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ABSTRACT

Automatic spine segmentation, based on ultrasound volume
projection imaging (VPI), is of great value in clinical ap-
plications to diagnose scoliosis in teenagers. In this paper,
we propose a novel framework to improve the segmentation
accuracy on spine images via structure-enhanced attentive
learning. Since the spine bones contain strong prior knowl-
edge of their shapes and positions in ultrasound VPI images,
we propose to encode this information into the semantic
representations in an attentive manner. We first revisit the
self-attention mechanism in representation learning, and then
present a strategy to introduce the structural knowledge into
the key representation in self-attention. By this means, the
network explores both the contextual and structural infor-
mation in the learned features, and consequently improves
the segmentation accuracy. We conduct various experiments
to demonstrate that our proposed method achieves promis-
ing performance on spine image segmentation, which shows
great potential in clinical diagnosis.

Index Terms— Spine segmentation, Structure-enhanced
attention, Ultrasound volume projection imaging.

1. INTRODUCTION

Ultrasound volume projection imaging (VPI) [1] is a re-
cently proposed technique, which has shown a significant
perspective in clinical applications for its harmlessness, ef-
ficiency, and flexibility. Automatic spine segmentation from
ultrasound VPI images provides the basis for the intelligent
diagnosis of scoliosis [2], by serving as a pre-analyzing step
for the measurement of spine deformity. Recent studies on
deep neural networks (DNNs) produced appealing results in
computer vision tasks, including classification, detection, and
segmentation. In terms of medical images, great efforts have
been made to investigate effective backbone architectures
[3, 4], learning algorithms [5, 6], and auxiliary supervisions
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[7, 8]. However, only limited exploration has been made
to utilize the structural information of the different bones
to enhance the semantic representations for spine segmenta-
tion. Therefore, in this paper, we propose a novel framework,
based on structure-enhanced attentive learning, in order to
enrich the feature representations with structural knowledge
for more effective spine segmentation.

Numerous strategies have been proposed in the literature
to improve the segmentation accuracy. Wang et al. [9] pre-
sented a knowledge-based method with adaptive thresholds
for rib segmentation. Vania et al. [10] utilized the class
redundancy as a soft penalty to regularize the segmentation
learning from CT images. Quite recently, methods based
on domain adaptation and style transfer have been widely
studied in medical image segmentation. Liu et al. [8] pre-
sented WaveCT to address the appearance-shift problem in
ultrasound image segmentation. Huang et al. [7] proposed an
efficient regularization-based algorithm to tackle occlusion
in VPI images for enhanced spine segmentation. Moreover,
recent studies on the attention mechanism have also shown
great potential in image segmentation. Lei et al. [11] pro-
posed a deep attention fully convolution network to improve
the segmentation on the prostate boundaries. Ding et al.
[12] presented a hierarchical attention network for effective
medical image segmentation. EM-Attention network [13] ag-
gregated the EM algorithm into the attentive learning frame-
work to enhance the semantic representations, which achieves
state-of-the-art performance in natural image segmentation.

However, the aforementioned works take limited consid-
eration of the strong prior knowledge on the structure of the
spine bones when learning the semantic representations. To
address this issue, we propose the structure-enhanced atten-
tion module (SEAM), and embed it into a segmentation net-
work to enrich the learned features. Specifically, we first re-
visit the self-attention (Non-local) mechanism in represen-
tation learning, and then encode the structural information
into the key representation in the self-attention module, which
produces the structure-enhanced contextual representations.
By this means, the resultant model can more effectively lo-



Fig. 1. Overview of the proposed framework with the structure-enhanced attention module for spine segmentation.

calize and recognize the spine bones in ultrasound images.

2. METHODOLOGY

In this section, we introduce the details of the proposed
framework, including the structure-enhanced attention mod-
ule (SEAM) and the learning criteria that we adopt to promote
the learning of the structural knowledge.

2.1. Structure-Enhanced Attentive Learning

Self-attention (Non-local) mechanism has been widely used
in representation learning to investigate the global depen-
dency on feature maps. The non-local module is formulated
as follows:

v̂i =
1

S(vi)

∑
j

f(qi,kj)g(vj), (1)

where v denotes a feature map. S(·) is the normalization fac-
tor. f(·, ·) explores the correlation between the i-th and the
j-th feature vectors in the query q and the key k representa-
tions of the signal respectively, and produces a weight matrix
implying the self correlation of the input signal; g(·) generates
another representation of the input signal v. Eq. (1) indicates
that the self-attention module is a process of re-estimating
the input signal v by a linear combination of all its elements.
From this perspective, g(v) defines the bases of a space, and
f(qi,kj) defines the coefficients for the reconstruction of the
original signal in that space. Based on this observation, EM-
attention [13] employed the expectation-maximization (EM)
algorithm to optimize the bases and the coefficients in an un-
supervised manner. The EM algorithm serves as a clustering
approach, which aims to reconstruct v in a space spanned by
the learned attention maps (bases) with less redundancy.

However, different from natural image segmentation, the
spine bones contain much stronger prior knowledge on the
categories and the structure, because the bone features have
a relatively uniform position and shape in different ultra-
sound images. Therefore, the attention maps in our proposed
structure-enhanced attention module can be learned under the

supervision of the ground-truth segments. Firstly, there are
three different bones in a spine image, i.e. lumbar, thoracic,
and rib. Thus, we only need four attention maps, i.e. three
foreground attention maps and one background attention
map, to re-estimate the input features. Secondly, the attention
maps should contain the structural information, i.e. the shape
and the position, of the different bones to facilitate the re-
construction of the semantic representations. To this end, we
propose the structure-enhanced attention module (SEAM),
which is illustrated in Fig. 1.

Given a feature map v ∈ RC×H×W , we generate the
query and the key representations, i.e. q ∈ RC′×H×W and
k ∈ RN×H×W respectively, as follows:

q = φ(v); k = ϕ(v), (2)

where φ and ϕ represent the convolutional mapping for the
query and key representations respectively; C, H , and W de-
note the channel number, height, and width of v respectively;
C ′ is less than C to reduce the computational complexity; N
denotes the number of categories, which is 4 in our task. In
SEAM, we introduce the structural knowledge into the key
representation k. Thus, we consider the structural penalty on
k (see Sec. 2.2), and produce the structure-enhanced repre-
sentation k′ with the softmax mapping as follows:

k′ = Softmax(k), with k′ ∈ RN×H×W . (3)

Then we compute the correlation between the elements in k′

and q to generate the attentive weight matrix a′ as follows:

a′ = Softmax(q × k′T ), with a′ ∈ RC′×N , (4)

where the softmax layer functions as the normalization in Eq
(1). We reconstruct the signal by a combination of the ele-
ments in k′ with the weight matrix a′, as follows:

z′ = θ(a′ × k′), with z′ ∈ RC×H×W , (5)

where z′ denotes the re-estimated structure-enhanced fea-
tures, and θ refers to a convolutional mapping. By this means,
the structural knowledge of the different spine bones is fully



Fig. 2. Illustration of the structure supervision in the represen-
tation learning. The center regression task forces the learning
of both the shape and the location of the segmentation mask.

explored in the re-estimated features, because the features are
directly synthesized with the structure-regularized represen-
tations k′. With the supervision on the key representation,
the proposed SEAM can be regarded as an extension of the
Synthesizer [14] in a structure-based manner.

To stabilize the learning process, we establish the residual
connection as z = ρ([z′,v]), where z ∈ RC×H×W denotes
the output representation; ρ refers to a convolutional map-
ping; [·] represents channel concatenation for feature fusion.

2.2. Learning Criteria

To effectively encode the structural knowledge in SEAM, we
employ the similar penalty in SA-SSD [15] for center regres-
sion. Given a training pair {x,y}, where x and y are the
input observation and its ground-truth segments respectively,
the network outputs both the key representation k in SEAM
and the predicted segment mask ŷ. To achieve the structure-
enhanced attentive learning, we first utilize the category in-
formation to penalize k as follows:

Lk
cls =

1

M

M∑
i=1

CE(ki,yi), (6)

where CE refers to the standard Cross Entropy loss, and M
denotes the number of elements in k. By this means, each
channel in the key representation can describe the features of
one foreground segment or the background. Then, the three
foreground attention channels are selected to perform pixel-
wise center regression as follows:

Lk
reg =

1

Mfg

M∑
i=1

Smooth-`1(∆ĉ−∆c) · 1[ki 6= 0],

with ∆ĉ = p(ki)− p(ĉ); ∆c = p(ki)− p(c),

(7)

where ∆ĉ and ∆c are the offsets between the pixel and the
center of its corresponding estimated ĉ and ground-truth c
segment respectively; p(·) is the position function to obtain

the normalized vertical and horizontal coordinates of the
point; Mfg refers to the number of pixels belonging to the
foreground segments; 1[condition] is a conditional function,
which is equal to 1 if the condition that the feature point
ki describes a foreground segment is satisfied, or otherwise
0. This center regression regularization not only forces the
network to learn the shape of each segment, but also indicates
the mask shift when localizing the foreground objects, as
illustrated in Fig. 2. Finally, we consider the segmentation
loss on the predicted pixel-wise label ŷ as follows:

Lseg = − 1

M

M∑
i=1

∑
#cls

yilog(ŷi), (8)

where #cls refers to the number of classes. The overall ob-
jective function is formulated as:

L = Lseg + λ(Lk
cls + βLk

reg), (9)

where λ and β are the hyperparameters controlling the trade-
off between the loss terms.

3. EXPERIMENT

3.1. Dataset

We collected 109 ultrasound VPI images from 109 subjects
with different degrees of spine deformity. Each VPI image
is generated by projecting a whole spine 3D ultrasound se-
quence into a 2D coronal plane. The ground-truth segments
were manually annotated by ultrasound experts. We randomly
split the dataset into a training branch and a testing branch of
80 and 29 samples, respectively. All images were rescaled
to 1024 × 256. In the training phase, patches of size 512 ×
256 were densely extracted from the resized training samples.
Random flip and rotation were employed for data augmenta-
tion. In the testing phase, each query sample was first rescaled
to 1024×256, and then fed to the segmentation model to pro-
duce the segmentation mask, which was then resized to the
original resolution for assessment.

3.2. Implementation details

We establish the proposed framework with PyTorch [16] and
MMSegmentation [17]. The backbone is built with the fea-
ture pyramid network (FPN) based on the same settings in
[18]. We adopt FPN because it can fuse the multi-scale infor-
mation of the image to promote segmentation. The segmen-
tation head refers to the last convolutional layer to produce a
four-channel tensor, indicating the segmentation predictions.
In SEAM, all the convolutional kernels are of size 1× 1 with
padding 0, except for the last residual mapping ρ, where 3×3
filters with padding 1 are used. During training, we build a
mini-batch with 12 training samples. The learning rate is ini-
tialized to 10−4 and gradually decreased to 5 × 10−6 with
the cosine annealing strategy [19]. We adopt Adam [20] to



Fig. 3. Visualization of the predicted segments based on the different attention-based segmentation methods.

Table 1. Quantitative segmentation results, where D: Dice
score (%), J: Jaccard index (%), and R: Runtime (s).

Methods Lumbar Thoracic Rib Ave. RD J D J D J D J
Vanilla [18] 85.69 75.29 76.42 62.12 78.02 64.24 80.04 67.21 0.32

UNet [3] 82.21 70.26 74.70 59.94 77.37 63.46 78.09 64.56 0.25
PPMU [4] 84.58 73.68 76.55 62.22 78.21 64.48 79.78 66.79 0.61
RSNU [7] 85.85 75.52 77.45 63.39 79.26 65.92 80.86 68.28 0.32

WaveCT [8] 86.59 76.58 75.91 61.36 78.49 64.82 80.33 67.58 0.67
DANet [21] 83.75 72.60 75.93 61.47 77.48 63.53 79.05 65.86 0.32

EMANet [13] 84.73 73.82 77.68 63.64 79.02 65.54 80.48 67.66 0.46
NonLocal [22] 85.22 74.63 76.81 62.61 78.72 65.19 80.02 67.47 0.63
∼ w/o AL 85.68 75.24 77.94 64.02 79.79 66.61 81.14 68.62 0.32
∼ w/o SS 86.54 76.52 78.10 64.24 79.22 65.83 81.29 68.87 0.37

Ours 87.09 77.45 78.32 64.58 80.16 67.02 81.85 69.68 0.37

optimize the objective function defined in Eq. (9) with the
hyperparameters, λ and β, empirically set to 0.4 and 0.5 re-
spectively. We train the network on a Nvidia GTX 2080 Ti
GPU, and it takes about 7 hours to train up the model.

3.3. Results

Quantitative segmentation results: To validate the pro-
posed framework for spine segmentation, we compare our
method with other state-of-the-art segmentation algorithms
on ultrasound images. The results are tabulated in Table 1.
Specifically, we consider the benchmark methods for medical
image segmentation, i.e. the vanilla FPN model [18], UNet
[3], and PPMU [4]; the recently proposed methods for ultra-
sound image segmentation, i.e. RSNU [7] and WaveCT [11];
and the state-of-the-art attention-based methods, i.e. DANet
[21], EMANet [13], and NonLocal [22]. All methods are
established based on the same settings as in Sec. 3.2, and we
also build their models with the capacity equal to, or larger
than, the proposed method. It can be seen that our proposed
method outperforms all the benchmark methods [18, 3, 4]
by a large margin. Compared to the methods designed for
ultrasound images [7, 11], we can observe a significant im-
provement of over 1% in terms of both the Dice score and
Jaccard index. More importantly, our proposed method also
surpasses EMANet [13] by about 1.5% and 2% on Dice score
and Jaccard index respectively, which demonstrates the ben-

efit of introducing the structure supervision in an attentive
manner for spine segmentation. We further visualize two
segmentation results in Fig. 3, and compare them with the
other attention-based algorithms. It can be seen that the struc-
tural knowledge from SEAM facilitates the segmentation by
accurately locating the lumbars and preserving the shape of
the each spine bone.
Ablation study: To perform a comprehensive study on
the proposed method, we investigate different designs in
our framework. Specifically, we explore the effect from the
attentive learning (AL) and the structure supervision (SS).
The model, without attentive learning, directly introduces the
structure supervision to the features extracted from the FPN
backbone, and the model, without structure supervision, is
trained with β = 0. We can observe from Table 1 that the
attention mechanism contributes greatly to the segmentation
results. It enhances the contextual information between dif-
ferent segments, which leads to an improvement of about
0.7%. The structure supervision also promotes the segmenta-
tion by learning the shape and the position knowledge, which
gains a Dice improvement of about 0.55%.

4. CONCLUSION

In this paper, we have proposed a novel framework to intro-
duce the structural knowledge into the semantic representa-
tions for more effective spine segmentation from ultrasound
volume projection images. To efficiently encode both the
contextual and structural information into the learned seman-
tic representations, we present a structure-enhanced attention
module, and integrate it with a segmentation network. Ex-
tensive experimental results show that the proposed method
outperforms other state-of-the-art segmentation algorithms,
making it a potential solution to clinical scoliosis diagnosis.
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