
Text-line-up: Don’t Worry about the Caret

Chandranath Adak1,2, Bidyut B. Chaudhuri3,4, Chin-Teng Lin2, and
Michael Blumenstein2

1 JIS Institute of Advanced Studies & Research, JIS University, India-700091
2 Australian AI Institute, University of Technology Sydney, Australia-2007

3 Techno India University, India-700091
4 CVPR Unit, Indian Statistical Institute, India-700108

chandra@jisiasr.org

Abstract. In a freestyle handwritten text-line, sometimes words are in-
serted using a caret symbol (∧) for corrections/annotations. Such inser-
tions create fluctuations in the reading sequence of words. In this paper,
we aim to line-up the words of a text-line, so that it can assist the OCR
engine. Previous text-line segmentation techniques in the literature have
scarcely addressed this issue. Here, the task undertaken is formulated as
a path planning problem, and a novel multi-agent hierarchical reinforce-
ment learning-based architecture solution is proposed. As a matter of
fact, no linguistic knowledge is used here. Experimentation of the pro-
posed solution architecture has been conducted on English and Bengali
offline handwriting, which yielded some interesting results.

Keywords: Handwriting · Hierarchical reinforcement learning · Multi-
agent reinforcement learning · Proof-reading.

1 Introduction

Extracting the text-line information from a handwritten page image is a classical
problem of document image analysis [1–4], and it is still prominent in this deep
learning era [1]. Most of the past works in this direction have focused on text-line
segmentation [2], where primarily the text-lines are either separated through a
continuous fictitious line [3], or labeled by clusters [4], or marked by baselines [1].
A text-line may contain some words that are written later using the caret symbol
(∧) for correcting/annotating the manuscript. Here, a text-line segmentation
approach may not work well to ascertain whether the inserted words belong
to a certain text-line (refer to Fig. 1). As a consequence, it may impede the
understanding of the reading sequence of words of a text-line while OCRing.

In this paper, we undertake the task to comprehend the sequence of words
of a text-line, so that an OCR engine/automated manuscript-transcriptor can
have some prior knowledge of the reading sequence of words. To handle this task,
some character recognition followed by natural language processing (NLP) can be
performed, but that would be a costly procedure. Therefore, we neither use here
character recognition nor linguistic knowledge. Another way involves detecting

2 C. Adak et al.

(a) (b)

(c) (d)

Fig. 1: Text-line representation: (a) separated by a fictitious line [3], (b) clusters [4],
(c) marked by a baseline [1], (d) location coordinates and detected path (arrowed-line)
of the reading sequence [ours].

the caret symbols and then attempting to analyze the surrounding areas, but
this approach is not fruitful due to false-negative and false-positive cases, e.g.,
small-sized carets close/overlapping with texts, tiny character graphemes-like
carets, word inserted without using a caret, no word insertion after scribbling a
caret, etc.

We formulate the above task as a path planning problem, where the system
agent attempts to visit every word component exactly once to detect the reading
sequence of a text-line. Here, we propose a multi-agent hierarchical reinforcement
learning model [5] to impart the machine with a human-like perception of reading
a text-line that may be obstructed due to some inserted texts. The motivation
to tackle this problem using reinforcement learning is its working strategy of
exploring the unknown terrain while exploiting the current knowledge [6]. From
the application point of view, this work is significant for analyzing the reading-
word sequence of a text-line, especially for freehand writing, where the past
methods did not perform well. To the best of our knowledge, our work is the
earliest attempt of its kind. From the theoretical perspective, we propose a novel
multi-agent hierarchical reinforcement learning architecture, where we define the
relationship among agents, their interactions with the environment, and shape
the global and internal reward.

We performed the experiments on English and Bengali offline handwriting,
which are left-to-right writing systems. The challenges of our employed datasets
concerning the undertaken task are discussed in Section 2. In Section 3, we
formulate the problem and propose a solution architecture. Section 4 presents
and analyzes the experimental results. Finally, Section 5 concludes this paper.

2 Challenges and Dataset Details

In this section, we discuss the offline handwriting dataset employed for our re-
search and the challenges related to the data. The primary aim of this research
is to analyze the reading sequence of words from a handwritten text-line without
any assistance from OCR and NLP engines.

Text-line-up: Don’t Worry about the Caret 3

The freestyle handwritten text-lines are mostly curvilinear rather than lin-
ear [4] and pose several challenges for our research. The classical challenges
include text-line fluctuation and orientation, e.g., skewness, waviness, curviness.
The variation in the inter text-line gap draws significant attention, where the
neighboring text-lines may be close, or touching, even overlapping [2]. Simi-
lar kinds of issues can be found for the intra text-line gap, i.e., gap between
words/inter-word gap.

In daily handwriting and manuscript drafting/corrections, several forms of
annotations can be found; therefore, detection of the word-reading sequence is
not a straight-forward problem. A common form is inserting a word between two
successive words by using a caret symbol (∧), and writing the word in the inter
text-line gap between the current and the previous text-line. Here, the insertion
of multiple words can also be noted. The habitual absence of caret symbols is
also possible, which leads to more challenging scenarios. The writer often strikes-
through formerly written word(s) and inserts some substituting word(s). Such
insertions (with/without a caret), deletion (strike-through), update (deletion +
insertion) are noted frequently in real-time writing (refer to Fig. 1). The font-
size of the inserted word(s) may be smaller to fit into the inter-text-line gap.
If this gap is not sufficient to insert the word(s), then the writer may write it
in the available marginal-space of the page. Such word insertions depend on
the writing space availability. Sometimes, the forceful insertion of words almost
removes the usual inter-word and inter-line gaps, which makes it harder to read.
False-positive cases may also arise, where some words may be incorrectly thought
of as inserted ones, due to the absence of the caret, lower inter text-line gaps,
artistic/poetic writing structure, superscript-text, etc. Moreover, the presence
of some unconventional annotations performed by the human-writer is quite
natural, due to handwriting variations, improper/no formal training of text-
annotation, idiosyncratic writing styles, etc.

For our research, we require a database, which contains some handwritten
pages having multiple words inserted during text-annotation; so that we can
perform our experiments on detecting the reading sequence of words. The hand-
written pages of publicly available databases hardly contain text-annotations
as per our requirement. Therefore, we manually annotated some handwritten
page images of publicly available databases using the GIMP image editor [7].
On a page image, we carefully inserted some words after extracting/cropping
those words from the same page. Here, we used 100 English pages from the IAM
database [8] and 100 Bengali pages from the PBOK database [9], and called these
as DBIAM and DBPBOK, respectively. Here, 50% of the pages of both DBIAM
and DBPBOK were annotated/inserted by linguistically meaningful words using
carets. For the remaining 50% of pages, we inserted linguistically non-meaningful
words with/without a caret, which did not impede our objective to learn the
structural pattern and position of inserted handwritten word(s). Moreover, to
address the natural flow of annotations during the free-style writing, i.e., inser-
tion of the word(s) by the same writer, we procured 50 pages of English (say,
DBE) and 50 pages of Bengali (say, DBB) offline handwriting by an in-house

4 C. Adak et al.

Table 1: Employed dataset details
Dataset Script # page rOTL (avg ± sd)
DBIAM English 100 0.5203 ± 0.1841
DBPBOK Bengali 100 0.4764 ± 0.1160
DBE English 50 0.3725 ± 0.2748
DBB Bengali 50 0.3551 ± 0.2377

setup. In this paper, we consider English and Bengali scripts, which are usually
written horizontally from left-to-right. In Table 1, we summarize some aspects
of our employed datasets. Inserting some word(s) to a text-line obstructs the
straight-forward reading path/sequence. On a page, we count such obstructed
text-lines (nOTL) and divide it with the total number of text-lines (nTL) of that
page, to get a ratio, say, rOTL = nOTL/nTL. The average ± standard deviation
(avg ± sd) of rOTL over a dataset is mentioned in Table 1. For the available
datasets in the literature, rOTL (avg) ≈ 0, due to their different objectives from
ours.

In this paper, we attempt to imitate the human perception of detecting the
word sequence while reading a text-line. Therefore, to prepare the ground-truth,
we engaged human volunteers having at least professional working proficiency in
the English/Bengali language. A volunteer was requested to perform computer-
mouse clicks on the words in the same sequence of his/her reading from the
digital image of a handwritten page projected on a computer screen, so that we
can record the (xi, yi) coordinates of the word sequence through mouse-clicks. A
very few noisy mouse clicks were manually discarded with opinions from some
linguistic experts. We also extracted the CG (xc, yc) of a word component semi-
automatically. We did not fully rely on the CG due to our objective of mimicking
the eye movement during human gazing/reading. At least nr (> 1) number
of readers were engaged for a page. Subsequently, the corresponding ground-
truth coordinate (xGT , yGT) of a word is computed as follows. (xGT , yGT) =
(αrnr

∑nr
i=1 xi+αcxc,

αr
nr

∑nr
i=1 yi+αcyc); where, αr+αc = 1. For our experimental

dataset generation, we chose nr = 10, αr = 0.5, and αc = 0.5. In our dataset, for
a handwritten page, the word ground-truth coordinates are provided sequentially
with the demarcation of text-lines.

3 Proposed Method

In this section, we first formulate the undertaken problem, then propose our
solution architecture.

3.1 Problem Formulation

In this research work, we are given an image (I) obtained by scanning a hand-
written page, which is fed to our system as an input. Our task is to detect the

Text-line-up: Don’t Worry about the Caret 5

reading-sequence of words in a text-line only by the structural pattern of hand-
writing. No linguistic knowledge has been used here. As we mentioned earlier,
the sequence of words in a text-line does not always follow a straight path due to
the insertion of some words during proof-reading/corrections. The task is formu-
lated here as a path planning problem, where the system-agent visits every word
component exactly once. The source, target, and in-between hopping locations
of the path are obtained by the agent itself through an exploration-exploitation
strategy. The system outputs the sequence of these location coordinates over I,
which eventually infers the path.

3.2 Solution Architecture

As we stated previously, we refrain from obtaining assistance from any OCR
engine followed by an NLP architecture to comprehend the reading sequence of
words in the text-line due to the high cost. Instead, we think of composing our
problem as a decision-making task, where an agent interacts with the handwrit-
ing image (environment) to find the sequence of word-locations. For such cases,
a reinforcement learning (RL)-based agent is a good option, since it learns a
policy for maximizing the reward by taking action on the environment [6]. How-
ever, a full handwritten page image is a challenging environment for an agent
to interact, owing to various complex writing patterns. To alleviate the learning
complexity, here, a hierarchical reinforcement learning (HRL)-based architecture
can be proposed, which breaks down the task into sub-tasks hierarchically [5,10].
Moreover, at a certain level of the hierarchy, multiple agents can work together
for better learning and communication among themselves [5]. Altogether, in this
paper, we propose a multi-agent hierarchical reinforcement learning (MAHRL)
model to achieve our goal.

Architecture Overview. For the undertaken task, our model contains two
levels of hierarchy. In the higher level, one RL agent (manager) is present, while
the lower level includes nw number of RL agents (worker-1, worker-2, . . . , worker-
nw) that depends on the count of text-lines on a page. In Fig. 2, we represent
our MAHRL model diagrammatically. Formally, the RL problem can be built as
an MDP (Markov Decision Process), which consists of a set of agent states of
the environment (s), a set of actions (a) to attain the goal, and a reward func-
tion (r) to optimize the decision strategy [6]. The manager observes the entire
environment (E)/handwritten page to encode its state space (sm); manager’s
action (am) refers to assigning a sub-task to a worker. The manager receives a
global reward (rm) from the environment after completion of the entire work.
For the worker RL agent, we formulate a partially observable MDP [11], where
the agent stochastically makes a decision in discrete-time without observing the
entire environment [6]. The worker-i (∀ i = 1, 2, . . . , nw) observes the partial en-
vironment Ewi from a handwritten page to embed its state (swi) and acts (awi)
to find the sequence of word-locations from a text-line. The worker-i receives
an internal reward (rwi) from the manager. The workers share weights among
themselves.

6 C. Adak et al.

Fig. 2: Proposed multi-agent hierarchical reinforcement learning (MAHRL) model.

Manager. The state of manager involves the raw pixel values of the hand-
written page image. The input image I is resized into size nz×nz by keeping the
trace of the aspect ratio and produces the resized image Iz. To maintain the as-
pect ratio, some columns or rows are filled with zeros. For our task, empirically,
we choose nz = 1024. The handwritten page images of our dataset are signifi-
cantly large in size and are in grayscale. Such resizing assists in reducing the state
space, but does not impede our objective. Moreover, the manager should have
some perception about the text-line zones, since we aim to inspect the reading
sequence at a text-line level. For text-line segmentation, we use an off-the-shelf
semantic segmentation network [12], which is basically an encoder-decoder archi-
tecture, followed by a softmax layer to capture the pixel-level classification [13].
This network is pre-trained on small handwritten character graphemes to classify
into ink-stroke region and background in order to fulfill the objective of text-line
segmentation. Actually, the segmented mask (Is) is of size 1024× 1024. At time
step t, the manager also observes the workers’ location coordinates on image Iz.
The workers’ location matrix (Il) is also of size 1024×1024. Now, Iz, Is, and Il
are composed as a single image (Izsl) comprising three channels, which is of size
1024× 1024@3. This Izsl is fed to a convolutional neural network (CNN) fm to
summarize the manager’s state-space sm. We obtain a feature vector vm with
dimension 256 from fm. The fm contains some sequentially added convolutional
and pooling layers, as follows.
Izsl (1024×1024@3) Z⇒ C1 (512×512@16) Z⇒ C2 (256×256@32) Z⇒ MP (128
×128@32) Z⇒ C3 (64×64@64) Z⇒ C4 (32×32@128) Z⇒ MP (16×16@128) Z⇒
C5 (8× 8@256) Z⇒ GAP (1× 1@256) Z⇒ vm;
where, “Ci” (∀i = 1, 2, . . . , 5) denotes the ith convolutional layer, “MP ” and
“GAP ” represent max-pooling and global average pooling layers, respectively
[13]. The numeric values in the format of (nm × nm@nc) symbolize the feature
map size nm×nm and the number of channels nc for a layer. For C1 and C2, we
use 5× 5 sized kernels, while for the rest of convolutions, 3× 3 sized kernels are
engaged. For all the convolutional layers, the stride size is 2. For max-pooling
and global average pooling, the kernel sizes are 2 × 2 and 8 × 8, respectively.
Here, each convolution is followed by a batch normalization [14] and a Mish [15]

Text-line-up: Don’t Worry about the Caret 7

activation function. The batch normalization is used to avoid overfitting. Mish
has worked better than major state-of-the-art activation functions, e.g., ReLU,
leaky ReLU, GELU, Swish [15], and it has also performed well for our task.

The manager decides which worker when to “move” or “stop”, and commands
the workers accordingly. Therefore, the action space (am) of the manager is
discrete containing two actions (move and stop) per worker, i.e., a total 2nw
number of actions.

The manager focuses on the higher-level goal, and receives a reward rm = 1−
rLD, when a worker reaches at the end of a text-line; otherwise gets zero reward.
Here, rLD = LD(l̂s, ls)/max(|l̂s|, |ls|) is a penalty term within the interval [0, 1].
LD(., .) is Levenshtein distance [16] that measures the distance between actual
(l̂s) and predicted (ls) word sequences.

At time step t, the manager observes the state smt , and selects an action
amt ∈ A m = {1, 2, . . . , |A m| = 2nw} to get a reward rmt . The fundamen-
tals of reinforcement learning (RL) can be found in [6]. The manager learns
a policy πm to maximize the expected discounted return, which can be defined
as the cumulative discounted reward, i.e.,

∑
t>0 γ

t
mr

m
t . Here, γm is a discount

factor. To know how good the manager is learning over the policy πm, values
of the state (sm) and the state-action pair (sm, am) can be defined, which are
called the value function (V πm) and the Q-value function (Qπm), respectively [6].
V πm(smt) = E[

∑
t>0 γ

t
mr

m
t |smt , πm] ; Qπm(smt , a

m
t) = E[

∑
t>0 γ

t
mr

m
t |smt , amt , πm].

The optimal Q-value function (Q∗m) can be iteratively learned via deep Q-
learning [5, 17], and the optimal action (a∗m) is computed as follows. a∗m =
arg max
a′m∈Am

Q∗m(sm, a′
m). Here, Q∗m(sm, am) = max

π
Qπm(sm, am). A deep Q-

network Qm(sm, am; θm) with parameters θm can be employed to approximate
the value functions [17]. In this paper, the manager adopts the concept of du-
eling deep Q-network due to its better performance than experience replay and
prioritized replay-based architectures [18]. Here, a notion of advantage function
(Aπm) exists, which signifies how much an action is better than the expected.
Aπm(sm, am) = Qπm(sm, am)− V πm(sm).

The dueling deepQ-network architecture contains two parallel streams (value:
fmv and advantage: fma) of fully connected layers. The 256-dimensional feature
vector vm obtained from fm is now fed to fmv and fma streams in parallel
to produce the separate estimates of the value (V πm) and advantage (Aπm)
functions. The fmv comprises a fully connected layer with 128 nodes followed
by ReLU activation, and a sequentially added fully connected single node to
produce the output from the value stream. Similarly, fma contains a fully con-
nected layer with 128 nodes trailed by ReLU activation, and another successive
fully connected layer with |A m| nodes to obtain the output from the advan-
tage stream. Finally, two streams are combined to produce the Q-value func-
tion, i.e., Qπm(sm, am; θm, θA, θV) = V πm(sm; θm, θV) + Aπm(sm, am; θm, θA);
where, θA, θV are the parameters of two sequences fmv and fma, respectively. To
tackle the identifiability issue [18] and to increase the optimization stability, this
equation is modified as follows. Qπm(sm, am; θm, θA, θV) = V πm(sm; θm, θV) +

8 C. Adak et al.

(Aπm(sm, am; θm, θA)− 1
|Am|

∑
a′m

Aπm(sm, a′
m; θm, θA)). The parameters {θm,

θA, θV } are learned by standard policy-based RL strategy [19].
Worker. As mentioned before, while the manager focuses on the higher-

level goal, the workers emphasize lower-level fine control to achieve sub-goals.
A worker (worker-i) can observe the environment/handwritten page partially
(Ewi), which formulates its state space (swi). To express this partial observation,
we perform a foveal transformation, as follows.

Foveal transformation (ϑ). A worker agent partially concentrates on Iz
and extracts fragmental information around a location l. We here utilize the idea
of foveated imaging [20,21], where the agent focuses at l with foveal vision, cor-
responding to the highest resolution; and with peripheral vision, as it gradually
moves away from l by a lower resolution.

To encode the fragment region, we execute a foveal transformation ϑ(Iz, l),
which extracts the k (> 1) number of neighboring patches of different resolutions
around location l. The foveal transformation is presented in Fig. 3(a). The 1st
patch is of size wp×wp, 2nd patch is of size (wp+dw)×(wp+dw), and so on, the
kth patch is of size (wp+(k−1).dw)×(wp+(k−1).dw), where dw is the additional
width of the successive patches. All the k patches are resized to wp×wp, and thus
produce k channels each having wp×wp sized patch-image. As a matter of fact,
if l is near the boundary of Iz, then peripheral patches are duly filled with zeros.
Resizing a larger size patch to a smaller one lowers the resolution. In our task,
empirically, we fix k = 6, wp = 64, dw = 32. Therefore, at time step t, by gazing
at location lt−1 of image Iz and performing a foveal transformation ϑ(Iz, lt−1),
the agent produces a 64 × 64 × 6 sized fragment pt. The location l is encoded
with a real-valued coordinate (x, y), where 0 ≤ x, y ≤ 1. Here, the top-left and
bottom-right coordinates of Iz are (0, 0) and (1, 1), respectively. In our task, the
manager initializes the location l of a worker agent on the leftmost ink-stroke
pixel of a text-line mask (with prior knowledge from Is) corresponding to the
page image Iz. A worker comprises fragment network (fg), core network (fh),
and location network (fl). The inside view of a worker is shown in Fig. 3(b), and
its workflow is discussed as follows.

Fragment network (fg). At time step t, a 64 × 64 × 6 sized fragment
pt is inputted to a deep neural architecture fg to extract features gt. Our fg
architecture adopts ResNet-34 [22] with some minor amendments. The details
of fg are shown in Table 2, where the building residual blocks [22] are shown
in brackets with the number of stacked blocks. For example, in conv1 (first
convolutional layer), the input pt of size 64×64@6 is convoluted with 32 filters of
size 3× 3@6 to produce a 64× 64@32 sized feature map. Here, “@nc” represents
nc number of channels. We use stride = 1 in conv1, whereas stride = 2 in
conv2_x, conv3_x, conv4_x, conv5_x to perform down-sampling. Here also,
each convolution is trailed by batch normalization [14] and a Mish [15] activation
function. Intending to use fg as a feature extractor, we discard the last fully
connected layer of ResNet-34, which turns fg into a 33-layered architecture. From
the avg_pool (global average pooling) layer of fg, we obtain a 512-dimensional
feature vector gt by flattening, at time step t.

Text-line-up: Don’t Worry about the Caret 9

Table 2: Architecture of fg
Layer name Output size 33-layer
input 64× 64@6

conv1 64× 64@32 3× 3, 32

conv2_x 32× 32@64

[
3× 3, 64
3× 3, 64

]
× 3

conv3_x 16× 16@128

[
3× 3, 128
3× 3, 128

]
× 4

conv4_x 8× 8@256

[
3× 3, 256
3× 3, 256

]
× 6

conv5_x 4× 4@512

[
3× 3, 512
3× 3, 512

]
× 3

avg_pool 1× 1@512

Core network (fh). At this point, gt is fed to the core network fh. The
worker agent needs to memorize the past explored fragment information, there-
fore, a recurrent neural network (RNN) is employed as fh. The GRU (Gated
Recurrent Unit) [23] is used here as an RNN unit, due to its similar perfor-
mance compared to LSTM (Long Short-Term Memory) for our task, while hav-
ing fewer learning parameters [24]. The fh contains 256 GRU units. Here, the
agent maintains an internal state to encode information about where it gazed
as well as what was observed. This information is crucial in deciding the action
and finding the next location. The internal state ht at time step t is updated
over time by fh. The present internal state ht is a function of the previous state
ht−1 and the external input gt, which is formulated by GRU gates, as follows.
ht = fh(ht−1, gt) = Γu∗h̃t+(1−Γu)∗ht−1; where, Γu = σ(`inear(ht−1, gt)), h̃t =

(a) (b)

Fig. 3: (a) Foveal transformation ϑ(Iz, l), (b) Internal workflow of a worker.

10 C. Adak et al.

tanh(`inear(Γr ∗ ht−1, gt)), Γr = σ(`inear(ht−1, gt)). Γu and Γr denote update
and relevant gates of the GRU, respectively [23]. Sigmoid (σ) and tanh non-
linear activation functions are used here [13]. `inear(ν̄) represents the linear
transformation of a vector ν̄.

Location network (fl). The ht is embedded into fl to find the next location
lt. The location policy is defined by a 2-component Gaussian with a fixed variance
[25]. At time step t, we obtain the mean of the location policy from fl, which
is defined as fl(ht) = `inear(ht). Here, the fully connected layer is trailed by a
sigmoid (σ) activation to clamp the location coordinates in 0 ≤ x, y ≤ 1. The fl
is trained using RL [6] to find lt for emphasizing to the next fragment pt+1.

In RL, the worker agent interacts with the state sw of the environment and
takes action aw to get the reward rw. At time step t, the state swt engages pt
around lt−1 and summarized into ht. The action awt at t is actually the location-
action lt chosen stochastically from a distribution θl-parameterized by fl(ht).
We shape the reward rwt at t internally, as follows.

rwt =

{
1− αdD2(lt, l̂t)− αy(yt − yt−td) ; if t > td

1− αdD2(lt, l̂t) ; otherwise
(1)

where, D(., .) is the Euclidean distance. The term αdD
2(lt, l̂t) signifies the loss

due to the difference between actual (l̂t := (x̂t, ŷt)) and predicted (lt := (xt, yt))
locations. The ground-truth was required here for the reward calculation. If the
worker strays away from the designated horizontal text-line, then the manager
penalizes the worker slightly with an amount of αy(yt− yt−td). Here, the hyper-
parameters, i.e., αd = 0.5, αy = 0.2, and td = 2, are set empirically.

The RL-based agent learns a stochastic policy πθ(lt|sw1:t) at every t, which
maps the past trajectory of the environmental interactions sw1:t to the location-
action distribution lt. For our task, the policy πθ is defined by early mentioned
RNN, and swt is summarized into ht. The parameter θ = {θg, θh} is acquired
from the parameters θg and θh of fg and fh, respectively. The agent learns θ to
find an optimal policy π∗ that maximizes the expected sum of discounted re-
wards. The cost function Jl is defined as follows. Jl(θ) = Eρ(sw1:T ;θ)[

∑T
t=1 γ

trwt] =
Eρ(sw1:T ;θ)[R]; where, ρ is the transition probability from one state to another,
which depends on πθ [6]. T is the episodic time step and γ is a discount factor.

The optimal parameter is decided by θ∗ = arg max
θ

Jl(θ), where we employ

gradient ascent using the tactics from RL literature [19], as follows. ∇θJl(θ) =∑T
t=1 Eρ(sw1:T ; θ)[R ∇θ log πθ(lt|swt)] ≈ 1

N

∑N
n=1

∑T
t=1R

(n)∇θ log πθ(l(n)t |sw
(n)

t); where,
trajectories sw

(n)

’s are generated by executing the agent on policy πθ for n =
1, 2, . . . , N episodes. The ∇θlogπθ(lt|swt) portion is calculated from the gradient
of RNN with standard backpropagation [11].

To avoid the high variance problem of the gradient estimator, variance re-
duction is performed here [26]. We employ variance reduction with the baseline
(B) that comprehends whether a reward is better than the expected one, as
follows. ∇θJl(θ) ≈ 1

N

∑N
n=1

∑T
t=1(R

(n)
t − Bt)∇θ log πθ(l

(n)
t |sw

(n)

t); where, Rt =

Text-line-up: Don’t Worry about the Caret 11

Qπθ (swt , lt) = E[
∑
t≥1 γ

trwt |swt , lt, πθ] is Q-value function and Bt = V πθ (swt) =

E[
∑
t≥1 γ

trwt |swt , πθ] is value function [6,26]. The learning of the baseline is per-
formed by reducing the squared error between Qπθ and V πθ .

Finally, the detected series of the location (ls) signifying the reading-sequence
of words in a text-line, is reverted to the original input handwritten page image
I by obtaining assistance from the previously-traced aspect ratio.

4 Experiments and Discussion

In this section, we present the dataset employed, followed by experimental results
with discussions.

4.1 Database Employed

As we discussed earlier in Section 2, for the experimental analysis, we have
procured 300 handwritten pages with the ground-truth information of the read-
ing sequence of text-lines. Our database comprises 4 sets of data, i.e., DBIAM,
DBPBOK, DBE, DBB containing 100 English, 100 Bengali, 50 English, and 50
Bengali pages, respectively.

Each dataset DBi (for i ∈ {IAM, PBOK, E, B}) is split into a training (DBtr
i),

validation (DBv
i) and testing (DBt

i) set with a ratio of 5:2:3. To reduce overfitting
during training, we augment our training data DBtr

i . For data augmentation, we
randomly drop some word components from a handwritten page to dilute [27]
the reading sequences. From a page, we generated 10 augmented pages.

4.2 Results and Evaluation

In this subsection, we present the experimental results to analyze our model
performance. All results presented here were executed on the testing set DBt

i
(for i ∈ {IAM, PBOK, E, B}). The hyperparameters of our model were tuned
and fixed during system training based on the validation/development set DBv

i .
Empirically, we set initial_learning_rate = 10−3, discount_factor = 0.95, mini-
batch_size = 32, episodic_time_step = 64, and episode = 512. We analyzed
our model performance based on finding the location coordinates and subsequent
detection of the reading sequence.

Location finding. The effectiveness of our model depends on finding the
precise location to gaze at while reading. Here, we used the RMSE (Root Mean
Squared Error) [28] as a performance measure due to its efficacy in addressing
the deviation of location-coordinate from the ground-truth (xGT , yGT). On a
page, we computed the RMSE over all the location coordinates. In Table 3,
we present our model performance on location finding over DBt

i (for i ∈ IAM,
PBOK, E, B) in terms of RMSE (avg ± sd).

From Table 3, we can observe that the overall performance of location finding
was the best for DBB and the worst for DBIAM. It is evident from this table that

12 C. Adak et al.

Table 3: Performance on location finding
RMSE (avg ± sd)

Dataset DBIAM DBPBOK DBE DBB

OTL 0.02359±0.00347 0.01832±0.00127 0.01813±0.00753 0.01621±0.00283
non-OTL 0.01956±0.00147 0.01682±0.00358 0.01470±0.00098 0.01262±0.00489
Overall 0.02162±0.00433 0.01741±0.00445 0.01684±0.00564 0.01437±0.00389

Table 4: Performance on reading sequence detection
MLD (avg ± sd)

Dataset DBIAM DBPBOK DBE DBB

OTL 1.4331±0.4745 1.1295±0.2387 1.1581±0.4462 0.8573±0.2740
non-OTL 1.0936±0.4033 0.9454±0.3631 0.8096±0.3400 0.7695±0. 3173
Overall 1.2673±0.8485 1.0330±0.6778 0.9870±0.8748 0.8156±0.5030

our system found the location better on unobstructed text-lines (non-OTL) than
the obstructed text-lines (OTL).

Reading sequence detection. From the series of ground-truth coordinates
(xGT , yGT), we can obtain the actual reading sequence (l̂s) of a text-line. Simi-
larly, from the predicted series of coordinates, we obtained the predicted reading
sequence (ls) of a text-line. Now, we measured the distance between the actual
and predicted sequences with a small data-driven relaxation. Here, we used the
Levenshtein distance (LD) [16] due to its efficiency in measuring the difference
between the ground-truth and predicted sequences undertaking the pairwise se-
quence alignment. On a page, we computed the LDs for all the sequences over
text-lines and took its page-level arithmetic mean, say, MLD. In Table 4, we
present our model performance on reading sequence detection over DBt

i (for i ∈
IAM, PBOK, E, B) in terms of MLD (avg ± sd).

From Table 4, we can see that our system performed better for unobstructed
text-lines (non-OTL) than the obstructed ones (OTL) concerning the task of
reading sequence detection. Here, the overall result was the poorest for DBIAM
as it contains the highest number of OTLs among the datasets employed.

In Fig. 4, we present some qualitative results of our system. The word in-
sertions in OTLs of Fig. 4(b), (d) are done synthetically. Fig. 4(a) shows an
example, where a single word is inserted by a caret after striking-out the mis-
taken word. In Fig. 4(c), two successive words are inserted by placing a single
caret. Without any caret, a word is inserted in Fig. 4(b). In Fig. 4(d), two words
are inserted separately by two respective carets, where our system fails to detect
an insertion since the inserted word seems part of the prior text-line. Our system
succeeds in Fig. 4(a), (b), (c).

4.3 Comparison

As we mentioned in Section 1, the approach undertaken in this paper is the
earliest attempt of its kind, and we did not find any direct work for comparison

Text-line-up: Don’t Worry about the Caret 13

(a) (b)

(c) (d)

Fig. 4: Qualitative results of our system on samples of (a) DBE, (b) DBIAM, (c) DBB,
and (d) DBPBOK. Detected locations and reading sequence paths are shown by red
dots and blue arrowed-lines, respectively. Ground-truth locations and paths are also
shown. (Softcopy exhibits better display.)

purposes. However, for comparison analysis, we adapted some indirect methods
of the literature to fit into our problem, which is briefly discussed as follows.

Method-SN: We used SegNet [12] for semantic segmentation of both text-
lines and words. Prior training was performed using small handwritten character
graphemes. We obtained the CGs of the segmented words to treat as the location
coordinates. The sequence of these locations was detected with a data-driven
threshold.

Method-Ga: This method follows a similar approach to Method-SN in finding
the location coordinates and subsequent sequence detection. The only difference
is in the line and word segmentation module, for which we employed the 2D
Gaussian filtering-based technique of GOLESTAN-a [29].

We also engaged some human knowledge to compare with our system.
Human-E: Here, 5 healthy persons without any known reading/writing dis-

orders, were appointed to manually record the coordinates on the test data,
similar to the ground-truth generation scheme (refer to Section 2). We took an
average of location coordinates provided by 5 persons, which subsequently con-
tributed to finding the reading sequence. All 5 persons appointed here had at
least professional proficiency in the English language and they operated only on
the English datasets, i.e., DBIAM, DBE. In this paper, we present the average
result obtained from these 5 individuals.

Human-B: This setup is similar to the Human-E with the only difference is
that all 5 persons appointed here had native proficiency in the Bengali language.
The appointed persons here acted on Bengali datasets only, i.e., DBPBOK, DBB.

Human-nonB: This setup is similar to the Human-E and Human-B setups.
The only difference is that all 5 adults appointed here had no proficiency in
Bengali language. Still, they operated on Bengali datasets, i.e., DBPBOK, DBB.
Here, the appointed individuals were provided some basic information of Bengali
writing, such as Bengali is a left-to-right writing system similar to English, here
too a word can be inserted with/without caret symbol, it maintains inter-text-
line and inter-word gaps, etc.

14 C. Adak et al.

Table 5: Comparative analysis
Location finding Reading sequence detection

Method RMSE (avg) MLD (avg)
DBIAM DBPBOK DBE DBB DBIAM DBPBOK DBE DBB

Method-SN 0.04072 0.03908 0.03676 0.03530 2.3574 2.1206 1.8938 1.8370
Method-Ga 0.07427 0.07106 0.06861 0.06365 3.2776 3.0461 2.8664 2.6894
Human-E 0.00926 - 0.01038 - 0.0126 - 0.0065 -
Human-B - 0.01161 - 0.01424 - 0.0232 - 0.0190
Human-nonB - 0.01057 - 0.01591 - 0.8779 - 0.5603
Ours 0.02162 0.01741 0.01684 0.01437 1.2673 1.0330 0.9870 0.8156

As a matter of fact, the linguistic/readability knowledge of human-beings
was used in the Human-E and Human-B setups, whereas such knowledge was
missing in the Human-nonB setup. Owing to our limited opportunity, we were
unable to make a rational choice of the experiment, i.e., Human-nonE, where
the appointed individuals do not have any expertise in English/Latin script.

In Table 5, we compare our overall results with the performances of some
baseline methods and humans, with respect to the location coordinate find-
ing and reading sequence detection, while keeping the same experimental setup
as before. For both cases, our system performed better than Method-SN and
Method-Ga. From Table 5, it is interesting to observe that for a human (Human-
E/Human-B) having linguistic knowledge, MLD (avg) ≈ 0; but without lin-
guistic knowledge, even human (Human-nonB) performance is not sufficiently
reliable in finding the reading sequence. However, our system attempts to learn
the reading sequence without any linguistic knowledge through the exploration-
exploitation mechanism of RL.

4.4 Limitation

In this current research, we considered word insertion in principal text-lines [2],
and did not tackle the (oriented) insertions in the margins. However, our work
can be extended to address this issue. We here worked with obstructed text-lines
at the word-level. Sometimes, in a word, character-level insertion/annotation can
be noted, which we did not handle here.

We did not pay additional attention to the words with strike-through. How-
ever, a special module [30] for this can be added. Experiments were performed
on handwriting samples written on white pages. However, if a sample is written
on a rule-lined page, a preprocessing module [31] can be added.

We experimented on left-to-right writing systems (English and Bengali); how-
ever, our architecture can be extended to right-to-left writing systems [31] with
some minor changes. Some unconventional annotations, due to writing idiosyn-
crasies, such as inserting a word below a certain text-line using a down-caret
symbol (∨), are out of the scope of this paper.

Text-line-up: Don’t Worry about the Caret 15

5 Conclusion

In this paper, we studied the detection of the reading sequence of words in a
handwritten text-line, including those that are obstructed due to inserting some
words during amendments. We proposed a multi-agent hierarchical reinforce-
ment learning-based architecture for our work. For experimental analysis, we
took English and Bengali offline handwriting. We compared our system per-
formance with some baseline approaches and obtained encouraging outcomes.
However, still, there is a room for improving our system performance, which we
will endeavor to address in the future.

Acknowledgment

All the people who contributed to generating the database are gratefully ac-
knowledged. The authors also heartily thank all the consulted linguistic and
handwriting experts.

References

1. T. Grüning et al., “A Two-Stage Method for Text Line Detection in Historical
Documents”, IJDAR, vol. 22, pp. 285-302, 2019.

2. L. L.-Sulem, A. Zahour, B. Taconet, “Text Line Segmentation of Historical Docu-
ments: A Survey”, IJDAR, vol. 9, pp. 123–138, 2007.

3. O. Surinta et al., “A* Path Planning for Line Segmentation of Handwritten Doc-
uments”, ICFHR, pp. 175-180, 2014.

4. X Y. Li et al., “Script-Independent Text Line Segmentation in Freestyle Handwrit-
ten Documents”, IEEE TPAMI, vol. 30, no. 8, pp. 1313-1329, 2008.

5. K. Arulkumaran et al., “Deep Reinforcement Learning: A Brief Survey”, IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, 2017.

6. R. S. Sutton, A. G. Barto, “Reinforcement Learning: An Introduction”, 2nd eds.,
MIT Press, ISBN: 9780262039246, 2018.

7. Wilber, “GIMP 2.10.22 Released”, 2020. Online: gimp.org (retrieved: 3 May 2021)
8. U. Marti, H. Bunke, “The IAM-database: An English Sentence Database for Off-

line Handwriting Recognition”, IJDAR, vol. 5, pp. 39-46, 2002.
9. A. Alaei, U. Pal, P. Nagabhushan, “Dataset and Ground Truth for Handwritten

Text in Four Different Scripts”, IJPRAI, vol. 26, no. 4, #1253001, 2012.
10. Y. F.-Berliac, “The Promise of Hierarchical Reinforcement Learning”, The Gradi-

ent, 2019.
11. D. Wierstra, A. Foerster, J. Peters, J. Schmidhuber, “Solving Deep Memory

POMDPs with Recurrent Policy Gradients”, ICANN, pp 697-706, 2007.
12. V. Badrinarayanan et al., “SegNet: A Deep Convolutional Encoder-Decoder Archi-

tecture for Image Segmentation”, IEEE TPAMI, vol. 39:12, pp. 2481-2495, 2017.
13. A. Zhang et al., “Dive into Deep Learning”, 2020. Online: d2l.ai (retrieved: 3 May 2021)
14. S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift”, ICML, pp. 448-456, 2015.
15. D. Misra, “Mish: A Self Regularized Non-Monotonic Activation Function”, Paper

928, BMVC 2020.

16 C. Adak et al.

16. V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals”, Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845–848, 1965.

17. V. Mnih et al., “Human-level Control Through Deep Reinforcement Learning”,
Nature, vol. 518, 529-533, 2015.

18. Z. Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”,
ICML, vol. 48, pp. 1995–2003, 2016.

19. R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connection-
ist Reinforcement Learning”, Machine Learning, vol. 8, no. 3-4, pp. 229-256, 1992.

20. B. A. Wandell, “Foundations of Vision”, ISBN: 9780878938537, Sinauer Asso. Inc.,
1995.

21. H. Larochelle, G. E. Hinton, “Learning to Combine Foveal Glimpses with a Third-
Order Boltzmann Machine”, pp. 1243-1251, NIPS, 2010.

22. K. He et al., “Deep Residual Learning for Image Recognition”, CVPR, pp. 770-778,
2016.

23. K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”, EMNLP, pp. 1724-1734, 2014.

24. J. Chung et al., “Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling”, NIPS Workshop on Deep Learning, 2014.

25. V. Mnih et al., “Recurrent Models of Visual Attention”, NIPS, pp. 2204-2212, 2014.
26. R. S. Sutton et al., “Policy Gradient Methods for Reinforcement Learning with

Function Approximation”, NIPS, pp. 1057-1063, 1999.
27. J. Hertz, A. Krogh, R. G. Palmer, “Introduction to the Theory of Neural Compu-

tation”, CRC Press, 1991. DOI: 10.1201/9780429499661.
28. A. Botchkarev, “Performance Metrics (Error Measures) in Machine Learn-

ing Regression, Forecasting and Prognostics: Properties and Typology”,
arXiv:1809.03006, 2018.

29. N. Stamatopoulos et al., “ICDAR 2013 Handwriting Segmentation Contest”, IC-
DAR, pp. 1402-1406, 2013.

30. B. B. Chaudhuri, C. Adak, “An Approach for Detecting and Cleaning of Struck-out
Hand-written Text”, Pattern Recognition, vol. 61, pp. 282-294, 2017.

31. W. A.-Almageed et al., “Page Rule-Line Removal Using Linear Subspaces in
Monochromatic Handwritten Arabic Documents”, ICDAR, pp. 768-772, 2009.

	Text-line-up: Don't Worry about the Caret

