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ABSTRACT

Novel Architectures and Networking Solutions

for Intelligent Mobile Edge Computing Networks

by

Yuris Mulya Saputra

Mobile edge computing (MEC) has emerged as a highly-effective solution to ad-

dress the proliferation of smart devices and growing demands for computationally-

intensive applications. The key idea of MEC networks is to distribute computing

resources closer to mobile users (MUs) by deploying servers at the “edge” of the

networks, i.e., mobile edge nodes (MENs). Nonetheless, the development of MEC

networks has been facing various challenges including the decentralized nature, small

coverage, unreliable computing/communication resources, and limited storage ca-

pacity of the MENs. This thesis aims to address the above challenges through

developing novel collaborative architectures and intelligent networking strategies for

MEC networks.

Firstly, we introduce a novel MEC network architecture that leverages an optimal

joint caching-delivering with horizontal cooperation among MENs. Particularly, we

first formulate the content-access delay minimization problem by jointly optimizing

content caching and delivering decisions under various network constraints, aiming

at minimizing the total average delay for the MEC network. Then, we design cen-

tralized and distributed solutions to find the decisions of joint caching and delivering

policy for the transformed problem.

As the second contribution, we propose a novel economic-efficiency framework for

the MEC network to maximize the profits for MENs. Specifically, we first introduce a

demand prediction method for MENs leveraging federated learning (FL) approaches.

Based on the predicted demands, each MEN can reserve demands from the MEC



service provider (MSP) in advance to optimize its profit. Nonetheless, due to the

competition among the MENs as well as unknown information from the MSP, we

develop a multi-principal one-agent (MPOA) contract-based utility optimization

under the MSP’s constraints as well as other MENs’ contracts. We then develop an

iterative algorithm to find the optimal contracts for the MENs.

Finally, we propose a novel dynamic FL-based framework leveraging dynamic

selection of MENs for the FL process in the MEC network. Particularly, the MSP

first implements an MU selection method to determine a set of the best MUs for the

FL process according to the location and information significance at each learning

round. Then, each selected MU can collect information and offer a payment contract

to the MSP based on its collected QoI. For that, we develop an MPOA contract-

based policy to maximize the profits of the MSP and learning MUs under the MSP’s

limited payment budget and asymmetric information between the MSP and MUs.
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