness of the proposed algorithm.
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5.3.2.2 System Performance
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Figure 5.3 : (a) Average number of tasks waiting in the queue, (b) task dropping

probability, and (c) average delay of learning tasks in the system vs. task arrival

probability.

In this section, we perform simulations to evaluate the performance of the pro-

posed solution in terms of the number of tasks waiting in the queue, the average

task dropping probability, and the average delay of learning tasks in the system

in various scenarios. First, we vary the arrival probability of learning tasks and

compare the performance of the proposed solution with those of Greedy, OneNode,

and StaticOptimalCode policies as shown in Fig. 5.3. Clearly, when the task arrival

probability increases, the average number of learning tasks in the queue increases
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as there are more learning tasks arriving at the system as shown in Fig. 5.3(a).

With the proposed deep dueling algorithm, our solution can reduce the number of

tasks in the queue by up to 71%, 50%, and 54% compared to the Greedy, OneNode,

and StaticOptimalCode, respectively. The reason is that the deep dueling algorithm

can learn and maximize the number of learning tasks served by the edge nodes by

determining the optimal MDS code as well as the best edge nodes with stable wire-

less links. Fig. 5.3(b) also confirms the outperformance of our proposed solution

in terms of task dropping probability. Interestingly, in Fig. 5.3(c), when the task

arrival probability increases from 0.1 to 0.3, the average delay of learning tasks in

the system under the Greedy and OneNode schemes decrease by nearly 20% and

3%, respectively. The reason is that under these policies, the MEC server randomly

chooses edge nodes to serve learning tasks. As such, there are cases in which learn-

ing tasks are severed by highly-straggling edge nodes and/or unstable wireless links.

However, when there are more learning tasks arriving at the system, these learning

tasks are likely severed by good edge nodes and stable links as the straggling devices

may take longer time to serve other learning tasks, and thus they may not be often

available. As a result, the average waiting time in the system of a learning task re-

duces when the arrival probability increases from 0.1 to 0.3. The StaticOptimalCode

does not encounter this trend and achieves a better performance compared to the

Greedy and OneNode policies, thanks to the use of MDS code. However, when the

task arrival probability is higher than 0.3, the performance of the StaticOptimalCode

is similar to that of the Greedy policy and lower than that of the OneNode policy.

The reason is that when there are many learning tasks arriving at the system, the

computing resources of edge nodes are mostly utilized. Thus, at each time slot,

the available edge nodes are likely the nodes with good computing power (as they

can finish their assigned task quickly and become available for new tasks). Thus,

sending a task to a single edge node with high computing power for processing is
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better than distributing it to several edge nodes with different wireless connections.

Note that the StaticOptimalCode policy does not account for the effects of unstable

wireless links. Nevertheless, by learning and avoiding choosing the slow edge nodes

and unstable wireless links, our proposed solution always achieves the best perfor-

mance. In particular, the average delay of learning tasks obtained by our solution

is much lower than those of the Greedy, OneNode, and StaticOptimalCode policies,

reduced by up to 66% as shown in Fig. 5.3(c).
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Figure 5.4 : (a) Average number of tasks waiting in the queue, (b) task dropping

probability, and (c) average delay of learning tasks in the system vs. processing

time.

Next, we vary the time for serving one data point (e.g., one matrix row) tp
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and evaluate the system performance as shown in Fig. 5.4. It can be observed

that when the processing time increases, the system performances obtained by all

methods significantly decrease. The reason is that, with higher processing time,

the edge nodes need more time to serve learning tasks, and thus increasing the

serving time of learning tasks. Consequently, learning tasks need to wait longer in

the queue. Nevertheless, in all the scenarios, the proposed solution always achieves

the best performance and can reduce the average delay of learning tasks by 63%,

47%, and 63% compared to the Greedy, OneNode, and StaticOptimalCode, as shown

in Fig. 5.4(c) respectively. The reason is that the deep dueling algorithm can learn

and adapt with the environment parameters in order to select the optimal MDS

code for each learning task as well as avoid unstable wireless links. It is worth

mentioning that the performance achieved by the OneNode policy is better than

those of the Greedy and StaticOptimalCode policies. The reason is that we set the

disconnection probability of wireless links from the server to edge nodes 2 and 5

at high values (i.e., 0.5 and 0.9, respectively) to clearly see the effect of unstable

wireless links. Under the OneNode policy, each learning task is served by a single

edge node. As such, it can reduce the effect of the unstable wireless links. Among

all policies, the StaticOptimalCode possesses the worst performance as this policy

obtains the optimal MDS code (see (5.12)) without considering the heterogeneity

of edge nodes and wireless links. This also confirms our analyses on the drawback

of existing static coding mechanisms, i.e., they are only effective under specific

scenarios and assumptions. Our proposed solution, otherwise, can learn all the

unpredictable parameters of the edge nodes and wireless links to jointly optimize

coding and scheduling policies for learning tasks. It is worth noting that the Q-

learning algorithm cannot obtain the optimal coding and scheduling policy at 106

iterations as discussed above. Thus, the results obtained by the Q-learning algorithm

are not as good as those of the proposed deep dueling algorithm.
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Figure 5.5 : (a) Average number of tasks waiting in the queue, (b) task dropping

probability, and (c) average delay of learning tasks in the system vs. disconnection

probability of links.

In Fig. 5.5, we vary the disconnection probability of wireless links and observe

the system performance in terms of the number of tasks waiting in the queue, task

dropping probability, and the average delay of learning tasks in the system. Clearly,

when the disconnection probability increases, system performances obtained by all

the policies drop dramatically. This is stemmed from the fact that when the wireless

links are more unstable, the MEC server and the edge results need more time to

resend the sub-learning task and results, respectively. Consequently, the serving

time of learning tasks increases, resulting in a higher delay for learning tasks. It
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is worth noting that when the disconnection probability increases from 0.1 to 0.6,

the performance obtained by the OneNode policy is much better than that of the

Greedy policy. The reason is that under the Greedy policy, the MEC server and edge

nodes need to resend data when the wireless links are disconnected. Differently, with

the OneNode policy, the MEC server assigns only one edge node for each learning

task, and thus the frequency of resending data is lower than those of the Greedy

and StaticOptimalCode policies, resulting in a better performance. However, the

performance gaps between these policies are very small when the disconnection

probability is high, i.e., higher 0.7, as all links are likely disconnected. Nevertheless,

our proposed solution always achieves the best performance in all the cases compared

to those of the Greedy and OneNode policies. The reason is that the proposed

deep dueling can learn from the environment and avoid choosing highly-straggling

edge nodes as well as adapt its optimal coding and scheduling policy when the

disconnection probability changes. Again, the StaticOptimalCode achieves the worst

performance as this policy does not account for the effects of unstable wireless links

when obtaining the optimal MDS code for each learning task as expressed in (5.12).

Next, we vary the rate parameter λ (in the exponential distribution) of the

stochastic computing time of edge nodes and observe the system performance in

Fig. 5.6. Recall that, a lower value of λ results in a longer time for stochastic com-

puting. As such, when λ increases, system performances obtained by all the policies

will be decreased. Moreover, when λ is small, the gap between the solutions is small.

Nevertheless, when λ is increased, the gap will be enlarged. The reason is that, with

lower values of λ, the edge nodes require more time to execute learning tasks. As

such, the resources of the system are likely to be fully utilized. In these cases, there

are not many options for the MEC server to serve learning tasks, resulting in a small

performance gap between solutions. However, in all the scenarios, our proposed so-

lution can achieve the best performance as the optimal policy can avoid unstable
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Figure 5.6 : (a) Average number of tasks waiting in the queue, (b) task dropping

probability, and (c) average delay of learning tasks in the system vs. the rate

parameter λ (in the exponential distribution) of the stochastic computing time of

edge nodes.

wireless links and select the optimal MDS code for each learning task.

Finally, we vary the data size of learning tasks and observe the system perfor-

mances under different policies as shown in Fig. 5.7. Clearly, when the task size

increases, the system performances obtained by all the policies will be dropped. It

is stemmed from the fact that with a larger task size, the edge nodes need more time

to serve learning tasks. However, our proposed solution can always achieve the best

performance compared to the other policies because it can learn and select the best
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Figure 5.7 : (a) Average number of tasks waiting in the queue, (b) task dropping

probability, and (c) average delay of learning tasks in the system vs. task size.

MDS code as well as the best edge nodes for each learning task. For example, when

the task size is small, the deep dueling algorithm can select a small number of devices

with more stable wireless links to serve a learning task. In contrast, when the task

size is large, more edge nodes will be selected to reduce the average serving time of

learning tasks. It can be observed that our proposed solution can reduce the aver-

age number of tasks waiting in the queue by 60%, 46%, and 61% compared to those

of the Greedy, OneNode, and StaticOptimalCode policies, respectively. Again, the

StaticOptimalCode achieves the worst performance as this policy does not consider

the learning task size and the effects of unstable wireless links.



5.4 Conclusion 123

5.4 Conclusion

In this chapter, we have proposed a novel framework that can effectively ad-

dress key challenges for the development of distributed learning in wireless edge

networks. Specifically, we have first introduced a distributed learning model utiliz-

ing the recent advances in coded computing to mitigate the straggling problems on

both the wireless links and the edge nodes. With the proposed distributed learning

model, a learning task is first encoded into sub-learning tasks, and the sub-learning

tasks are then transmitted to edge nodes for executing. This solution allows to

significantly mitigate straggling problems caused by straggling edge nodes as well

as unstable links between the MEC server and edge nodes. Furthermore, to deal

with the dynamics and uncertainty of wireless links and straggling edge nodes, we

have proposed a novel deep reinforcement learning, called deep dueling, to obtain

the optimal code and scheduling policy for each learning task. Extensive simulation

results have then demonstrated that our proposed solution can significantly improve

the system performance by not only obtaining the optimal MDS code but also find-

ing the best edge nodes to serve each learning task. One of the potential research

directions from this work is to deploy multiple virtual machines at each edge node

to serve various learning tasks simultaneously.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we have presented our works in addressing several problems of

communications. In particular, our first work concerned with the resource alloca-

tion problem in network slicing. In particular, we have developed an optimal and

fast network resource management framework which allows the network provider to

jointly allocate multiple combinatorial resources (i.e., computing, storage, and ra-

dio) to different slice requests in a real-time manner. To deal with the dynamic and

uncertainty of slice requests, we have adopted the SMDP. Then, the reinforcement

learning algorithms, i.e., Q-learning, deep Q-learning, deep double Q-learning, and

deep dueling, have been employed to maximize the long-term average reward for the

network provider. The key idea of the deep dueling is using two streams of fully

connected hidden layers to concurrently train the value and advantage functions,

thereby improving the training process and achieving the outstanding performance

for the system. Extensive simulations have shown that the proposed framework

using deep dueling can yield up to 40% higher long-term average reward with few

thousand times faster compared with those of other network slicing approaches.

Future works comprise considering the connectivity resources and the existence of

multiple data centers in complex network slicing models by accommodating more

states to the system state space. The performance of the proposed solution will be

evaluated in terms of complexity and scalability. Moreover, the convergence rate and

stability of the deep dueling algorithm will be improved by using the state-of-the-art
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deep neural networks.

In the second work, we have developed the optimal anti-jamming framework

which allows the wireless transceivers to effectively defeat jamming attacks. In par-

ticular, with the ambient backscatter capability, while being attacked, the device can

either adapt its transmission rate or backscatter its data to the gateway through the

jamming signal or harvest energy from the jamming signal to support its operations.

To effectively learn about the jamming attacks as well as the channel activities, we

have proposed an optimal anti-jamming strategy based on MDP to obtain the opti-

mal defend policy for the transmitter. Then, the reinforcement learning algorithms,

i.e., Q-learning, deep Q-learning, and deep dueling, have been developed to max-

imize the long-term average throughput and minimize the packet loss. Extensive

simulations have demonstrated that by using two streams of fully-connected hidden

layers, the proposed framework using deep dueling algorithm can improve the aver-

age throughput up to 426% and reduce the packet loss by 24%. Importantly, with

ambient backscatter and energy harvesting technology, jamming signal can be lever-

aged by the transmitter as the ambient RF signal, thereby effectively eliminating

jamming attacks. To the best of our knowledge, this is the first anti-jamming solu-

tion that allows wireless transceivers to not only survive jamming attacks without

requiring additional resources but also leverage the jamming signal to improve their

transmission rate. The proposed ambient backscattering augmented communica-

tions framework can be applicable to both civil (e.g., ultra-reliable and low-latency

communications or URLLC) and military scenarios (to combat both inadvertent

and deliberate jamming).

In the third work, we have proposed a novel framework which can effectively

address key challenges for the development of distributed learning in wireless edge

networks. Specifically, we have first introduced a distributed learning model utilizing

the recent advances in coded computing to mitigate the straggling problems on
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both the wireless links and the edge nodes. With the proposed distributed learning

model, a learning task is first encoded into sub-learning tasks, and the sub-learning

tasks are then transmitted to edge nodes for executing. This solution allows to

significantly mitigate straggling problems caused by straggling edge nodes as well

as unstable links between the MEC server and edge nodes. Furthermore, to deal

with the dynamics and uncertainty of wireless links and straggling edge nodes, we

have proposed a novel deep reinforcement learning, called deep dueling, to obtain

the optimal code and scheduling policy for each learning task. Extensive simulation

results have then demonstrated that our proposed solution can significantly improve

the system performance by not only obtaining the optimal MDS code but also finding

the best edge nodes to serve each learning task. One of the potential research

directions from this work is to deploy multiple virtual machines at each edge node

to serve various learning tasks simultaneously.

6.2 Future Works

AI has great potential in addressing emerging problems in future communication

systems that conventional approaches cannot effectively handle. However, there is

still room to improve the performance of current AI-based solutions as well as to

explorer new advanced AI techniques.

� AI for Heterogeneous Communication Networks: With the emergence of new

services from different types of users and environments, heterogeneous infras-

tructures are expected to be deployed in future communication systems. How-

ever, the curse-of-dimensionality and uncertainty of network parameters intro-

duce new challenges to service providers. Conventional solutions with static

approaches may not be feasible to deal with these complex and dynamic prob-

lems. To that end, several AI algorithms can be adopted, such as deep learning,

transfer learning, and federated learning. Firstly, deep learning can efficiently
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handle massive amounts of data with dissimilar properties from various ser-

vices and users. Secondly, transfer learning can be used to leverage knowledge

from one environment for other environments. This is partially beneficial for

heterogeneous communication networks. Finally, federated learning can be

deployed on a huge number of devices to significantly improve the system per-

formance. In particular, each device has its own deep learning model to learn

its local data. Once trained, the local model will be sent to the server to

compute the global model. This global model then is sent back to the devices

for further training. In this way, the overall learning process can be enhanced.

� AI for Spectrum Management: The next generation of wireless communica-

tions will experience a massive number of devices connected to the Internet,

e.g., IoT networks. This can significantly increase the density of the network

and reduce the overall throughput. As such, how to smartly and intelligently

access the shared spectrum is an important challenge for future wireless com-

munications networks. Moreover, wireless communications are highly dynamic

and uncertain. Consequently, existing static approaches in the literature may

not be feasible. To address these problems, deep reinforcement learning can

be adopted as it can effectively deal with the dynamic and uncertainty of the

environment. The reason is that deep reinforcement learning does not require

complete information about the environment in advance. When the environ-

ment changes, deep reinforcement learning can learn and adjust its optimal

policy. Moreover, with our proposed deep dueling algorithm, one can quickly

obtain the optimal policy. This is very beneficial in dynamic spectrum access

problems of future wireless communication systems, in which wireless users

are very dynamic and unpredictable. Given the above, deep reinforcement

learning is a promising tool for spectrum management.
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� AI for Edge Networks: Federated deep learning can be adopted to effectively

and securely optimize the performance of edge networks. Nevertheless, ex-

changing data effectively between collaborators (e.g., wireless edge nodes) is a

challenging task. There is a demand for low-complexity techniques that can

minimize or tradeoff overhead in computations and communications costs to:

(i) reduce the effect of missing/straggling computations during collaboration

and (ii) minimize the cost of exchanging data and model parameters. The joint

coding and scheduling framework in this thesis can be further extended to dif-

ferent types of coding techniques as well as wireless channel models. Moreover,

incentive mechanisms can be proposed to encourage users to contribute to fed-

erated learning processes. This will significantly increase the training time and

reliability of federated learning. Finally, to minimize the communication and

computation cost at the centralized server, another layer of edge device can be

used to aggregate trained models from a group of users with related properties.

As a result, the communication overhead and computation load at the server

can be greatly reduced.
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Appendix A

Proofs in Chapter 2

A.1 The proof of Theorem 2.1

Here, we prove that Q-learning converges to the optimum action-values with

probability one, i.e., Qt(s, a) → Q∗(s, a) as n → ∞. The main idea of the conver-

gence proof is an artificial controlled Markov process called the action-replay process

(ARP) [73], which is formulated from the learning rate τt and the episode sequence.

In particular, the state space of the ARP is {⟨s, t⟩} together with a special absorbing

state, where s is a state of the real process and t ≥ 1 is the level of the ARP. The

action space is {a} where a is an action from the real process.

The stochastic reward and state transition consequence when action a is taken

at state s are as follows:

i∗ =


argmaxi{ti ≤ t}, if (s, a) is perfomed

before episode t,

0, otherwise,

(A.1)

where i is the index of the ith time action a is taken at state s. In this way, ti∗ is the

last time before episode t where (s, a) is executed in the real process. When i∗ = 0,

the reward is set as Q0(s, a), and the ARP absorbs. Otherwise, let denote

ie =



i∗, with probability τti∗ ,

i∗ − 1, with probability (1− τti∗ )τti∗−1 ,

i∗ − 2, with probability (1− τti∗ )(1− τti∗−1)τti∗−2 ,

...

0, with probability
∏i∗

i=1(1− τti),

(A.2)
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as the index of the episode that is replayed or taken. If ie = 0, as above, the reward

is set at Q0(s, a), and the ARP absorbs. In contrary, when ie#0, the reward is rtie ,

and a state transition is formed as ⟨s′tie , tie − 1⟩.

As stated in [73], the ARP tends towards the real process. Thus, Qt(s, a) tends

to Q∗(s, a), where Qt(s, a) = Q∗
ARP (⟨s, t⟩, a), ∀a, s, and t ≥ 0, is the optimal Q-value

for the tth level of the ARP [73, Lemma A]. Without loss of generality, we assume

that Qt(s, a) < r∗

(1−γ)
, where r∗ ≥ |rt| is the bound of the reward. Given χ > 0,

choose ξ such that

γξ r∗
1− γ

<
χ

6
. (A.3)

Based on Lemmas B.2, B.3, B.4 in [73], we can compare the value Q̄ARP (⟨s, t⟩, a1, . . . , aξ)

of taking actions a1, . . . , aξ in the ARP with Q̄(s, a1, . . . , aξ) of taking them in the

real process as follows:

|Q̄ARP (< s, t >, a1, . . . , aξ)− Q̄(s, a1, . . . , aξ)| <
χ(1− γ)

6ξr∗
2ξr∗
1− γ

+
2χ

3ξ(ξ + 1)

ξ(ξ + 1)

2
=

2χ

3
.

(A.4)

Clearly, the effect of taking only ξ actions makes a difference of less than χ
6
for both

the ARP and the real processes. As Eq. (A.4) can be applied to any set of actions,

it applies perforce to a set of actions optimal for either the real process or the ARP.

Thus, we have

|Q∗
ARP (⟨s, t⟩, a)−Q∗(s, a)| < χ. (A.5)

As a result, with probability 1, Qt(s, a)→ Q∗(s, a) as n→∞.
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Appendix B

Proofs in Chapter 3

B.1 The proof of Theorem 3.1

For any t ≥ 0, define the matrix P(t) by P(t) = (ps,s′(t)), ∀s, s′ ∈ S. Denote by

Q, the matrix Q = qs,s′ , ∀s, s′ ∈ S, where the diagonal elements qs,s are defined by:

qs,s = −zs. (B.1)

After that Kolmogoroff’s forward differential equations can be written as P′(t) =

P(t)Q for any t ≥ 0. Hence, the solution of this system of differential equations is

given by:

P(t) = etQ =
∞∑
n=0

tn

n!
Qn, t ≥ 0. (B.2)

The matrix P = ps,s′ , ∀s, s′ ∈ S can be reformulated as P = Q/z + I, where I is the

identity matrix. Therefor, we have

P(t) = etQ = ezt(P−I) = eztPe−ztI = e−zteztP

=
∞∑
n=0

e−zt (zt)
n

n!
P

n
.

(B.3)

Based on conditioning on the number of Poisson events up to time t in the {X(t)}

process, we have

P{X(t) = s′|X(0) = s} =
∞∑
n=0

e−zt (zt)
n

n!
p
(n)
s,s′ , (B.4)

where p
(n)
s,s′ is the n-step transition probability of the discrete-time Markov chain Xn.

By recalling the Corollary 3.1, the proof is completed.
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B.2 The proof of Lemma 3.1

Let {An : n ≥ 0} be a sequence of matrices. We have lim
n→∞

An = A if lim
n→∞

An(s
′|s) =

(s′|s) for each (s, s′) ∈ S ×S. We now consider the Cesaro limit which is defined as

follows. We say that A is the Cesaro limit (of order one) of {An : n ≥ 0} if

lim
n→∞

1

N

N−1∑
n=0

An = A, (B.5)

and write

C-lim
N→∞

= A (B.6)

to distinguish this as a Cesaro limit. We then define the limiting matrix P by

P = C-lim
N→∞

PN . (B.7)

In component notation, where p(s′|s) denotes the (s′|s)-th element of P , this means

that, for each s and s′, we have

p(s′|s) = lim
N→∞

1

N

N∑
n=1

pn−1(s′|s), (B.8)

where pn−1 denotes a component of P n−1 and p0(s′|s) is a component of an S × S

identity matrix. As P is aperiodic, limN→∞ exists and equals to P .
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Appendix C

Proofs in Chapter 5

C.1 The proof of Theorem 5.2

We first prove that the underlying Markov chain in this work is irreducible.

In other words, from any state, the process can always move to any other states

after a finite number of steps. Recall that the system state is defined as the state

of the queue m, the task size f , and the state of all edge nodes in the system

{e1, . . . , ej, . . . , eN}. At each time slot, a learning task arrives at the system with

probability µ. Thus, there always exists a probability that the queue state moves

fromm tom′ = m+1. Moreover, a learning task will be removed from the queue if it

is successfully served. In this case, the queue state moves from m tom′ = m−1. The

task size is a random value. As such, it can take any positive values. Alternatively,

edge node Ej is available (i.e., ej = 1) when it does not serve any learning task. In

contrast, edge node is unavailable (i.e., ej = 0) if it is serving another learning task.

As a result, edge nodes can always move from the available state to the unavailable

state. Thus, the underlying Markov chain can move from a given state to any other

states after a finite number of steps. As such, the average long-term reward R(π)

is well defined and does not depend on the initial state for every π [103].
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