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Abstract
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Centre for Autonomous Systems

Doctor of Philosophy

by Yanhao Zhang

Endovascular intervention plays an important role for treating peripheral arterial diseases.
As a minimal invasive surgery treatment, the endovascular intervention provides an alter-
native to the open surgery with smaller incisions and broadens the options for patients
with multiple comorbidities who have higher risk for an open surgery. The minimal in-
vasive treatments benefit patients with low risk and quick recovery. But they also bring
challenges to the surgeons: the surgical catheters need to be manipulated precisely inside

patient’s artery during the treatment.

Clinical endovascular interventions typically rely on X-ray fluoroscopy to provide a live
2D view for catheter manipulation. However, this 2D view cannot fully reflect the vessel’s
3D shape as the information alone one dimension cannot be visualized. Although a 3D
model reflecting aortic 3D shape can be obtained from the pre-operative CT imaging, it
cannot be used as an intra-operative guidance since the aorta deforms during the operation.

Therefore, an accurate visualization of aortic 3D shape is helpful.

The aim of our research is to study the deformation reconstruction techniques and develop

efficient frameworks to recover aortic 3D shape intra-operatively.

In our first research, an initial aortic 3D deformation reconstruction framework is proposed.
The main idea is to estimate the warp field of aortic deformation based on embedded de-

formation graph. The conventional embedded deformation graph requires 3D observation
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as the control points. In our work, we introduce a 2D-3D non-rigid correspondence process
which passes the observation information to the deformation graph. Having the correspon-
dence, the deformation estimation is formulated as a non-linear optimization problem that
can be solved iteratively using Gauss-Newton method. Our method estimates aortic de-
formation from the X-ray images, which contain many partial occlusions and background
artefacts. This means the intensity from the X-ray image does not always represent cor-
rect information for our problem. Therefore, semantic features are needed. To tackle this
problem, we use the pixels presenting the vessel wall contours as the features. We also
show the influence of the image number to the reconstruction accuracy, and demonstrate
that our framework is able to recover vessel’s 3D shape with high accuracy using only two

images.

In our second research, we improve our initial framework from two aspects. First, the
feature selection process is performed according to a deep learning based image segmen-
tation. This makes our framework fully automatic for aortic intra-operative reconstruc-
tion. Second, a signed distance field based correspondence method is used. This helps
avoid the repeated vertex-feature non-rigid correspondence while the matching accuracy
is maintained. Compared with our first work, the second framework reconstructs aortic

3D deformation automatically and computationally more efficiently.

The accuracy of our framework is further improved in our third research. The main
idea is to combine the aortic centreline reconstruction together with the vessel’s shape
reconstruction. First, the pixels of aortic 2D centreline are extracted from each image
using a deep learning based image segmentation. A distance field is then built using
the 2D centreline. Using the distance field, the 3D deformation of aortic centreline is
reconstructed. After this, using the reconstructed centreline, the vessel’s 3D shape is
initially reconstructed. Finally, the vessel’s 3D shape as well as the 3D centreline is
refined using the similar method as our second framework. Since the initial shape is close
to the final result, the vertex-feature matching is greatly improved, which results in a more

robust reconstruction of aortic 3D deformation.

Detailed real phantom experiments are conducted for all of the proposed frameworks, and

the results demonstrate the reconstruction accuracy. We believe our research has the
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potential to benefit the endovascular interventions.
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