

Novel Architectures and Networking Solutions for Intelligent Mobile Edge Computing Networks

by Yuris Mulya Saputra

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr. Diep N. Nguyen, Dr. Dinh Thai Hoang, and Prof. Eryk Dutkiewicz

University of Technology Sydney Faculty of Engineering and Information Technology

December 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, YURIS MULYA SAPUTRA declare that this thesis, is submitted in fulfilment of the requirements for the award of DOCTOR OF PHILOSOPHY, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 12/12/2021

ABSTRACT

Novel Architectures and Networking Solutions for Intelligent Mobile Edge Computing Networks

by

Yuris Mulya Saputra

Mobile edge computing (MEC) has emerged as a highly-effective solution to address the proliferation of smart devices and growing demands for computationallyintensive applications. The key idea of MEC networks is to distribute computing resources closer to mobile users (MUs) by deploying servers at the "edge" of the networks, i.e., mobile edge nodes (MENs). Nonetheless, the development of MEC networks has been facing various challenges including the decentralized nature, small coverage, unreliable computing/communication resources, and limited storage capacity of the MENs. This thesis aims to address the above challenges through developing novel collaborative architectures and intelligent networking strategies for MEC networks.

Firstly, we introduce a novel MEC network architecture that leverages an optimal joint caching-delivering with horizontal cooperation among MENs. Particularly, we first formulate the content-access delay minimization problem by jointly optimizing content caching and delivering decisions under various network constraints, aiming at minimizing the total average delay for the MEC network. Then, we design centralized and distributed solutions to find the decisions of joint caching and delivering policy for the transformed problem.

As the second contribution, we propose a novel economic-efficiency framework for the MEC network to maximize the profits for MENs. Specifically, we first introduce a demand prediction method for MENs leveraging federated learning (FL) approaches. Based on the predicted demands, each MEN can reserve demands from the MEC service provider (MSP) in advance to optimize its profit. Nonetheless, due to the competition among the MENs as well as unknown information from the MSP, we develop a multi-principal one-agent (MPOA) contract-based utility optimization under the MSP's constraints as well as other MENs' contracts. We then develop an iterative algorithm to find the optimal contracts for the MENs.

Finally, we propose a novel dynamic FL-based framework leveraging dynamic selection of MENs for the FL process in the MEC network. Particularly, the MSP first implements an MU selection method to determine a set of the best MUs for the FL process according to the location and information significance at each learning round. Then, each selected MU can collect information and offer a payment contract to the MSP based on its collected QoI. For that, we develop an MPOA contract-based policy to maximize the profits of the MSP and learning MUs under the MSP's limited payment budget and asymmetric information between the MSP and MUs.

Dedication

To my beloved wife, son, parents, parents-in-law, university, and country, Indonesia.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors Dr. Diep N. Nguyen, Dr. Dinh Thai Hoang, and Prof. Eryk Dutkiewicz for all the guidance, encouragement, and enduring patience. All my supervisors have taught me a lot on both the scientific and personal sides of the research journey. Their guidance and support go far beyond this thesis, and I have been greatly fortunate to be supervised by them.

My deep appreciation goes to Dr. Markus Dominik Mueck and his team in the Intel Corporation for their insightful advice and continuous encouragement on my industry collaborations. Furthermore, many thanks to all the staffs from the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), and UTS Library for various forms of help they gave to me. Special thanks to UTS for giving me the rare opportunity to study in this prestigious university in Australia through International Research Scholarship (IRS) and UTS President's Scholarship throughout my whole PhD study. I also would like to thank all my colleagues and friends (both international and Indonesian friends) for their support and company.

Last but most importantly, my deepest gratitude, love and respect offer to my whole families. My beloved wife, Primarizka Ayunda Wardhani and, my loving son, Panjalu Nawasena Yudhamadika have been supporting me to go through all difficult times during this long journey. Without their infinite love, inspiration and patience, this work could never been accomplished. My beloved parents, Mulyani and Endah Puji Lestari, my parents-in-law, Margono and Aurina Pratiwi, and my sister, Eti Rizki Handayani have been supporting and encouraging me with every possible way as they always did. Their love, sacrifice, and patience will be the constant source of motivation throughout my life.

Contents

	Certificate	of Original Authorship	ii
	Abstract		iii
	Dedication		vi
	Acknowled	gments	vii
	Table of Co	ontents	viii
	List of Pub	olications	xiv
	List of Fig	ures	xvii
	List of Tab	les	XX
	Abbreviation		xxi
1	1 Introduction and Literature Review		1
	1.1 Backgr	cound	1
	1.1.1	Architecture of MEC Networks	2
	1.1.2	Benefits of MEC Networks	4
	1.1.3	Challenges of MEC Networks	5
	1.2 Literat	sure Review and Contributions	6
	1.2.1	Collaborative Caching Architectures in MEC Networks	7
	1.2.2	Intelligent Energy Demand Prediction and Competition in MEC Networks	10
	1.2.3	Smart Learning Participant Selection and Incentive Competition in MEC Networks	15

	1.3	Thesis	Organization	21
2	Jo	$\operatorname{int} \mathbf{C}$	aching-Delivering and Horizontal Cooperation	1
	Fra	amew	ork for Mobile Edge Networks	23
	2.1	Mobile	e Edge Network Architecture with Horizontal Cooperation	
		among	st MENs	24
	2.2	Joint (Cooperative Caching and Delivering Optimization Problem \ldots	26
		2.2.1	Decision Variables and Problem Analysis	26
		2.2.2	Problem Formulation	29
		2.2.3	Problem Transformation	31
	2.3	Centra	alized Cooperative Caching-Delivering Solution	33
		2.3.1	iBBA with Interior-Point Method	33
		2.3.2	Algorithm Complexity and Convergence Analysis of iBBA-IPM	1 39
	2.4	Distrik	outed Cooperative Caching-Delivering Solution	40
	2.5	Illustra	ative Case Study	44
	2.6	Simula	ation Results	45
		2.6.1	Evaluation of Proposed vs. Optimal Solutions	46
		2.6.2	Total Average Delay	47
		2.6.3	Cache Hit Ratio Probability	52
	2.7	Conclu	usion	54
3	Fe	derat	ed Learning Meets Contract Theory: Economic	-
	Ef	ficien	cy Framework for Electric Vehicle Networks	55
	3.1	Econo	mic-Efficiency Framework for the EV Network	56
	3.2	Federa	ated Energy Learning	59
		3.2.1	CS-Based Decentralized Federated Energy Learning (DFEL) .	59

		3.2.2	CS Clustering-Based Energy Learning	63
	3.3	Multi-I	Principal One-Agent (MPOA)-Based Contract Optimization	
		Problem	m	66
		3.3.1	Utility Functions of the SGP and CSs	66
		3.3.2	Utility Optimization of CSs	68
	3.4	Non-Co	ollaborative Energy Contract Solution	71
		3.4.1	MPOA-Based Contract Problem Transformation	71
		3.4.2	Energy Contract Iterative Algorithm	74
		3.4.3	Convergence, Equilibrium Contract, and Complexity	
			Analysis of the Iterative Algorithm	76
	3.5	Perform	nance Evaluation	78
		3.5.1	Dataset Preparation and Evaluation Method	78
		3.5.2	Simulation Setup	78
		3.5.3	Energy Demand Prediction Performance	80
		3.5.4	Economic Model Performance	83
	3.6	Conclu	sion	93
4	Dy	vnami	c Federated Learning-Based Economic Frame	-
	wo	ork for	Internet-of-Vehicles	94
	4.1	Dynam	ic Federated Learning-Based Economic Framework	95
	4.2	Locatio	on and Information Significance-Based SV Selection	99
		4.2.1	Location Significance-Based SV Selection	99
		4.2.2	Information Significance-Based SV Selection	101
	4.3	MPOA	-Based Learning Contract Optimization Problem and Solution .	103
		4.3.1	Profit Optimization for the VSP	104

		4.3.2	Profit Optimization for Learning SVs)5
		4.3.3	Social Welfare of the Internet-of-Vehicles)7
		4.3.4	Contract Problem Transformation)8
		4.3.5	Learning Contract Iterative Algorithm	11
		4.3.6	Convergence, Equilibrium, and Complexity Analysis of the	
			Learning Contract Iterative Algorithm	12
	4.4	Federat	ted Learning with SV Selection	14
		4.4.1	Learning Process	14
		4.4.2	Convergence Analysis	16
	4.5	VSP's	Profit Analysis Based on the Global Model Accuracy and	
		Freshne	ess	17
	4.6	Perform	nance Evaluation	19
		4.6.1	Dataset Preparation	19
		4.6.2	Experiment Setup	21
		4.6.3	Learning Contract Performance	23
		4.6.4	Dynamic Federated Learning Accuracy Performance 12	27
		4.6.5	Relationship Between Contract and Federated Learning	
			Performance	31
	4.7	Conclu	sion \ldots \ldots \ldots \ldots \ldots \ldots 13	34
5	Co	onclusi	ions and Future Work 13	6
	51	Conclu	sions 15	26
	J.1	Conciu		00
	5.2	Future	Work	38
		5.2.1	Federated Learning Framework with Privacy-Awareness for	
			AI-based Mobile Application Services in MEC Networks 13	39

	5.2	2.2	AI-Based Proactive Caching Framework for Intelligent Transportation Systems (ITS) in MEC Networks	139
	5.2	2.3	Resource-Aware AI-Based Framework for Integrated Sensing and Communications of Autonomous Vehicles in MEC	
			Networks	140
	5.2	2.4	AI-Aided Next Generation Multiple Access (NGMA) for	
			Mobile Application Services in MEC Networks	140
\mathbf{A}	Proof	is in	n Chapter 2	142
	A.1 Pro	oof o	f Lemma 2.1	142
	A.2 Pro	oof o	f Theorem 2.1	142
	A.3 Pro	oof o	f Theorem 2.2	145
	A.4 Pro	of o	f Theorem 2.3	146
в	Proof	s ir	n Chapter 3	147
	B.1 Pro	oof o	f Theorem 3.1	147
	B.2 Pro	oof o	f Lemma 3.1	147
	B.3 Pro	oof o	f Lemma 3.2	148
	B.4 Pro	oof o	f Proposition 3.1	149
	B.5 Pro	oof o	f Preposition 3.2	149
	B.6 Pro	oof o	f Lemma 3.3	149
	B.7 Pro	oof o	f Lemma 3.4	151
	B.8 Pro	oof o	f Theorem 3.2	151
	B.9 Pro	oof o	f Theorem 3.3	152
	B.10Pro	oof o	f Theorem 3.4	153
	B.11Rela	atio	nship Between Prediction Error and Utility of the SGP/CS: A	
	Cas	se St	udy	155

C Proofs in Chapter 4	158
C.1 Proof of Lemma 4.1	. 158
C.2 Proof of Lemma 4.2	. 158
C.3 Proof of Proposition 4.1	. 159
C.4 Proof of Proposition 4.2	. 159
C.5 Proof of Lemma 4.3	. 160
C.6 Proof of Lemma 4.4	. 161
C.7 Proof of Theorem 4.1	. 161
C.8 Proof of Theorem 4.2	. 163
C.9 Proof of Theorem 4.3	. 163
C.10Proof of Theorem 4.4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 165
Bibliography	168

List of Publications

Book Chapters

B-1. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, and D. Niyato, "Wireless Edge Caching for Mobile Social Networks," in *Wireless Edge Caching: Modelling, Analysis, and Optimization*, Cambridge University Press, Mar. 2021. https://www.cambridge.org/ au/academic/subjects/engineering/wireless-communications/ wireless-edge-caching-modeling-analysis-and-optimization? format=HB. (Partly corresponding to Chapter 1)

Journal Papers

- J-1. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "A Novel Mobile Edge Network Architecture with Joint Caching-Delivering and Horizontal Cooperation," *IEEE Transactions on Mobile Computing*, vol. 20, no. 1, pp. 19-31, Jan. 2021. https://ieeexplore.ieee.org/document/8821308. (Corresponding to Chapter 2)
- J-2. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, and S. Chatzinotas, "Federated Learning Meets Contract Theory: Economic-Efficiency Framework for Electric Vehicle Networks," Early Access, *IEEE Transactions on Mobile Computing*, Dec. 2020. https://ieeexplore.ieee. org/document/9300192. (Corresponding to Chapter 3)
- J-3. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, L. N. Tran, S. Gong, and E. Dutkiewicz, "Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles," Early Access, *IEEE Transactions on Mobile Computing*, Oct. 2021. https://ieeexplore.ieee.org/document/9585537. (Corresponding to Chapter 4)

- J-4. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and D. I. Kim, "Distributed Deep Learning at the Edge: A Novel Proactive and Cooperative Caching Framework for Mobile Edge Networks," *IEEE Wireless Communications Letters*, vol. 8, no. 4, Aug. 2019. https://ieeexplore. ieee.org/document/8693954.
- J-5. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, Q. V. Pham, E. Dutkiewicz, and W. J. Hwang, "Federated Learning Framework with Straggling Mitigation and Privacy-Awareness for AI-based Mobile Application Services," submitted to *IEEE Transactions on Mobile Computing*, under review. https://arxiv. org/abs/2106.09261.

Conference Papers

- C-1. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, "JOCAR: A Jointly Optimal Caching and Routing Framework for Cooperative Edge Caching Networks," in *IEEE GLOBECOM*, Hawaii, USA, Dec. 2019, pp. 1-6. https://ieeexplore.ieee.org/document/9013745. (Corresponding to Chapter 2)
- C-2. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D. Mueck, and S. Srikanteswara, "Energy Demand Prediction with Federated Learning for Electric Vehicle Networks," in *IEEE GLOBECOM*, Hawaii, USA, Dec. 2019, pp. 1-6. https://ieeexplore.ieee.org/document/9013587. (Corresponding to Chapter 3)
- C-3. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz and M. D. Mueck, "Common Agency-Based Economic Model for Energy Contract in Electric Vehicle Networks," in *IEEE GLOBECOM*, Taipei, Taiwan, Dec. 2020, pp. 1-6. https://ieeexplore.ieee.org/document/9322376. (Corresponding to Chapter 3)
- C-4. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Selective Federated Learning for On-Road Services in Internet-of-Vehicles," presented in *IEEE GLOBECOM*, Madrid, Spain, Dec. 2021. (Corresponding to Chapter

4)

- C-5. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "Incentive Mechanism for AI-Based Mobile Applications with Coded Federated Learning," presented in *IEEE GLOBECOM*, Madrid, Spain, Dec. 2021.
- C-6. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, "In-Network Caching and Learning Optimization for Federated Learning in Mobile Edge Networks," submitted to *IEEE ICC 2022*, under review.

Other Papers

- O-1. T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. N. Nguyen, N. V. Ha, and E. Dutkiewicz, "Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0," in *IEEE WCNC*, Seoul, South Korea, May 2020, pp. 1-6. https://ieeexplore.ieee.org/document/9120761.
- O-2. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N. T. Nguyen, T. V. Khoa, B. M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzino-tas, and B. Ottersten, "A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing Part I: Fundamentals and Enabling Technologies," *IEEE Access*, vol. 8, pp. pp. 153479-153507, Aug. 2020. https://ieeexplore.ieee.org/document/9172058.
- O-3. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N. T. Nguyen, T. V. Khoa, B. M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzinotas, and B. Ottersten, "A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing - Part II: Emerging Technologies and Open Issues," *IEEE Access*, vol. 8, pp. 154209-154236, Aug. 2020. https: //ieeexplore.ieee.org/document/9172065.
- O-4. C. T. Nguyen, N. V. Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang, D. N. Nguyen, Q. V. Pham, D. Niyato, E. Dutkiewicz, and W. J. Hwang, "Transfer Learning for Future Wireless Networks: A Comprehensive Survey," submitted to *Proceedings of the IEEE*, under review. https://arxiv.org/abs/2102.07572.

List of Figures

1.1	A general architecture of MEC networks	3
2.1	Proposed MEC network architecture with direct horizontal cooperation.	25
2.2	Flowchart of cooperation scheme among MENs for the distributed solution.	40
2.3	An example of caching policies obtained by locally optimal policy, distributed and centralized solutions.	44
2.4	Evaluation of proposed solutions against optimal solution	46
2.5	Average delay vs storage capacity	48
2.6	Average delay vs storage capacity for the MENs and the BS	49
2.7	Average delay vs number of contents	50
2.8	Average delay vs number of MENs	52
2.9	Average cache hit ratio when (a) the storage capacity increases, (b) the number of contents increases, and (c) the number of MENs increases	53
		00
3.1	The considered framework for the EV network	57
3.2	The proposed federated energy learning.	60
3.3	The distribution of CSs in Dundee city, the UK between 2017 and	
	$2018 [96]. \ldots \ldots$	79

3.4	The performance of communication overhead and learning speed for
	various energy learning methods
3.5	The observation of the SGP's IR and IC constraints for the
	proposed economic model
3.6	The relationship between the RMSE and the utility of SGP/CSs $$
	when the SGP has the type 10
3.7	The utility of the SGP for various methods
3.8	The total utility of 58 CSs for various methods
3.9	Social welfare between the SGP and all CSs for various methods 88
3.10	Various utilities of CSs for different methods
3.11	The expected utilities of CSs when the number of SGP's possible
	types increases
3.12	Social welfare of the proposed framework for various number of
	negotiated energy transfer price units
3.13	The total utility of all CSs when the number of negotiated energy
	transfer price units increases
4.1	The proposed dynamic FL-based economic framework for the IoV 97
4.2	The impact of global model accuracy and freshness (represented by
	learning rounds) on the global model economic value and the VSP's
	net profit
4.3	An illustration of significant (red) and insignificant (blue) areas in
	the UK from the dataset in $[109]$
4.4	The validity of IR and IC constraints for i.i.d scenario
4.5	The validity of IR and IC constraints for non-i.i.d scenario 125
4.6	The total profit of learning SVs and social welfare for i.i.d scenario 126

4.7	The total profit of learning SVs and social welfare for non-i.i.d
	scenario
4.8	The performance of proposed FL with SV selection using various
	learning SVs with 1.1.d datasets
4.9	The performance of proposed FL with SV selection using various
	learning SVs with non-i.i.d datasets
4.10	Net profits of the VSP and learning SVs for all learning rounds
	when i.i.d datasets are trained
4.11	Net profits of the VSP and learning SVs for all learning rounds
	when non-i.i.d datasets are trained
4.12	Final social welfare for all learning rounds when i.i.d and non-i.i.d
	datasets are trained

List of Tables

3.1	The testing RMSE for the local learning method of 58 CSs using 0.8	
	training set ratio.	82
3.2	The testing RMSE for centralized and proposed learning methods	83

Abbreviation

$5\mathrm{G}$	The fifth generation technology standard for cellular networks
AADF Average Annual Daily Flow	
AUD	Australian Dollar
BS	Base Station
CLS	Cloud Server
CN	Core Network
CS	Charging Station
CSP	Charging Station Provider
D2D	Device-to-Device
DFEL Decentralized Federated Energy Learning	
DNN	Deep Neural Network
ETSI The European Telecommunications Standards Instit	
\mathbf{EV}	Electric Vehicle
\mathbf{FL}	Federated Learning
FNN	Feedforward Neural Network
FoA	Frequency-of-Access
GAMS	General Algebraic Modeling Language
GB	Giga Bytes
GPS	Global Positioning System
Heterogeneous Networks	
iBBA Improved Branch-and-Bound Algorithm	
IC Incentive Compatibility	
IEEE	Institute of Electrical and Electronics Engineers
i.i.d independent and identically distributed	
IL	Inner Level

IPM	Interior-Point Method
IoT	Internet-of-Things
IoV	Internet-of-Vehicles
IR	Individual Rationality
JOCAD	Joint Cooperative Caching and Delivering
kNN	k-Nearest Neighbor
kWh	kilo Watt hours
MB	Mega Bytes
MEC	Mobile Edge Computing
MEN	Mobile Edge Node
MINLP	Mixed Integer Non Linear Programming
ML	Machine Learning
MPOA	Multi-Principal One-Agent
MSP	MEC Service Provider
MU	Mobile User
MWh	Mega Watt hours
NP	Non-deterministic Polynomial-time
OL	Outer Level
QoI	Quality-of-Information
RAM	Random Access Memory
RMSE	Root Mean Square Error
RP	Root Problem
SGP	Smart Grid Provider
SNN	Shallow Neural Network
SP	Subproblem
\mathbf{SV}	Smart Vehicle
UK	United Kingdom
UPF	User Plane Function
VSP	Vehicle Service Provider
Wi-Fi	Wireless Fidelity